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ABSTRACT

Deep reinforcement learning has shown incredible promise at training high-performing agents to
solve high-dimensional continuous control tasks in a particular training environment. However, to
be useful in real-world settings, long-lived agents must perform well across a range of environmen-
tal conditions. Naively applying deep RL to a task where environment conditions may vary from
episode to episode can be data inefficient. To address this inefficiency, we introduce a method that
discovers structure in an agent’s high-dimensional continuous action space to speed up learning
across a range of environmental conditions. Whereas prior work on finding so-called latent action
spaces requires expert demonstrations or on-task experience, we instead propose to discover the la-
tent, lower-dimensional action space in a simulated environment and then transfer the learned action
space for training over a distribution of environments. We evaluate our novel method on random-
ized variants of simulated MuJoCo environments and find that, when there is a lower-dimensional
action space to exploit, our method significantly increases data efficiency. For instance, in the Ant
environment, our method reduces the 8-dimensional action space to a 3-dimensional action space
and doubles the median return achieved after a training budget of 2 million timesteps.

1 INTRODUCTION

Autonomous agents deployed in real-world settings often must generalize skills across a range of different environment
dynamics. For instance, a quadruped robot that can walk perfectly on a smooth laboratory floor but cannot walk fluidly
on pavement has limited real-world applicability. In this paper, we focus on the challenge of training agents to perform
a single task over a distribution of environments with different physics parameters.

Deep reinforcement learning (RL) algorithms have demonstrated incredible success in learning difficult control
tasks (Agostinelli et al., 2019; Andrychowicz et al., 2020; Schulman et al., 2016) and can be applied to learn over
a distribution of environments simultaneously. However, in high-dimensional continuous control problems, RL re-
quires a large number of environment interactions to achieve good performance even in a single environment. This
data inefficiency often makes RL impractical in domains such as robotics, where training on a real robot is expensive
and time consuming. Prior work suggests that data efficiency can be improved by learning a policy that takes actions
in a lower-dimensional latent action space. The lower-dimensional latent actions are then mapped back to the orig-
inal, higher-dimensional action space using a learned mapping. While a promising approach, finding a latent action
space that can represent the task-optimal policy and increase data efficiency is difficult, possibly requiring advance
knowledge of the optimal policy.

We note that in many tasks, we have access to a simulator in which learning the task-optimal policy is comparatively
cheap. We hypothesize that a latent action space learned in such a simulator can increase data efficiency when training
directly on a distribution of environments. While it may seem appealing to instead directly transfer a simulation-
trained policy to the distribution of environments, this approach is undesirable for two reasons: (1) small discrepancies
between simulator dynamics and dynamics within the environment distribution can cause simulation-trained policies
to transfer poorly (Kober et al., 2013), and (2) even if we have access to a high-fidelity simulator, it may be unable
to emulate all possible physics settings within the environment distribution. To obtain strong performance, we must
eventually train in the environment distribution. If the optimal policies in the simulator and environment distribution
have similar lower-dimensional action representations, then a simulation-acquired latent action space may improve
learning over the distribution of environments.

In this paper, we introduce SALAS (Simulation-Acquired Latent Action Spaces), a transfer technique that discovers a
latent action space using rollouts from a policy trained in a simulated source environment and then transfers this latent
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space for training in a target distribution of environments. SALAS has two key features: (1) a method for learning
latent action spaces of any dimensionality and (2) a heuristic for selecting the latent space dimensionality that yields
the greatest improvement in data efficiency without exhaustively training with each latent space.

To evaluate our proposed method, we consider three simulated source environments and create target environment
distributions by randomizing their simulation parameters. We show that a latent action space learned in the source
environment can speed up learning over the target environment distribution, whereas training an agent in its native
action space can yield poor data efficiency. Furthermore, we evaluate the latent space selected by SALAS in hindsight,
comparing empirical results against the heuristic’s predictions.

We now summarize our primary contributions:

• We introduce SALAS, a method that discovers a lower-dimensional action space to speed up learning over a
distribution of environments with different physics parameters.

• We empirically demonstrate that a latent action space produced by SALAS in a fixed simulator instance can
improve data efficiency when training an RL agent over a distribution of similar environments.

• Our experiments uncover cases where action space reduction reduces data efficiency even when the latent
action space can represent a high-performing policy. We hope these findings will guide future work in action
space representation learning.

Overall, we find that SALAS can be an effective tool for training agents to perform well across a variety of environ-
mental conditions.

2 RELATED WORK

In this section, we provide a summary of the most relevant prior work in action representation learning, sim-to-real
RL, and multi-task RL.

2.1 LATENT ACTION REPRESENTATIONS

Our work focuses on learning structure in the actions of an agent’s policy. While we consider the continuous action
setting, prior work has investigated learning representations for discrete action as well. Chandak et al. (2019) learn
a continuous embedding for discrete actions based on how each action affects the state, allowing for generalization
across similar actions that is otherwise not possible in the original discrete space, and Jain et al. (2020) learn a con-
tinuous embedding that can generalize to unseen actions. Tennenholtz & Mannor (2019) adopt existing methods in
natural language processing to inject prior information into action representations.

