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Abstract

In real-world sequential decision problems, exploration is expensive, and the risk
of expert decision policies must be evaluated from limited data. In this setting,
Monte Carlo (MC) risk estimators are typically used to estimate the risk of decision
policies. Unfortunately, while these estimators have the desired low bias property,
they often suffer from large variance. In this paper, we consider the problem of
minimizing the asymptotic mean squared error and hence variance of MC risk
estimators. We show that by carefully choosing the data sampling policy (behavior
policy), we can obtain low variance estimates of the risk of any given decision
policy.

1 Introduction

Reinforcement Learning (RL) aims to find optimal decision policies for sequential decision problems
like portfolio management [6], marketing [9] and dynamic treatment regimes [8]. A crucial component
of these algorithms is estimating the value of a given policy which is termed policy evaluation. Several
methods [3, 5, 15, 16] have been proposed to evaluate the value of a given policy in online and offline
settings. In online policy evaluation [19], the value of a policy is obtained by simulating the policy
several times and computing the average returns of the policy. Whereas, in an offline setting [5, 17],
the value of a policy must be estimated from logged data sampled using a different policy. In this
case, the sampling policy is known as the behavior policy, and the policy to be evaluated is known as
the evaluation policy. To account for the difference between the behavior and evaluation policies,
importance sampling weights are used to reweigh each trajectory sampled from the behavior policy by
its likelihood of being observed under the evaluation policy [5, 17]. It is also essential to estimate the
risks of a given policy in many high stake domains. We can compute these risks from the Monte-Carlo
simulations by applying a risk-metric to the distribution of observed returns [14]. However, in such
domains, exploration is often expensive and limited. Monte-Carlo (MC) estimates of risks can have a
high variance when high-risk events are insufficiently sampled. The high variance in risk estimates
can result in severely underestimating or overestimating risks and deploying bad policies.

This paper aims to minimize the variance of online Monte-Carlo-based risk-estimators using a hybrid
of online and offline policy evaluation methods. To achieve our goal, we ask: Is there a behavior
policy better than the evaluation policy such that it results in minimum variance risk-estimates of
the given policy? To answer this question, we must first understand that when the set of trajectories
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used for evaluation is finite and limited, the evaluation policy may not be a good representative of the
high-risk trajectories that occur with very small probabilities. In such cases, the optimal behavior
policy is the one that samples high-risk trajectories with greater likelihood.

Several prior works [3, 5, 7, 15, 17] have used importance sampling as a variance reduction tool in
policy evaluation. Hanna et al. [4] propose a framework for computing the optimal behavior policy
that minimizes the mean square error and hence variance of an unbiased MC value estimate of a
policy. However, minimizing mean square error (MSE) via behavior policy search for risk-estimators
is difficult because most MC risk-estimators are usually biased. Additionally, MC estimators of some
of the popular risk-measures like CVaR and VaR are highly sample-inefficient as they are computed
from only a fraction of the sampled trajectories [11]. Hence, they suffer from very large variance.
This work focuses on minimizing the asymptotic MSE and hence asymptotic variance of two popular
Monte-Carlo-based risk-estimators, Conditional Value at Risk and Value at Risk estimator.

As the paper’s main contribution, we formulate the problem of optimal behavior policy search for
minimization of asymptotic mean square error of risk estimators in RL. Building on prior work [4],
we derive policy gradient theorems that optimize the variance of CVaR and VaR estimators. Finally,
we demonstrate the effectiveness of our methods on several discrete and continuous domains.

2 Preliminaries

As the fundamental model, we assume a finite-horizon discounted Markov Decision Process (MDP)
defined as tuple (S,A, P, r, p0, γ) comprising a set of states S = {1, 2, . . . , S}, a set of actions
A = {1, 2, . . . , A}, a reward function r : S × A → R, a transition function P : S × A → ∆S , an
initial state distribution p0 ∈ ∆S , and a discount rate γ ∈ (0, 1). A general solution to an MDP is a
randomized stationary policy π : S → ∆A, which prescribes the probability of taking each action
a ∈ A in each state s ∈ S . We denote by Π = (∆A)S and ΠD = AS , the sets of all randomized and
deterministic policies, respectively.
In the remainder of the paper, we denote the evaluation policy by π and the behavior policy by
πb. A trajectory H = {s0, a0, r0, . . . sT−1, aT−1, rT−1} is a tuple of states, actions and rewards
observed on simulating policy π over T time steps, where T is the maximum length of an episode.
The return corresponding to the trajectory H is given by the sum of discounted rewards Gπ(H) =∑T

t=0 γ
tr(st, at). We use Gπ(H) to denote a random variable that represents the returns of a

trajectory H obtained by simulating policy π. Finally, we denote by Fπ the cumulative density
function (CDF) of the distribution of returns of policy π.

