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Abstract— In various control task domains, existing con-
trollers provide a baseline level of performance that—though
possibly suboptimal—should be maintained. Reinforcement
learning (RL) algorithms that rely on extensive exploration
of the state and action space can be used to optimize a
control policy. However, fully exploratory RL algorithms may
decrease performance below a baseline level during training.
In this paper, we address the issue of online optimization
of a control policy while minimizing regret with respect to
a baseline policy performance. We present a joint imitation-
reinforcement learning framework, denoted JIRL. The learning
process in JIRL assumes the availability of a baseline policy
and is designed with two objectives in mind (a) training while
leveraging demonstrations from the baseline policy to minimize
regret with respect to the baseline policy, and (b) eventually
surpassing the baseline performance. JIRL addresses these
objectives by initially learning to imitate the baseline policy and
gradually shifting control from the baseline to an RL agent. Ex-
perimental results show that JIRL effectively accomplishes the
aforementioned objectives in several, continuous action-space
domains. The results demonstrate that JIRL is comparable
to a state-of-the-art algorithm in its final performance while
incurring significantly lower baseline regret during training.
Moreover, the results show a reduction factor of up to 21
in baseline regret over a trust-region based approach that
guarantees monotonic policy improvement.

I. INTRODUCTION

Deep reinforcement learning (RL) can produce policies that
perform at, and even surpass, human-level control in various
domains [1]. As such, one might wonder why is deep RL not
ubiquitously used to automate everyday tasks such as driving,
traffic management, or medical procedures? For such domains,
it is necessary that the performance of any control policy is
at least as good as the policy currently under operation and,
ideally, improves upon it. Current RL algorithms, however,
cannot provide such guarantees for the general case (unless
assuming specific domain knowledge [2]). As they possess no
conceptual model of the world to begin with, such algorithms
must perform extensive exploration, i.e., sampling different
actions in various situations (world states). During exploration,
the outcomes of different actions in different states are learned
and the control function (denoted as ‘policy’) is updated
accordingly. For example, consider an inefficient traffic
signal controller at an intersection. Improving the controller’s
efficiency (e.g., w.r.t vehicle throughput) is desired however
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we should never allow the controller to perform significantly
worse compared to the currently deployed controller as this
might result in an abnormal cascading affect that can jam an
entire city.

In RL, performance degradation over some baseline con-
troller is commonly measured through the reduction in the
accumulated reward and is denoted as baseline regret [3],
[2]. Our main contribution is in proposing an approach for
optimizing a control policy while minimizing baseline regret
w.r.t a given baseline controller.

We propose the joint imitation-reinforcement learning
(JIRL) framework for baseline regret minimization which
utilizes a suboptimal policy that could be of any nature
(deterministic/stochastic/rule-based/human-operated) while
learning and applying an improved policy. Under this frame-
work, a baseline policy and an RL policy jointly select actions.
If the RL agent’s action substantially differs from the baseline
action then the baseline action is applied, otherwise the RL
agent’s action is applied. The RL policy is then updated with
an off-policy learning algorithm while divergence from the
baseline is penalized. Gradually, as the RL agent’s policy
improves, it is allowed to take actions that further diverge
from the baseline. This procedure allows the RL controller to
gradually find an optimal policy while discouraging highly-
exploratory actuation. Note, however, that JIRL does not
provide any guarantees regarding the resulting baseline regret.
This is to be expected as providing such a guarantees is
challenging without making specific assumptions about the
environment. Nonetheless, experimental results show a clear
trend where the JIRL framework can fully train a real-world
RC car in 45 minutes leading to a 30% improvement in
performance w.r.t a baseline policy while minimizing baseline
regret.

II. PROBLEM DEFINITION

We assume a Markov Decision Process [4] with state
space, S, action space, A, transition probabilities, P, reward
function, R : S× A 7→ R, and discount factor, γ . An RL
agent is assumed to start from state s0 and select action
a0 according to a policy, π : S 7→ A. π might be stochastic,
i.e., mapping states to a distribution over actions. π can be
defined by a function approximator with a parameter set
θ and is denoted πθ in such cases. Based on the chosen
action, the agent receives a reward r0 from the environment
and reaches the next state, s1, according to the transition
probability, P(s1|s0,a0). The process repeats and generates a
trajectory, τ := (s0,a0,r0,s1,a1,r1,s2, . . .).