Other prior work focuses on representations for continuous action spaces. Luck et al. (2014; 2016) learn a latent action
space in an online fashion to generate correlated noise, allowing for better exploration in the original action space.
Similar to our work, they discover a linear latent-to-native mapping using Probabilistic PCA, though our method learns
the mapping offline and reduces the dimensionality of the action space. Allshire et al. (2021) use a state-conditioned
variational autoencoder to learn a latent-to-native mapping. Losey et al. (2020) similarly use an autoencoder to learn
a user-friendly lower-dimensional action space for the teleoperation of robots. While these works focused on learning
latent-to-native action mapping for a single similar or identical task, our work seeks improvement over a distribution
of similar environments. Furthermore, rather than treating the dimensionality of the latent action space as an additional
hyperparameter to tune, SALAS provides a heuristic to identify an appropriate latent dimensionality.

2.2 SIM-TO-REAL REINFORCEMENT LEARNING

Since simulators are often a faster, cheaper, and safer alternative to training in the real world, much attention has
been given towards using simulated experience for faster real-world training (Koos et al., 2010; Cutler & How, 2015).
However, discrepancies between simulator dynamics and real-world dynamics introduce a reality gap (Kober et al.,
2013), often causing a simulation-trained agent to perform poorly in the real world. Sim-to-real transfer techniques
aim to bridge this gap. Our proposed method can be interpreted as a sim-to-real transfer technique where a latent
action space learned in simulation is transferred to the real world (i.e. the target environment distribution). Cutler
et al. (2014) use multiple simulators of increasing fidelity to minimize the number of real-world samples needed for
learning. Christiano et al. (2016) learn an inverse dynamics model to adapt simulation-trained policies to the real
world. More closely related to our work, Cully et al. (2015) use simulation to learn low-dimensional behaviors to
guide a robot to adapt its behavior if it becomes damaged in the real world. Instead of using dimensionality reduction
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to better explore the original action space, SALAS reduces the action space itself, excluding actions that a trained
policy is unlikely to choose.

Rather than treating the simulation as a low-fidelity model of the real world, domain randomization (DR) techniques
model the reality gap as variability in simulation features and/or dynamics. The key insight is that an agent trained
to perform well over a distribution of simulations will likely generalize well in the real world. Several prior works
have transferred vision-based policies without the use of real-world images by randomizing low-fidelity simulation
rendering (Tobin et al., 2017; Sadeghi & Levine, 2017; James et al., 2017). Peng et al. (2018) randomize simulator
dynamics to transfer robotic arm policies to the real world. Since sampling environment parameters uniformly at
random may introduce unnecessary variance into learning, Mehta et al. (2019) and Chebotar et al. (2019) improve
data efficiency of DR through an adaptive sampling of environment parameters. Our proposed work is distinct from
DR; in DR, agents are trained over a distribution of environments and evaluated on a single environment (the real
world), whereas in our work, we train and evaluate agents in a distribution of environments.

Other methods seek to improve simulator fidelity through system identification (Kolev & Todorov, 2015) or ground-
ing (Hanna et al., 2021). These methods are orthogonal to our approach; system identification and grounding augment
simulation-trained polices for better real-world performance, whereas SALAS uses simulation only to learn a latent
action space. In principle, such methods could be used to improve the simulator before applying SALAS.

2.3 MULTI-TASK REINFORCEMENT LEARNING

In multi-task RL, an agent aims to learn a set of similar tasks simultaneously by leveraging similarities across the task
set. When training over a distribution of environments, every environment instance can be interpreted as a different
task. The setting considered in our work can thus be treated as an instance of multi-task RL where only the state
transition function varies between tasks. Examples of prior work in the multi-task setting include distillation-based
approaches (Czarnecki et al., 2019; Teh et al., 2017; Ghosh et al., 2018) that share behavioral structure across tasks
as well as network architectures for representation sharing across tasks (D’Eramo et al., 2019; Sodhani et al., 2021).
More closely related to our work, Hausman et al. (2018) learn an continuous skill embedding space for a set of tasks
and then learns a task-conditioned policy in this embedding space over a different set of tasks. Our setting differs in
that we do not provide agents with information on the current environment parameters.

3 PRELIMINARIES

In this section, we formalize our problem setting and introduce the concept of a latent action space and policy.

3.1 RL BACKGROUND

We formalize the environments of interest as finite horizon Markov decision processes (MDPs) defined by
(S,A, Pϕ, r, d0, γ) where S ⊆ Rn and A ⊆ Rk denote the continuous state and action space, respectively,
Pϕ(s

′ | s,a) parameterized by ϕ denotes the probability density of transitioning to a state s′ after taking action
a in state s, r(s,a) denotes the reward for taking action a in state s, d0 denotes the initial state distribution, and
γ ∈ [0, 1) denotes the discount factor. We write h to denote the horizon. Though we consider a continuous state
space, the method we introduce applies to discrete state spaces as well. In this work, ϕ represents simulator physics
parameters governing the state transition function.