Risk Measures. Risk measures are often used in RL to measure risk associated with a given
decision policy [2]. Let X be a real-valued random variable with cumulative density function F .
Let VaR and CVaR denote the Value at Risk measure (VaR) and Conditional Value at Risk (CVaR)
measure of X respectively. Then, for all 0 ≤ α ≤ 1, VaR and CVaR are defined as

VaR(F ) = F−1(α) = inf{x | F (x) ≥ α} (1)

CVaR(F ) =
1

α

∫ VaR

−∞
x dF (x) = VaR(F )− 1

α
E [VaR−X]+ (2)

where [x]+ = max(x, 0). Intuitively, VaR equals the α-quantile of X and CVaR equals the mean
of the values of X that are smaller than α-quantile. We measure the risk of a given policy π by
considering the returns of the policy G(H), with H ∼ π, as our random variable of interest.

Monte-Carlo Estimation of Risk Estimators. To estimate the MC estimates of CVaR and VaR
of returns of a policy π, we need to first estimate the MC estimate of the cumulative density function
(CDF) of returns of policy π, denoted by Fπ. Let H1, . . . HN ∼ πb represent trajectories obtained
by simulating behavior policy πb. Then, an unbiased and consistent estimator for Fπ is given by [1]

F̂n(ν) =
1

N

N∑
i=1

ρπ(Hi)

ρπb(Hi)
1{G(Hi) ≤ ν}, ∀ν ∈ R, (3)

where ρπ(Hi) =
∏T
t=0 π(sit, a

i
t) represents the importance sampling weight for the ith trajectory.
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Let vπ,α and cπ,α represent the VaR(Fπ) and CVaR(Fπ) of returns of policy π. Then, one can
compute the MC estimates of vπ,α and cπ,α using the estimators v̂π,αn and ĉπ,αn , which are defined as,
as [13]

v̂π,αn = F̂−1
n (α) := inf

{
g ∈ (G(Hi))

N
i=1 | F̂n(G(Hi)) ≥ α

}
ĉπ,αn = v̂π,αn − 1

nα

n∑
i=1

[v̂π,αn −G(Hi)]+

(4)

Unfortunately, the MC estimates ĉπ,αn and v̂π,αn are sample-inefficient and suffer from large variance
because they are based on order-statistics [10]. In the next section, we improve the sample efficiency
of the risk estimators by adapting the behavior policy πb to minimize the variance of ĉπ,αn and v̂π,αn .

3 Method

In this section, we propose a new method to minimize the asymptotic MSE of the risk estimators
in (4). We minimize the asymptotic MSE because the asymptotic risk estimators are unbiased and,
therefore, their MSE can be minimized efficiently. In contrast, the true MSE is difficult to optimize
because finite-sample risk estimators are biased.

Let πb,θ denote a behavior policy parameterized by θ ∈ Θ where Θ ∈ Rp is a class of parameters
that can sufficiently represent any policy π ∈ Π. We use Ψ̂(πb,θ) and Ψ(πb,θ) to represent the
Monte-Carlo risk estimator and the target risk estimand as a function of the behavior policy πb,θ. In
this setting, Ψ(πb,θ) is either vπ,α(θ) or cπ,α(θ). Our goal is to find the optimal behavior policy πb,θ∗
that minimizes the asymptotic MSE of Ψ̂(πb,θ), that is,

θ∗ = argmin
θ∈Θ

MSE[Ψ̂(πb,θ)] = argmin
θ∈Θ

Var[Ψ̂(πb,θ)] +Bias[Ψ̂(πb,θ)]
2

(5)

where Var[Ψ̂(πb,θ)] represents the variance of Ψ̂(πb,θ). It is known that vπ,α and cπ,α are asymptot-
ically unbiased [13]. Hence, we can write the objective in (5) as

θ∗ ∈ argmin
θ∈Θ

Var[Ψ̂(πb,θ)] (6)

Next, we require the following assumptions to derive the asymptotic variance of ĉπ,αn and v̂π,αn .