In addition to the standard MDP formulation, we assume
an available baseline policy.

Assumption 1 (Baseline Policy). There exists a baseline
policy, πb, and at every time-step we can observe the action
that πb would take in the current state.

The baseline policy is not assumed to be optimal or
exploratory (i.e., stochastic). That is, πb can be a deterministic
(e.g., rule based) suboptimal controller. An example of such a
controller is traffic signal controllers in modern intersections.

Objective: Learn a parameterized policy that maximizes the
sum of discounted rewards in an expected trajectory. That is,

Maximize J w.r.t. θ where:

J(πθ ) = Eτ∼π

[
∑

t
γ

trt

]
(1)

Desiderata: Reduce baseline-regret during the training.
We generalize the definition of baseline regret that was

used in previous work [3], [2].

Definition 1 (Baseline Regret). Given a baseline policy πb,
and a behavior policy π . Define baseline regret as:

R(π) = E
τ∼π,τb∼πb

[
∑

t
max(rb

t − rt ,0)

]
where rb belongs to τb and r to τ

A large body of work [5] has focused on RL algorithms
that are designed to efficiently optimize J(πθ ). Furthermore,
behavior cloning through supervised learning can be utilized
to learn a policy from baseline demonstrations. Such imitation
learning approaches [6] can be applied offline, effectively
eliminating baseline regret. However, when aiming to learn
an optimized policy and minimize baseline regret, neither
approach is sufficient as common RL algorithms perform
extensive exploration and behavior cloning might learn from
sub-optimal demonstrations, failing to optimize J(πθ ). Our
proposed JIRL framework attempts to close this gap and
merge the two approaches in a way that combines the best
of each.

A. Bounding the Baseline Regret

Our JIRL framework does not provide any bounds on the
accumulated baseline regret. This is, however, to be expected.
In the general case i.e., with no additional assumptions
regarding the provided MDP or baseline policy, the baseline
regret cannot be bounded by a scalar. This claim follows
from the fact that no regret bounds (including baseline regret)
can be provided for the multi-armed bandit problem in the
general case (see Bubeck et al. [7] for proof), and any multi-
armed bandit instance (P1) can be reduced to an MDP (P2).
The relevant reduction mapping constructs an MDP with
a single state, s0, in P2 where every bandit from P1, bi,
becomes an action at P2, ai. The transition probabilities are
∀a P(s0|s0,a) = 1 and the reward, R(s0,ai), for any action,
ai, in P2 follows the utility distribution from playing bi in P1.
For such a construction, it is easy to see that, the baseline

regret from following any policy in P1 over any baseline
policy equals the baseline regret for equivalent policies in
P2.

III. RELATED WORK

A line of previous work did provide some guarantees
regarding baseline regret. These, however, do not stand in
contradiction to our previous claim regarding the infeasi-
bility of regret bounds as these works all rely on some
simplifying assumptions. Approaches assuming extensive
baseline exploration relied on a stochastic baseline policy
to sample high-variance trajectories. These trajectories were
used to create a batch of data and then employed offline-
RL or batch-RL [8] algorithms for policy improvement [9],
[10]. However, policy improvement is guaranteed only if the
baseline policy executes an optimized trajectory with non-zero
probability (baseline policy coverage) and the data generated
is stationary. Ghavamzadeh et al. [2] additionally learned a
model of the environment but assumed access to the error
in the model estimation. JIRL, by contrast, can learn from a
deterministic baseline policy and avoids learning a model due
to the inaccuracies associated with model estimation without
extensive exploration.

Adding safety constraints can prevent an agent from diverg-
ing from a baseline controller during and after training [11],
[12], [13]. However, ensuring such safety requires that for
any achievable state, at least one safe action can be taken
or the availability of a model that can accurately designate
unavoidable safety violations following a given state-action
pair. Algorithms that assume the availability of a safe action
commonly rely on shielding [14], action correction [15], [16],
[17], [18], or ergodic MDPs [19]. These approaches generally
require domain knowledge about which actions will lead to
constraint violations. Methods relying on a model assume
that the model is available beforehand [20], [21] while others
learn the model online [15], [17], [22], [23]. JIRL, by contrast,
doesn’t assume access to explicit safety constraints or the
model of the environment.