We useM(ϕ) to denote an environment with physics parameters ϕ and define a distribution over physics parameters
pphysics. The target environment distribution pM denotes the distribution over environments induced by sampling
ϕ ∼ pphysics and then instantiatingM(ϕ). We consider deterministic policies πθ : S → A parameterized by θ mapping
states to actions. We seek a policy that maximizes the expected sum of discounted reward over the target environment
distribution J(θ) = Eπ,s0∼d0,M∼pM

[∑h
t=0 γ

tr(st,at)
]
. We additionally assume access to one environment instance

in pM with physics parameters ϕ0 which we call the source environmentMsource =M(ϕ0).

3.2 LATENT ACTION SPACES AND POLICIES

In high-dimensional continuous control problems, the optimal policy’s actions may exhibit correlation across action
dimensions. For example, as a quadruped robot walks, one leg moves back as another leg moves forward. These
correlations provide an opportunity to reduce the dimensionality of the action space without substantially affecting
optimal policy performance. A smaller action space can be explored more efficiently, potentially speeding up learning.
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Figure 1: A latent policy π̃θ(s) = l(fθ(s))
with policy network fθ(s) and latent-to-native
mapping l(ã).

We define a latent action space Ãk̃ ⊆ A with dimensionality k̃ and
henceforth refer to A as the native action space. We use ã ∈ Ã
and a ∈ A to represent actions in the latent and native action spaces,
respectively. A latent policy π̃θ is parameterized by a policy network
fθ : S → Ã mapping states to latent actions and a fixed latent-to-
native action mapping l : Ã → A. The overall latent policy is the
composition of l and fθ, i.e. π̃θ(s) = l(fθ(s)). Figure 1 illustrates
the interaction protocol for the latent policy. We refer to a latent
agent that uses latent space Ãk̃ as a latent-k̃ agent. If Ã = A and
l is the identity mapping, the policy is simply πθ(s) = fθ(s) and
we refer to it as a native policy. Note that a latent policy does not
necessarily operate in a lower-dimensional action space, since we
may have Ã = A and l(ã) not equal to the identity. In this case, π̃θ

operates in a transformed action space of the same dimensionality.

4 SALAS: SIMULATION-ACQUIRED LATENT ACTION SPACES

In this section, we introduce our primary algorithmic contribution: SALAS, a transfer technique that discovers a latent
action space inMsource and then uses the latent space to increase data efficiency when training in pM. SALAS first
trains a native agent to convergence inMsource and then forms a dataset of native actions using rollouts of the resulting
policy. To obtain a set of latent action spaces of increasing dimensionality, SALAS then performs dimensionality
reduction on this dataset. Using a heuristic, SALAS identifies which latent space yields the greatest improvement in
data efficiency inMsource. A new agent is then trained from scratch in pM using the identified latent action space. A
diagram illustrating the SALAS method can be found in Figure 2.

Our key insight is that if environments with support under pM are sufficiently similar toMsource, then the correlations
across action dimensions in an optimal policy will be similar in both settings. If a latent action space learned in
Msource improves data efficiency inMsource, we expect that the latent space can also improve data efficiency in pM.
A latent space may transfer poorly if the optimal policy action correlations for pM are sufficiently different from
Msource. However, in practice, we observe that latent spaces can still improve data efficiency even we randomize
physics parameters over relatively wide ranges.

4.1 CHOOSING A LATENT ACTION SPACE DIMENSIONALITY

While dimensionality reduction of A may increase data efficiency, it may also prevent us from representing the task-
optimal policy. It is unknown a priori how much we can reduce the dimensionalty of the action space to balance
an increase in data efficiency with a possible decrease in final performance. Since we expect correlations across
action dimensions in optimal policies for Msource and pM to be similar, we evaluate latent spaces in Msource with
the expectation that the most data efficient latent space in Msource will also be most data efficient in pM. While
this approach avoids the data inefficiency associated with evaluating latent spaces in pM, it is still computationally
expensive to identify the most data efficient latent space, especially if the native action dimension is large. Ideally, we

Figure 2: An overview of SALAS. First, we train a native policy πθ in the source environment and form an action
dataset D using rollouts of the trained policy. Next, we constuct latent action spaces Ã1, . . . Ãk and use the heuristic
described in Algorithm 1 to predict which latent space yields the best data efficiency. The heuristic involves training
a small subset of latent agents in the source environment. After identifying the optimal latent dimensionality k̃∗, we
train a latent-k̃∗ agent in the target environment distribution, denoted in the figure as πk̃∗

θ .
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want to avoid evaluating all possible k̃. We cannot rely on metrics such as reconstruction error or – in the case of PCA
– the fraction of variance explained by the principal components to prune our search space; these metrics inform us
of how closely the latent space can represent actions in the native space but do not tell us if the representable actions
yield high reward nor if the latent space will indeed increase data efficiency.