Assumption 1 There exists an ε such that ∀G(H) ∈ (vπ,α − ε, vπ,α + ε), fπ(G(H)) ≥ 0 and
fπ(G(H)) is differentiable. Further, there exist a constant c ≥ 0 such that ∀g ∈ {G(H) : G(H) ≤
vπ,α + ε}, g ≤ c.

Assumption 1 establishes that G(H) has a non-zero density around vπ,α implying continuity around
vπ,α. It also requires the likelihood ratio to be bounded for all trajectories with returns in the α-tail of
the distribution.

Proposition 1 (Vandervaart et al. [18]) Given an estimator Ψ̂ of a target estimand Ψ, the efficient
influence function of the estimator given by Φ̂ is the L2 norm of the gradient of Ψ with respect to the
input instances. Then, the asymptotic form of Ψ is given by

√
N(Ψ̂−Ψ)

d−→ N (0,Var(Φ̂))

Proposition 1 shows that the asymptotic variance of an estimator can be easily computed using the
efficient influence-function of the estimator.

Proposition 2 Suppose that Assumption 1 is satisfied. Then,

√
n(v̂π,αn − vπ,α)

d−→ 1

fπ(vπ,α)

√
Var

[
1{{G(Hi) ≤ vπ,α}}

ρπ(Hi)

ρπb(Hi)

]
·N(0, 1)

√
n(ĉπ,αn − cπ,α)

d−→ 1

α

√
Var

[
[vα −Gi]+

ρπ(Hi)

ρπb(Hi)

]
·N(0, 1) .

where ∀α ∈ [0, 1], v̂π,αn → vπ,α and ĉπ,αn → cπ,α with probability 1.0 as n → ∞. The proof for
Proposition 2 follows directly from applying Proposition 1 to the risk estimators v̂π,αn and ĉπ,αn .
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Notice that the asymptotic variance of v̂π,αn and ĉπ,αn in Proposition 2 depends on two main factors:
a) the likelihood ratio of risky trajectories, i.e., trajectories with returns that fall in the lower-tail of
the returns distribution, and b) the magnitude of the returns of the risky trajectories. Thus, an optimal
behavior policy will assign a higher probability to those actions, which increases the likelihood of
observing risky trajectories.

Our approach to improving the behavioral policy is based on gradient descent. The following
proposition derives the gradient of the asymptotic variance of the two risk estimators.

Proposition 3 (Policy Gradient) The gradients of Var(v̂π,αn (θ)),Var(ĉπ,αn (θ)) with respect to θ are

∇θ Var(v̂π,αn (θ)) = EH∼πb,θ

[
1

fπ(vπ,α)2

(
1

{{
(vπ,α −Gi)+

ρπ(Hi)

ρπb(Hi)

}})2 T∑
t=0

∇θ log(πb,θ(at|st))

]
,

∇θ Var[ĉπ,αn (θ)] = EH∼πb,θ

[
1

α2

(
(vπ,α −Gi)+

ρπ(Hi)

ρπb(Hi)

)2 T∑
t=0

∇θ log(πb,θ(at|st))

]
,

Note that optimizing the asymptotic variance of ĉπ,αn requires an estimate of vπ,α. Therefore, we
recommend using an upper bound on vπ,α that we can compute from trajectories sampled from π.
For more details on how to obtain the upper bound on vπ,α, please refer to Theorem 3 in [1].

We can now solve the optimization problem in (6) using stochastic gradient descent (SGD)
method [12].