In a different line of work, a number of approaches have
aimed to ensure safe policy updates to improve upon a
baseline policy on tabular problems [24], [25]. By contrast,
JIRL is evaluated on continuous action tasks where the value
function and policy are parametrized via a function approx-
imator (neural network). Trust region policy optimization
(TRPO) [26] and proximal policy optimization (PPO) [27]
update stochastic policies by taking the largest step possible
to improve performance, while satisfying a constraint on
the KL-Divergence between the new and old policies. Since,
TRPO and PPO approximate a monotonic improvement in
performance, initializing TRPO (or PPO) with a baseline
policy is a suitable candidate for comparison against JIRL in
terms of the baseline regret. In the TRPO/PPO framework,
provided the domain allows stochastic policies, the initial
stochastic baseline policy can be learned through observations
(e.g., using imitation learning). Such an approach, however,
requires a – potentially expensive – initial imitation learning
phase.



IV. THE JOINT IMITATION-REINFORCEMENT
LEARNING FRAMEWORK

In this section, we introduce our main contribution, the
joint imitation-reinforcement learning framework (JIRL).
JIRL extends over previous imitation and reinforcement
learning algorithms by (1) generalizing the notion of penalized
rewards [28], [29] to apply to continuous action spaces, (2)
enabling learning from a baseline policy that can be queried
during the training phase, and (3) defining a criterion for
determining whether the RL agent or baseline policy should
be given control at a particular time-step.

The JIRL framework is detailed in Algorithm 1. At each
timestep, the baseline policy is assumed to provide a suggested
action to take, ab

t , that is derived from its internal policy
(Line 3). Next, the RL agent determines if it should follow
its own (stochastic) policy at the current state or defer to the
baseline action (Line 4). If the RL policy is followed, arl

t is
sampled from πθ and applied to the environment; otherwise,
the baseline action, ab

t is applied. Regardless of the action
applied to the environment, the RL agent is trained on the
observed outcome (given as a full transition (st ,at ,rt ,st+1),
Line 10). Note that training the RL agent on transitions
originating from the baseline policy requires an off-policy RL
learning procedure. In cases where the baseline action ab

t was
applied, we train the RL agent on a fabricated, counterfactual
transition in which the RL agent took arl

t and ended up in
the same state that resulted from ab

t (Line 15). The reward
for this fabricated transition – obtained through the function
PenalizeReward() – is set to be lower than the reward
affiliated with the baseline policy action. Doing so ensures
that an RL agent (aiming to maximize return) will update
its (stochastic) policy to shift probability towards ab

t from
arl

t , i.e., towards imitating the baseline and reducing future
baseline regret.

JIRL is, thus, a general framework that can work on top of
any off-policy RL algorithm with a stochastic parameterized
policy that implements TrainRL(). For example, an actor-
critic algorithm [30] can implement TrainRL(transition)
as: store transition in a replay buffer, periodically train
both the actor and critic using stochastic gradient descent.
JIRL, nonetheless, requires a specific implementation for
PenalizeReward() in Line 15 and SafeForRL() in
Line 4. These two functions determine the interplay between
the imitation and reinforcement learning within JIRL and are
discussed next.

A. Penalized reward for continuous actions

Following Hester et al. [28], the reward for the fabricated
transition (Line 15 in Algorithm 1) is penalized such that
the RL agent will be trained towards imitating the baseline
policy. We do so by introducing the fabricated transition,
(st ,arl

t ,r
p
t ,st+1), where rp

t < rt . When considering continuous
action spaces, setting a constant penalty, l, such that rp

t =
rt − l [28] will result in a non-smooth reward function
as lima→ab

t
Rp(st ,a) 6= Rp(st ,ab

t ) where Rp is the penalized
reward function. As a result, an imitation learning process
that uses fabricated transitions might fail to converge on the

Algorithm 1: Joint Imitation-Reinforcement Learning
Input: baseline policy, πb, maximum number of

training steps, L, off-policy RL algorithm,
TrainRL()