Algorithm 1: SALAS’s binary search
heuristic to determine the most data-
efficient latent action space
Inputs: latent dimensionalities
K = (k̃i)

m
i=1, performance threshold β,

and timesteps required for the native
agent to reach performance threshold tβ

lo← 1
hi← m
while lo < hi do

mid← ⌊ lo+hi
2 ⌋

k̃ ← k̃mid

Train latent-k̃ agent inMsource

tk̃β ← timesteps required for the agent
to reach performance β

if tk̃β < tβ then
hi← mid

else
lo← mid+ 1

end
end
Return: k̃hi

SALAS provides a more guided approach to identifying the best la-
tent space. Our key insight is that if we require that latent spaces
satisfy Ã1 ⊂ · · · ⊂ Ãk, then policies representable in Ãi are also
representable in Ãi+1. Suppose Ãi can represent a high-performing
policy. We then know that Ãi+1 can yield similar or greater perfor-
mance, though we expect the smaller Ãi to be more data efficient.
Thus, SALAS seeks the smallest k̃ that yields performance exceed-
ing a predefined threshold β faster than the native agent. The choice
of β defines the minimum acceptable performance inMsource, char-
acterizing how much we are willing to trade off a potential increase
in data efficiency with a potential decrease in final performance.

SALAS uses the heuristic in Algorithm 1 to perform a binary search
over a sequence of increasing latent space dimensionalities K =
(k̃i)

m
i=1. First, SALAS trains latent-k̃⌊m/2⌋ agents in the source en-

vironment. If the agents reach threshold β before the native agent,
SALAS eliminates latent spaces with dimensionality greater than
k̃⌊m/2⌋ and trains latent-k̃⌊m/4⌋ agents next. Otherwise, SALAS
eliminates latent spaces with dimensionality less than or equal to
k⌊m/2⌋, and trains latent-k̃⌊3m/4⌋ agents next. The binary search
continues until the smallest latent space that achieves performance
β faster than the native agent is found, or if no such latent space ex-
ists, the heuristic suggests that PCA-based latent action spaces are
unhelpful for the environment of interest. This heuristic reduces the
number of latent spaces to evaluate inMsource from |K| to log2 |K|.

4.2 LEARNING LATENT ACTION SPACES

SALAS requires a dimensionality reduction technique to discover latent action spaces from source environment trajec-
tories. As described in Section 4.1, SALAS requires that the latent action spaces Ã1, . . . , Ãk form a nested sequence
of spaces Ã1 ⊂ Ã2 ⊂ · · · ⊂ Ãk. We propose to use PCA (Bishop, 2006, Chapter 12), a classical dimensionality
reduction technique that finds a linear projection that maximizes the variance of projected data and minimizes the
projection error. While autoencoders are a popular tool for dimensionality reduction, we cannot guarantee that au-
toencoders trained with different latent dimensionalities will form a nested sequence of spaces. In what follows, we
describe how we use PCA to learn a nested sequence of latent action spaces.

First, we train a native agent to convergence inMsource and then collect trajectories of the trained agent inMsource.
We combine all actions in the sampled trajectories in an n × k dataset D of n native actions. Given D and a desired
latent space dimensionality k̃, PCA outputs an orthonormal k × k̃ matrix Wk̃ whose columns are the first k̃ principal
components of D and a vector µ equal to the mean of D. Without loss of generality, we assume that the ith column of
Wk̃ is the ith principal component. The span of Wk̃ + µ is the latent space Ãk̃, and the latent-to-native mapping is
l(ã) = Wk̃ã+ µ. By construction, PCA produces a nested sequence of latent spaces Ã1 ⊂ Ã2 ⊂ · · · ⊂ Ãk.

We have found that one seemingly minor implementation detail requires careful consideration when using PCA to learn
the latent-to-native mapping l. Implementations of RL algorithms such as DDPG (Lillicrap et al., 2016), TD3 (Fu-
jimoto et al., 2018), and SAC (Haarnoja et al., 2018) often bound policy output to the unit hypercube Ã ⊆ [−1, 1]k̃
by applying a squashing function such as tanh to the policy output. If the action space is bounded to the hypercube,
the PCA-based latent-to-native mapping will map latent actions ã ∈ Ãk̃ with ||ã + µ||2 > 1 to actions outside of
[−1, 1]k̃, and since l is one-to-one, the action space is reduced more than intended. Figure 3 illustrates this effect in
a squashed two-dimensional space. To prevent unintentional restriction of the latent space, SALAS performs PCA on
a dataset of unsquashed actions by applying arctanh to actions in D to remove any squashing before running PCA.
During latent policy optimization, we apply the squashing function to the output of l to obtain the final action to send
to the environment.
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5 EXPERIMENTS

Figure 3: An illustration of how the latent-to-
native mapping l(ã) = Wk̃ã+µ cannot repre-
sent some native actions with a squashed action
space A = [−1,+1]2. In this example, W2 is
a 45 degree rotation matrix, and µ = (0, 0)⊤.
Without loss of generality, we take the first col-
umn of W2 to be W1 = ( 1√

2
, 1√

2
)⊤. For both

k̃ = 1 and 2, actions near the corners of the ac-
tion space cannot be reached under l.

In this section, we present an empirical analysis of SALAS. We de-
sign our empirical analysis to answer two questions:

1. Can a latent action space learned from a single simulated
environment increase data efficiency when learning over a
distribution of similar environments with different physics
parameters?