Algorithm 1: Behavior Policy Search for ĉπ,αn
Input: Evaluation policy parameters θe, batch size n, step size η, number of iterations K,

number of evaluation trajectories M
Output: Final behavior policy πb,θk , MC estimate of ψ
Initialize: θ0 ← θe, D10 ← [] ;
Sample H1, H2 . . . HM ∼ πθe and estimate an upper-bound on vπ,α using Theorem 3 in [1];
for i = 0, . . . , k − 1 do

Bi ←− Set of M trajectories H1, H2 . . . Hn ∼ πb,θi ;
Di+1 = Di ∪ {Bi, θi}
θi+1 = θi + η

dΨ(πb,θi ,Bi)

dθ ;
end
Compute ĉπ,αn using DK ;
return ĉπ,αn

Our behavior policy search algorithm for risk measures (BPS-R) given in Algorithm 1 proceeds
as follows. The algorithm takes as input the number of iterations K, the number of trajectories
per iteration n, the number of trajectories to compute upper-bound on vπ,α given by M , and the
evaluation policy parameters θe. We initialize the behavior policy with the policy to be evaluated i.e.
πb,θ = πθe . In the first iteration of the algorithm, we sample M trajectories by simulation policy π
and derive an upper-bound on vπ,α using Theorem 3 in [1]. In each of the subsequent iterations of
the algorithm k, we collect n trajectories using the current behavior policy πkb,θ and use it to adapt the
behavior policy using the gradient updates in Proposition 3. After repeating this step K times, we
obtain the estimates of Ψ(πb,θk) using M trajectories sampled from πKb,θ.

4 Experiments

To provide an intuition of how our algorithm works, we evaluate it on a single-state MDP. This
example shows that our algorithm BPS-R can successfully find the optimal behavior policy that
minimizes variance.

The single-state MDP consist of 1 state and four actions where each action yields some reward and
transitions the agent to the terminal state. Thus, the length of the horizon in this setting is always be
1. The rewards corresponding to the four actions a1, a2, a3, a4 are −50,−1, 0.05, 0.1 respectively.
To ensure that our evaluation policy results in rare risky events, we chose an evaluation policy that
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assigns a small probability to actions with small rewards. That is, our evaluation policy selects actions
a0, a1, a2, a3 with probabilities 0.003, 0.097, 0.12, 0.80 respectively.

In each of our experiment, we execute the BPS-R algorithm by setting the number of trajectories
per iteration M = 5, number of iterations K = 20, and confidence level α = 0.9. In each iteration
of BPS-R, we sample 30 sets of trajectories (5 trajectories per set) using both the behavior policy
and the evaluation policy and store them in memory. After every five iterations, we compute two
sets of estimates of ĉπ,αn using the sets of trajectories sampled from the evaluation policy and the
intermediate behavior policies respectively. Finally, we use these sets of ĉπ,αn estimates to obtain
the variance in the Monte-Carlo and BPS-R estimates of ĉπ,αn . We repeat this procedure 6 times and
evaluate the standard error in the variance estimates.
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Figure 1: Mean Squared Error (left) and Variance (right) in estimates of cπ,α0.9 obtained using vanilla Monte-Carlo
and BPS-R method.

(a) True Returns Distribution (b) Returns Distribution before BPS-R

(c) Returns Distribution after BPS-R

Figure 2: Figure 2a shows the true distribution of returns policy π. Figure 2b shows the empirical distribution of
returns of policy π computed from a set of 5 trajectories sampled using πb = π. Figure 2c shows the empirical
distribution of returns of policy π computed from a set of 5 trajectories sampled using the new behavior policy
πb,θ15 . This example demonstrates that BPS-R correctly increases the likelihood of observing rare events.

Figure 1 and Figure 2 shows the mean squared error and the variance in the ĉπ,αn estimates obtained
using vanilla Monte-Carlo and BPS-R algorithms. As evident in Figure 2c, BPS-R algorithm
successfully finds a behavior policy that assigns higher probability to rare events with low returns
and thus results in low variance estimates of ĉπ,αn .
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5 Discussion and Future Work

In this paper, we proposed a framework for finding the optimal behavior policy that results in low-
variance Monte-Carlo estimates of CVAR and VAR of returns of a given evaluation policy. Although
we observe promising results on the single-state domain, the algorithm can be brittle to the gradient
estimates. One possible way of minimizing the brittleness could be reusing all sampled trajectories
for gradient estimation via Multiple Importance Sampling (MIS). We leave the incorporation of MIS
in BPS-R for future work.
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A Proofs

A.1 Influence Function and Asymptotic Variance

Consider a risk-estimator θ̂n = θ̂(r1, r2, . . . rn) where r1, r2, r3, rn are i.i.d with distribution F =
F (ξ). Next, we assume a mixed distribution constructed by slighting perturbing the distribution f .