Output: optimized policy
Initialize: RL policy parameters, θ

1 s0← Reset environment;
2 for t = 0 to L do
3 ab

t ← πb(st); # Baseline’s action
4 if SafeForRL(st ,ab

t ,πθ , t) then
5 at ∼ πθ (·|st); # RL action
6 else
7 at ← ab

t ;
8 end
9 st+1 ∼ p(st+1|st ,at);

10 TrainRL(st ,at ,rt ,st+1);
11 if at = ab

t then
12 # Fabricated (penalized) transition for arl

t
13 arl

t ∼ πθ (·|st);
14 rp = PenalizeReward(rt ,ab

t ,a
rl
t );

15 TrainRL(st ,arl
t ,r

p,st+1);
16 end
17 if st+1 is terminal then
18 st+1 = Reset environment;
19 end
20 end
21 return πθ

baseline policy. In order to address this issue, we present
a continuous penalized reward function that is based on
a Gaussian function. The penalized reward computation is
presented in Algorithm 2. In this case, the penalized reward
tends toward zero as arl tends towards ab. The hyperparameter
representing the penalty function variance is chosen, for a
given domain, based on the required action precision (smaller
variance = more precise imitation).

Note that for domains with a discrete action space, the
penalty in Algorithm 2 should follow [31], i.e., implemented
as a margin function that is 0 when arl

t = ab
t and positive

otherwise.

Algorithm 2: Penalized reward for fabricated transi-
tions

Hyperparameters: penalty variance, σ2

Input: reward, rt , baseline policy’s action, ab, RL
action, arl

Output: penalized reward value
1 Function PenalizeReward(r, ab, arl):

2 r̃←|r|
(

1− exp
(
−
∥∥∥ab−arl

∥∥∥/σ2
))

;

3 rp← r− r̃;
4 return rp



B. RL control criteria

There is a balance to strike between imitating the baseline
policy and taking exploratory actions so as to eventually
outperform the same (presumably suboptimal) baseline. We
address this balance through the function SafeForRL()
through which the RL agent determines whether to act and
explore or follow the baseline action and train towards imi-
tating the baseline policy. The intuition behind the selection
criterion in SafeForRL() is that when the RL agent is
uncertain about its actions (measured as high entropy policy),
it should be trained towards imitating the baseline policy. As
the RL agent becomes more certain regarding its actions, it
is allowed to drift further away from the baseline policy and
explore other promising actions. We define the divergence
value (denoted ρ) as the summation of the RL policy entropy
term with the norm distance between the expected RL action
and the baseline policy action.1

Our proposed approach for determining which policy to
follow is inspired by the control criteria that was presented
in Menda et al. [32]. Our suggested criteria is summarized in
Algorithm 3. It extends the criteria from Menda et al. [32] by
considering divergence over consecutive time steps. Factoring
the divergence values over several timesteps is important
as small divergences can accumulate over time and result
in a significant divergence. We observed this phenomenon
when applying JIRL to an autonomous driving domain where
the RL policy can slowly, yet steadily, steer the vehicle off
the road. As a result, the divergence condition in Line 6 is
factored over the minimum between the number of steps since
the last RL-baseline control switch and a hyper-parameter
K. An RL-baseline control switch occurs at time step t if
(at = ab

t and at−1 = arl
t−1) or (at = arl

t and at−1 = ab
t−1). K is

chosen appropriately for each domain. For domains where
it is relatively easy to recover back to states the baseline
would visit, e.g., Inverted Pendulum (see Section V-A), K
should be set lower. For domains that allow a chain of subtle
divergences to lead to states that the baseline would not visit,
e.g., lane following in autonomous driving, K should be set
higher.

In some domains, it may be unreasonable to assume a
baseline policy that provides an action at every time-step. In
such domains, JIRL can still be applied provided that the
baseline policy can intervene when safety is compromised.
Autonomous vehicles with an expert safety driver are an
example of such a domain. Such cases require minimal change
to Algorithm 1 where if the baseline policy does not intervene
(i.e., no action is provided) then ab

t ← Null in Line 3, and
Algorithm 3 is simply implemented as return ab

t equals
Null.