2. Given a set of latent action spaces, can SALAS determine
which spaces will increase data efficiency without exhaus-
tively training on all of them?

5.1 ENVIRONMENT DESCRIPTIONS

We perform experiments using modified implementations of the
OpenAI Gym MuJoCo environments (Brockman et al., 2016).
ReacherTracker20-v3 is an extension of the Reacher-v2 environ-
ment with 20 links and 20 degrees of freedom. The goal is to track
an elliptical trajectory using its end-effector, similar to the robotic
arm environment used by Luck et al. (2014). This environment ex-
hibits a high level of redundancy in its control space, and we expect
the actions dimensions of an optimal policy to be highly correlated. Swimmer20-v3 is an extension of the Swimmer-
v3 environment with 20-links and 19 degrees of freedom. We expect actions dimensions of an optimal policy to be
correlated in this environment as well, though it requires more complex movements than ReacherTracker20-v3 to
achieve good performance. We additionally use the 8-degree-of-freedom Ant-v3 environment without modification.
See Appendix A for additional environment details.

To create target environment distributions, we randomize simulation parameters at the beginning of each episode.
Table 1 lists the randomized parameters for each environment as well as their randomization bounds and their de-
fault values inMsource. New parameter values are sampled uniformly at random from their respective randomization
bounds. To determine reasonable randomization bounds, we simulated rollouts of a trained native agent while ran-
domizing each environment parameter individually, and we chose the tightest bounds to which the native agent could
not immediately generalize.

Table 1: Randomization bounds for environment parameters. The density, damping, and slope bounds represent
minimum and maximum possible values, whereas the bounds for mass, friction, and gravity represent the minimum
and maximum scaling of each parameter. Density refers to the density of the environment medium used to simulate
drag forces. In ReacherTracker20, the masses of each link are scaled equally. In Ant-v3, only the mass of the ant’s
torso is randomized.

Environment Parameters Randomization Bounds Default Value

ReacherTracker20-v3 mass [0.5, 2] 1
damping [1, 10] 1

Ant-v3

torso mass [0.5, 2] 1
friction [0.5, 1.5] 1

slope along x axis [-0.1, 0.1] 0
gravity [0.5, 2] 1

Swimmer20-v3 density [2000, 6000] 4000
damping [1, 5] 1
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We use TD3 (Fujimoto et al., 2018) as the RL algorithm. We first train 10 native agents inMsource and then sample
1000 trajectories from the top performing native agent inMsource to create a datasetD of actions. To discover latent ac-
tion spaces, we then perform PCA on unsquashed actions inD as described in Section 4.2. For the ReacherTracker20-
v3 and Ant-v3 environments, agents are trained over 2 million timesteps, and for Swimmer20-v3, agents are trained
for 1 million timesteps. We evaluate agents over 100 episodes every 10,000 timesteps during training. When train-
ing agents in the source and target environment distribution, we train over 10 and 20 random seeds, respectively. To
account for differences in initialization between native and latent agents due to the additive µ, we additionally train
native agents with l(ã) = ã+ µ.

5.2 RESULTS

Figure 4: Fraction of variance explained for
PCA-based latent spaces of increasing dimen-
sionality.

Before evaluating if SALAS increases data efficiency in the tar-
get environment distribution, we first verify how much dimension-
ality reduction is feasible while still preserving actions of a high-
performing policy in the source environment. For each environment,
we run PCA and calculate how much variance in arctanhD can be
explained by each latent space. Figure 4 shows the explained vari-
ance for each choice of k̃. In all environments, at least 90% of the
variance can be explained using a latent dimesionality of 4. This re-
sult suggests that high-performing policies in all environments can
be approximately represented with lower-dimensional action spaces.

The ability to represent the actions of the optimal policy will not
necessarily translate into faster learning, however. To predict which
latent action space will yield the best data efficiency in the target
environment distribution, we evaluate native and latent agent data
efficiency in the source environment using the heuristic described in
Algorithm 1. We use the performance threshold

β = rrandom + 0.9(rnative − rrandom),

where rrandom and rnative are the median return achieved by a random
policy and a trained native policy inMsource, respectively. Figure 5
shows training curves for different latent spaces within each source
environment. We show training curves only for latent spaces that SALAS’s heuristic evaluates, though training curves
for all latent agents can be found in Appendix B. Due to the high variance of training, we plot the median performance
in all figures. Plots showing average performance curves can also be found in Appendix B.

For ReacherTracker20-v3 and Ant-v3, we consider K = (3, 6, 9, 12, 15, 18, 20) and K = (1, 2 . . . , 8), respectively. In
both environments, the heuristic finds that dimensionality k̃ = 3 yields the most data efficient latent space inMsource.
For Swimmer20-v3, we consider K = {10, 12, 14, 16, 18}. None of the latent agents evaluated by SALAS’s heuristic
reach the threshold faster than the native agents, and SALAS predicts that none of the PCA-based latent action spaces
will transfer well to pM. Even though latent agents in Swimmer20-v3 converge to equivalent performance as the native
agent, they require more samples to do so. This observation underscores that the most data efficient latent action space
is not necessarily the smallest space that can simply represent a high-performing policy.