C. Discussion

It is important to note that, unless making specific as-
sumptions regarding the implementation of SafeForRL(),

1For discrete action spaces, the norm distance between two actions, arl ,ab,
can be defined as some constant if arl 6= ab, else zero.

Algorithm 3: Should we follow the RL policy?
Hyperparameters: scaling factor, C, number of steps

to consider, K
Input: state, s, baseline’s action, ab, RL policy, πθ ,

time step, t
Output: True iff the RL policy should be followed at

the current state
1 Function SafeForRL(s, ab, πθ , t):
2 h←H (πθ (·|s)); # Entropy of the RL policy at

the current state
3 d←

∥∥∥ab−Eπθ
[A]
∥∥∥; # Distance between the RL

expected action and the baseline’s action
4 ρt ← h+d;
5 k← minimum between K and number of steps

since last control switch; # For k > 1 we assume
that the input, s, includes the last k states

6 f ollowRL←∏
t
i=t−k πθ (ab

i |si)> C∏
t
i=t−k ρi;

7 return f ollowRL

the JIRL framework provides no bounds on the amount of
baseline regret incurred.

Instead, JIRL provides a trade-off between baseline regret
and allowable exploration towards finding an optimized
final policy. A lower value for the penalty variance (in
Algorithm 2) encourages imitating the baseline – reducing
baseline regret but discouraging finding new, more optimal
behaviors. Similarly, a low scaling factor, C, will allow the RL
policy to take actions more frequently – promoting exploration
at the expense of possible higher baseline regret.

The underlying RL algorithm, implementing TrainRL(),
is constantly being fed with a mixture of transitions generated
from either the baseline, RL agent, or fabricated, penalized
transitions. There is an important distinction to make between
these transitions. RL transitions can be utilized for on-
policy learning towards the optimal policy. Baseline induced
transitions can only be utilized for off-policy learning and the
optimal policy can only be learned if coverage [5, Chapter 5]
is assumed. Fabricated transitions can be utilized for on-policy
learning as they are composed of actions sampled from the
RL policy. However, since the affiliated reward is fabricated,
such transitions may bias learning away from the optimal
policy. As a result, convergence to the optimal policy can
be guaranteed if (1) the underlying RL algorithm provides
such guarantees, and (2) only RL induced transitions are
considered eventually. As training progresses, the accumulated
safe divergence value is expected to decrease since the RL
policy entropy usually decreases (depending on the underlying
RL algorithm). Consequently, RL control becomes more
common and baseline/fabricated transitions are encountered
less. As a result, learning the optimal policy requires an RL
algorithm that “forgets” older transitions. Such a forgetting-
attribute is common in RL algorithms that use a bounded
replay buffer [30] which are, thus, particularly suitable for
JIRL.



(a) Inverted pendulum (b) Lunar lander (c) CARLA (d) JetRacer (e) Walker-2D

Fig. 1: Snapshots of the domains

V. EXPERIMENTS

The goal of our experiments is to evaluate the effectiveness
of JIRL in continuous control tasks with respect to the
following objectives (a) leveraging the baseline’s online
demonstrations to reduce the regret w.r.t the baseline policy
during training, and (b) eventually surpassing the baseline
performance. Specifically, we aim to show that (1) applying
JIRL on top of a state-of-the-art RL algorithm results
in significant reduction of the baseline regret while not
degrading the final performance, and (2) JIRL outperforms
a straightforward approach for eliminating baseline regret,
which is, applying TRPO and PPO over the baseline policy
(assuming a stochastic version is available or can be learned).

A. Domain Description

Figure 1 shows snapshots from the domains used in our
experiments. The goal in the Inverted pendulum task from
the OpenAI gym [33] is to train an agent to swing up a
pendulum and keep it at an upright position. In the Lunar
lander task from the OpenAI gym, the objective is to train
a space probe to land on a landing pad without crashing.
The goal in the Lane following (LF) task is to train an
autonomous vehicle to drive around a custom track following
a lane. Using images from a front facing camera as input,
we adopt the training set-up used in [34]. This domain
is evaluated both in the CARLA simulator [35] and on a
Waveshare JetRacer which is an autonomous scaled car that
uses NVIDIA’s Jetson Nano as the main control platform.
In the Walker-2D task from the PyBullet environment [36],
a 2-legged robot learns to stay upright and walk. Note that,
for this domain, baseline regret can be significantly reduced
when setting a higher K value (as discussed in Section IV-
B). However, doing so also results in considerably slower
learning. We observed that values of K between 5−10 and
1−3 achieve an acceptable trade-off between reducing the
baseline regret and training time for the Lane following
domain and the Walker-2D domain respectively. For the
Inverted pendulum and Lunar lander domains, all values
of K between 1−5 gave similar results in terms of reducing
the baseline regret. σ2 values from the range [0.01− 0.1]
resulted in good performance (similar to those reported) in
all domains.

We observed that assigning a fixed penalty of −1 to
transitions that resulted in the baseline given control (when
the RL agent is deemed unsafe to act), yields slightly faster
learning. Such events represent an unsafe divergence of the
RL policy from the baseline and are, thus, penalized. Such a
penalty was used for obtaining the reported results.

B. Baseline Policies

For the Inverted pendulum, Lunar lander, Lane following
(JetRacer) and Walker-2D tasks, sub-optimal deterministic
baseline policies were defined in order to demonstrate that
JIRL can learn from and outperform such a policy. The
baseline policies for all the domains except the Lane following
tasks were learned by training an agent from scratch using
soft actor-critic (SAC) [30] with the help of early stopping
and reward shaping to induce a sub-optimal behavior. For the
Lane following task, the baseline policies were obtained using
supervised learning on image-action pairs that were collected
from an expert human demonstrator. A detailed description
of our experimental set-up and hyperparameters is available
in a technical report that is available online at https://
pi-star-lab.github.io/JIRL. The codebase for all
the experiments is available at https://github.com/
Pi-Star-Lab/JIRL.

C. Results

In all the following experiments, soft actor-critic (SAC) [30]
was used as the underlying RL algorithm within JIRL. For
each domain, we trained 5 instances of JIRL(SAC) and vanilla
SAC with the same set of hyper-parameters for SAC (as
specified in the technical report) and different random seeds
per instance. We used the implementation of SAC provided in
Stable Baselines [37]. Figure 2 shows the training curves for
both approaches along with the TRPO/PPO baselines (when
applicable).

In all four domains, JIRL(SAC) resulted in a final policy
that is at or above the vanilla SAC algorithm. Moreover, JIRL
is shown to clearly reduce the baseline regret over vanilla
SAC (the baseline performance can be seen on the left side
of the JIRL curve where RL control is at a minimum). These
results support the claim that applying JIRL on top of a state-
of-the-art RL algorithm results in significant reduction of the
baseline regret while not degrading the final performance.
In all but the Lane following (CARLA) domain, JIRL(SAC)
resulted in a final policy that is superior to the baseline policy.
The discrepancy in the Lane following (CARLA) domain is
due to the use of a highly optimized baseline policy. SAC was
unable to outperform the baseline performance when trained
using a reward function similar to the one presented in [18].
When adjusting the reward function to reward greater speeds,
it is possible to surpass the baseline performance (human
demonstrator) by driving faster as demonstrated in the Lane
following (JetRacer) domain (see Figure 2e). The JetRacer
clocked a lap-time of 13.5 seconds using the baseline policy

https://pi-star-lab.github.io/JIRL
https://pi-star-lab.github.io/JIRL
https://github.com/Pi-Star-Lab/JIRL
https://github.com/Pi-Star-Lab/JIRL


(a) Inverted pendulum (b) Lunar lander (c) Lane following (CARLA)

(d) Walker-2D (e) Lane following (JetRacer) (f) Plot legends

Fig. 2: (a)-(e) Reward and percentage of RL control using the JIRL framework on top of SAC, vanilla SAC, and the best
between TRPO+IL or PPO+IL when applicable. For the TRPO+IL and PPO+IL curves the required initial IL phase is
omitted. In all the subfigures, the x-axis is the number of environment steps, the y-axis on the left is the smoothed reward,
and the y-axis on the right is the percentage of RL control in the JIRL framework. The shaded region represents the 95%
confidence interval.