We now answer our two primary empirical questions by training latent agents in pM and comparing their data ef-
ficiency and final learning performance. We additionally take the native and SALAS agents trained in Msource and
fine-tune them in pM as baselines methods. We fine-tune the 10 source-trained native and the 10 source-trained
SALAS agents over 5 random seeds. Performance curves are shown in Figure 6. Again, we only show training curves
for latent spaces SALAS’s heuristic evaluates, though curves for all latent agents can be found in Appendix B.

In ReacherTracker20-v3, the latent-3 agent converges after less than 500 thousand timesteps and achieves higher return
than the native agent, fine-tuned agents, and all other latent agents considered. Even after 2 million timesteps, the native
agent has not converged. In the source environment, the native agent could match latent-3’s performance after roughly
1 million timesteps, highlighting the difficulty introduced by randomizing environment parameters. We observe a
smooth increase in data efficiency as the latent space dimensionality decreases. While the fine-tuned SALAS agent
maintained consistent performance throughout training, some of the fine-tuned native agents experienced a significant
drop in performance near the end of training, ultimately achieving performance on par with a random policy. In
Ant-v3, all latent agents except for k̃ = 1, 8 outperform the native agent. The latent-3 agent outperforms all latent
agents considered and achieves roughly double the median return achieved by the native agent. Both fine-tuned
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(a) ReacherTracker20-v3 (b) Ant-v3 (c) Swimmer20-v3

Figure 5: Training curves for agents in the source environment. Agents are evaluated over 100 episodes every 10,000
timesteps. The curves are the median return over 10 random seeds. The shaded region denotes a 90% confidence belt.
The red dashed line in each plot indicates the performance threshold β.

(a) ReacherTracker20-v3 (b) Ant-v3 (c) Swimmer20-v3

Figure 6: Training curves for agents in the target environment distribution. Agents are evaluated over 100 episodes
every 10,000 timesteps. The curves are the median over 20 random seeds. Fine-tuned baselines show 50 seeds. The
shaded region denotes a 90% confidence belt.

baselines achieve poor performance. In Swimmer20-v3, latent-18 outperforms the other latent agents but does not
improve data efficiency compared the native agent, matching the heuristic’s prediction that none of the PCA-based
latent spaces considered will offer improvement. We observe that some fine-tuned agents experience a significant drop
in performance early in training though ultimately outperform all other agents.

Our results support the heuristic’s utility: SALAS correctly identifies which latent space offers the greatest increase
in data efficiency when learning in the target distribution, or indicates that none of them increase data efficiency,
without exhaustively training with all of them. The results for ReacherTracker20-v3 and Ant-v3 further demonstrate
that a latent space learned in a fixed simulator instance can greatly improve data efficiency in a distribution of similar
environments. Thus, we answer the two questions posed at the beginning of this section in the affirmative. We further
conclude that SALAS is preferable to fine-tuning, since fine-tuning offers inconsistent performance and sometimes
fails to learn at all.
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(a) Ant-v3: Friction (b) ReacherTracker20-v3: Damping (c) Swimmer20-v3: Density

Figure 7: Box plots comparing native and SALAS agent performance in each environment for various simulator
parameter settings. For each parameter setting, we obtain data for each box plot by evaluating all 20 native and
SALAS latent agents over 50 episodes each. In each figure, all simulation parameters are set to their default value
except the parameter being plotted.

5.3 EVALUATING LATENT POLICIES

Naturally, some environments within the target environment distribution may be more difficult to learn than others.
Since our RL agents maximize expected cumulative reward, agents may learn to perform well over only a portion
of the target environment distribution corresponding to the easier instances and perform poorly in the more difficult
instances. Moreover, it is possible that latent agents would struggle to learn on environments that differ substantially
from the source environment.

To assess how well SALAS’s action space generalizes outside of the source environment, we perform a finer-grained
evaluation of latent policies by observing how performance changes as simulator parameters deviate further and fur-
ther from the source environment. For a given simulator parameter, we choose several evenly-spaced values within its
randomization bounds, and then instantiate (fixed) environment instances with these parameter values. All other pa-
rameters are kept at their default values. We then evaluate native and latent agents trained in pM on these instances. We
only evaluate the latent agents chosen by SALAS, since they provide the largest increase in data efficiency. If SALAS
is overly-specialized to environments similar to the source environment, we expect that latent agent performance will
drop as environment parameters deviate more significantly from the source environment parameters.

Figure 7 shows how latent agent performance changes as one physics parameter is changed in each environment. See
Appendix C for additional figures showing how performance changes when the remaining physics parameters are
varied. In Ant-v3, both native and SALAS agents achieve low return for smaller gravity values and higher return for
larger gravity values. Since we observe this trend for both the native and SALAS agents, this specialization is likely
due to the inherent difficult of the low-gravity environment instances rather than an overly-specialized latent action
space. Interestingly, in ReacherTracker20-v3, the SALAS agents outperform the native agent only when the damping
coefficient is larger than 1, even though a damping coefficient of 1 is used in the source environment. As shown in
Figure 5, the SALAS agent can indeed match native performance in the source environment. Since the SALAS agents
achieve higher median performance than the native agent in pM, we hypothesize that this seeming specialization is
caused by the SALAS agents exploiting the easier environment instances with larger damping values.

6 CONCLUSIONS AND FUTURE WORK

We introduced SALAS, a technique for improving data efficiency when training over a distribution of environments.
SALAS learns a set of lower-dimensional latent action spaces in a single simulator instance, uses a heuristic to predict
which latent space will yield the greatest increase in data efficiency in the target distribution, and then trains over
the target distribution using the most promising latent space. We evaluated SALAS over several MuJoCo environ-
ments (Brockman et al., 2016) with randomized physics parameters. Empirical results indicated that SALAS can
substantially improve data efficiency compared to training in the original action space. Moreover, we observed that
SALAS’s heuristic correctly chose the latent spaces that yield the greatest data efficiency and correctly predicted when
none of the latent actions spaces considered improve data efficiency. Overall, SALAS can be used to efficiently train
agents to perform well across a variety of environmental conditions.
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Interestingly, we find that latent action spaces may reduce data efficiency even if they can represent policies that
perform on par with agents trained in the original action space. While SALAS can identify such latent spaces prior
to training in the target distribution, it remains unclear why data efficiency decreases. These findings raise questions
about whether dimensionality reduction necessarily results in an easier learning problem. Recent work by Dabney et al.
(2021) shows that effective value function representations are not only able to represent the optimal value function
but also the optimal sequence of value functions leading to it. It would be interesting to investigate if a similar
result applies for action space representations. Furthermore, extending our approach to non-linear dimensionality
reduction techniques (e.g. using autoencoders) is of interest, since SALAS relies on the properties possessed by linear
PCA-based latent action spaces. Though we found linear dimensionality reduction to be sufficient, low-dimensional
structure may be better representable using non-linear methods.
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(a) ReacherTracker20-v3 (b) Swimmer20-v3 (c) Ant-v3

Figure 8: Simulation renderings of the agent in each environment.

A ENVIRONMENT DESCRIPTIONS

We provide more detail on each environment considered in our experiments.

ReacherTracker20-v3: The ReacherTracker20-v3 environment (Figure 8a) is a 20-link extension of the Reacher-v2
environment with 20 degrees of freedom and state dimension of 29. The goal is to track the elliptical path

g =

(
0.2 cos(2πt/200) + 1.4
0.4 sin(2πt/200) + 0.8

)
, t = 1, . . . 200

over 200 timesteps using the reacher’s end-effector. Each link is 0.1 units long. At the beginning of each episode, each
joint angle is initialized to a value in [−0.1,+0.1] uniformly at random. The reward function is

r(s,a) = −c||a− g|| − ||a||2

where c = 20. The original Reacher-v2 environment uses c = 1, though we found it necessary to use c = 20,
otherwise the agent would purely maximize −||a||2 without solving the tracking task.

Swimmer20-v3: The Swimmer20-v3 environment (Figure 8b) is a 20-link extension of the Swimmer-v2 environment
with 19 degrees of freedom and state dimension of 40. The goal is travel as fast as possible in along the horizontal
axis. The the agent’s head is restricted to slide only along the horizontal axis. At the beginning of each episode, each
joint angle is initialized to a value in [−0.1,+0.1]. The environment is otherwise identical to the original Swimmer-v2
environment.

Ant-v3: In the Ant-v3 environment (Figure 8c), an 8 degree-of-freedom quadruped must learn to walk along the hori-
zontal axis. The state space has 111 dimensions. Aside from modifying physics parameters, we make no modifications
to the original Ant-v3 environment.
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B ADDITIONAL EXPERIMENTS

In this section, we show performance curves for latent and native agents not shown in the main text. Figure 9 shows
the median performance for all native and latent agents considered in our experiments. We additionally provide the
average performance curves in Figure 10. Average final performance in Msource and pM are shown in Figures 11
and 12, respectively.

When plotting average returns in the source environment, we use the following modified performance threshold:

β = r̄random + 0.9(r̄native − r̄random),

where r̄random and r̄native are the average return achieved by a random policy and a trained native policy in Msource,
respectively. In both Figures 9 and 10, we plot 10 and 20 random seeds for agents trained in the source environment
and target environment distribution, respectively. The shaded region denotes a 90% confidence belt. Each agent is
evaluated over 100 episodes every 10,000 timesteps.