Domain JIRL
0-50%

RL

JIRL
50-

100%

JIRL
Full
RL

JIRL
Total

TRPO/
PPO

Inverted pendulum 3071 396 0 3467 37290
Lunar lander 2044 819 0 2863 60744
LF (CARLA) 13.6 178.4 0 192 NA
LF (JetRacer) 0.8 2.7 0 3.5 NA
Walker-2D 10 188 16616 16814 33039

TABLE I: Comparison between the accumulated per step
baseline regret in the JIRL framework and best of TRPO/PPO
w.r.t the baseline performance. Results are averaged over 5
runs. The advantage of JIRL over TRPO/PPO is statistically
significant in all the domains based on a paired t-test.

while 45 minutes of training using JIRL(SAC) reduced the
average lap time to 9.4 seconds (30% improvement).

Comparison with PPO and TRPO:
Next, we compared JIRL(SAC) with an available baseline

regret minimization approach, namely TRPO + imitation
learning (IL) and PPO+IL over the baseline policy. For
each task, we considered both TRPO and PPO and include
results of the algorithm that empirically performed better
(PPO for Walker-2D and TRPO for Inverted Pendulum
and Lunar Lander). The results in Figure 2 might seem
favorable to PPO/TRPO, however the reader should remember
that (1) PPO/TRPO requires an IL phase for learning a
stochastic policy that is equivalent to the baseline policy.
The long IL phase is omitted from these results as it
significantly delays the RL phase (adding the IL phase
would grow the x-axis for PPO/TRPO+IL by an order of
magnitude); (2) PPO/TRPO, although presenting a fairly
monotonic improvement in average performance, results in
high performance variance which leads to high baseline

regret; (3) due to low baseline policy coverage, PPO/TRPO
might suffer from initial degradation in performance (see the
Inverted Pendulum and Walker-2D domains); and (4) unlike
JIRL(SAC), PPO/TRPO (using the specified reward function)
were not able to reach the baseline performance in the Lane
following domain. This is due to the initial degradation in
performance after which PPO+IL and TRPO+IL were not
able to reach the same level of performance as the (highly
optimized) baseline policy within a reasonable amount of
time. Hence, PPO/TRPO results are omitted for this domain.

Table I specifies the accumulated baseline regret in each
task. The accumulated baseline regret for JIRL(SAC) is
broken into the various training phases, where the phases are
partitioned according to the percentage of RL control. The
“JIRL Full RL” column corresponds to the phase starting when
JIRL assigns 100% RL control and ending when the average
performance of JIRL is similar to that of SAC. Empirically, we
observed that JIRL(SAC) reduces the accumulated baseline
regret over TRPO/PPO+IL by a factor ranging from 2 in
the Walker-2D domain to 21 in the Lunar lander domain.
JIRL(SAC) reduces the accumulated baseline regret over
vanilla SAC by a factor ranging from 8 in the Inverted
pendulum domain to 400 in the Lane following (JetRacer)
domain (these results are not presented in Table I due to
space constraints).

VI. CONCLUSION

We introduce a joint imitation-reinforcement learning
framework (JIRL) and demonstrate its ability to optimize
a control policy while reducing regret with respect to an
available baseline controller. Assuming a baseline controller
that is available during the training process, JIRL periodically
switches between the baseline policy’s actions and exploratory



actions from the RL agent. We define a control switching
criterion that is based on the RL policy’s entropy and its
divergence from the baseline policy’s actions accumulated
over a series of timesteps. Moreover, we present a Gaussian
penalty function for penalizing uncertain RL divergences
from the baseline controller where the certainty levels are
measured through the policy entropy. We also add another
constant penalty for RL induced actions that lead to control
switches. Doing so, decreases the number of actions that
lead to lesser reward than the baseline would accrue. JIRL is
shown to perform on par with the baseline during the learning
process and eventually surpass a suboptimal baseline in all
examined domains. Moreover, JIRL was shown to converge
to a policy of similar quality (sum of discounted rewards) as
a vanilla implementation of the underlying state-of-the-art RL
algorithm (SAC) while reducing the accumulated baseline
regret by up to ×21.
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