In Ant-v3, we observe a increase in data efficiency as k̃ increases to 3 followed by a decrease as k̃ increases further.
In ReacherTracker20-v3, data efficiency increases as k̃ decreases to 3, and in Swimmer20-v3, performance decreases
as k̃ increases from 18. These observations verify that SALAS indeed selects the most data efficient k̃ from the set of
considered latent dimensionalities.
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(a) Ant-v3: Source Environment (b) Ant-v3: Target Environment Distribution

(c) ReacherTracker20-v3: Source Environment (d) ReacherTracker20-v3: Target Environment Distribution

(e) Swimmer20-v3: Source Environment (f) Swimmer20-v3: Target Environment Distribution

Figure 9: Median performance curves for latent and native agents inMsource and pM.
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(a) Ant-v3: Source Environment (b) Ant-v3: Target Environment Distribution

(c) ReacherTracker20-v3: Source Environment (d) ReacherTracker20-v3: Target Environment Distribution

(e) Swimmer20-v3: Source Environment (f) Swimmer20-v3: Target Environment Distribution

Figure 10: Average performance curves for latent and native agents inMsource and pM.
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(a) ReacherTracker20-v3 (b) Ant-v3 (c) Swimmer20-v3

Figure 11: Average performance in Msource with error bars corresponding to 90% confidence intervals. The ‘+mu’
abbreviates ‘native + µ’.

(a) ReacherTracker20-v3 (b) Ant-v3 (c) Swimmer20-v3

Figure 12: Average performance in pM with error bars corresponding to 90% confidence intervals. The ‘+mu’ abbre-
viates ‘native + µ’.
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C EVALUATING LATENT POLICIES

We provide additional empirical results for experiments described in Section 5.3 which we describe again here. For a
single environment parameter, we choose evenly-spaced values within its randomization bounds, and then instantiate
environments with these parameter values, keeping all other parameters at their default values (see Table 1). We
then evaluate native and latent agents trained in pM on these instances. We only evaluate the latent agents chosen
by SALAS. Figures 13, 14, and 15 show the performance of SALAS latent agents for each environment as we vary
each simulator parameter individually. We obtain data for each box plot by evaluating all 20 native and SALAS latent
agents over 50 episodes each.

In Ant-v3, both native and latent agents perform poorly for larger friction values and smaller gravity values. Perfor-
mance degrades more smoothly as torso mass decreases and as the slope deviates from 0. In Swimmer20-v3, native
and latent agent performance remains consistent as damping varies and decreases as density increases. Native and
latent agent performance follow the same trends across all parameters for Ant-v3 and Swimmer20-v3, indicating that
agents are specializing to easier parameter settings in the target environment distribution.

In ReacherTracker20-v3, we observe that the native agents slightly outperform the latent agents when mass is varied,
though performance is consistent. Latent agents outperform native agents with a median performance of approximately
−500 (Figure 9), though they only perform this well when damping is larger than 1. Thus, the latent agents are
specializing to easier environment instances with easier parameter settings to achieve higher return.
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(a) Ant-v3: Friction (b) Ant-v3: Gravity

(c) Ant-v3: Torso Mass (d) Ant-v3: Slope

Figure 13: Box plots comparing native and SALAS agent performance in the Ant-v3 environment for various simulator
parameter settings.
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(a) ReacherTracker20-v3: Damping (b) ReacherTracker20-v3: Mass

Figure 14: Box plots comparing native and SALAS agent performance in the ReacherTracker20-v3 environment for
various simulator parameter settings.

(a) Swimmer20-v3: Damping (b) Swimmer20-v3: Density

Figure 15: Box plots comparing native and SALAS agent performance in the Swimmer20-v3 environment for various
simulator parameter settings.
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(a) Source Environment (b) Target Environment

Figure 16: ReacherTracker4-v3

D REACHER ENVIRONMENT ABLATIONS

The tracking task in the ReacherTracker20-v3 environment can be solved with much fewer than 20 degrees of freedom.
Nevertheless, a performance gap between native and latent agents still exists when we consider reacher environments
with fewer degrees of freedom. We introduce a general ReacherTrackerk-v3 environment, where k denotes the number
of links in the reacher (and the size of the action space). The goal is to track the elliptical trajectory

g =

(
0.01k cos(2πt/h) + 0.07k
0.02k sin(2πt/h) + 0.14k

)
, t = 1, . . . h

over h timesteps using the reacher’s end-effector. We apply SALAS to ReacherTracker8-v3 and ReacherTracker4-v3.
For k = 8, we use h = 200 as in the original ReacherTracker20-v3 environment. For k = 4, we use h = 600 to
slightly increase task difficulty, otherwise all agents would solve the task in very few timesteps.

We use the same source and target environment distribution physics parameters used for ReacherTracker20-v3 (see
Table 1). During training, we evaluate agents over 100 episodes every 10,000 timesteps. In the source and target
environment distribution, we train over 10 and 20 random seeds, respectively. Native agents are trained for 1 million
timesteps in ReacherTracker8-v3 and for 200 thousand timesteps in ReacherTracker4-v3, and we use the policy with
the best overall performance to create the native action set D. We train latent agents for half as many timesteps.

Results are shown in 17 and 16. The curves denote the median over 10 random seeds. The shaded region denotes a
90% confidence belt. In both environments, SALAS chooses k̃ = 2. We observe that a latent-2 agent converges the
fastest and exhibits less variance than a native agent in bothMsource and pM.
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(a) Source Environment (b) Target Environment

Figure 17: ReacherTracker8-v3
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