Fξ(x) = (1− ξ)F (x) + ξδr(x) (7)

where δr(x) is a discrete distribution with all the probability mass concentrated on the value r. Then,
the influence function of the estimator θ̂nis defined as

IF (r; θ̂, F ) =
dθ̂(Fξ)

dξ

∣∣∣∣
ξ=0

(8)

We can now compute the asymptotic variance of the estimator θ̂n as

Var(θ̂n) = Var

(
1

n

n∑
i=1

IF (ri, θ̂, F )

)
(9)

We will use 9 to compute the asymptotic variance of ĉπ,αn and v̂π,αn .

A.2 Asymptotic Variance of Risk Estimators

With simple algebraic manipulations, we can show that the influence-function of CVaR(F ) and
Var(F ) as

IF (r; CVaRα, F ) = −VaR(F )− CVaR(F )− (VaR(F )− r)+)

α
(10)

IF (r; VaRα, F ) =
1{r≤VaR} − α
f(VaR)

(11)

For detailed derivations of the influence functions of risk estimators, please refer [20].

A.3 Proof of Proposition 2

Next, we use 9 and 10, to derive the asymptotic variance of ĉπ,αn . Substituting r = G(H), H ∼ πb
and θ̂n = ĉπ,αn in 9, we get

Var(ĉπ,αn ) = Var

(
1

n

N∑
i=1

(−vπ,α − cπ,α − (vπ,α −G(H)i)+

α

ρπ(Hi)

ρπb(Hi)

)

= Var

(
1

N

N∑
i=1

(vπ,α −G(H)i)+

α

ρπ(Hi)

ρπb(Hi)

) (12)

We can similarly derive the asymptotic variance of v̂π,αn using 9 and 11. Substituting r = G(H), H ∼
πb and θ̂n = v̂π,αn in 9, gives

Var(v̂π,αn ) = Var

(
1

n

N∑
i=1

1{G(Hi) ≤ vπ,α} − α
fπ(vπ,α)

)

= Var

(
1

N

N∑
i=1

1{vπ,α −G(Hi)+}
α

ρπ(Hi)

ρπb(Hi)

) (13)

Proposition 2 then directly follows from Central limit theorem, 12 and 13.
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A.4 Proof of Proposition 3

Consider the variance of ĉπ,αn .

Var(ĉπ,αn ) = VaR(
1

N

N∑
i=1

(vπ,α −G(Hi))+

α

ρπ(Hi)

ρπb(Hi)
) (14)

=
1

α2

(
EH∼πb

[
(vπ,α −G(H))2

+

(
ρπ(H)

ρπb(H)

)2
]
− EH∼π

[
(vπ,α −G(H))2

+

])
(15)

=

(
EH∼πb

[
(vπ,α −G(H))2

+

α2

(
ρπ(H)

ρπb(H)

)2
])
− (cπ,α)2 (16)

We can now compute the gradient∇θMSE(ĉπ,αn (θ)) as
∇θMSE(ĉπ,αn (θ)) = ∇θ (Var(ĉπ,αn (θ)) +Bias(ĉπ,αn (θ))) (17)

= ∇θ Var(ĉπ,αn (θ)) + 0 (18)

= ∇θ

(
EH∼πb,θ

[
(vπ,α −G(H))2

+

α2

(
ρπ(H)

ρπb,θ (H)

)2
])

(19)

(20)

Let RISK(H, θ) = (vπ,α−G(H))+
α

(
ρπ(H)
ρπb,θ (H)

)
. Then,

∇θEH∼πb,θ
[
RISK(H, θ)2

]
= ∇θ

∑
H

Pr(H|θ)RISK(H, θ)2 (21)

=
∑
H

Pr(H|θ)∇θRISK(H, θ)2 +RISK(H, θ)2∇θPr(H|θ)

(22)

Substituting Pr(H|θ) = Pr(H)ρπb,θ (H), we get

∇θEH∼πb,θ
[
RISK(H, θ)2

]
=
∑
H

(
Pr(H|θ)∇θRISK(H, θ)2 +RISK(H, θ)2Pr(H)∇θρπb,θ (H)

)
(23)

Expanding ∇θρπb,θ (H), we get

∇θρπb,θ (H) = ∇θ
T∏
t=0

πb,θ(at|st)

=

(
T∏
t=0

πb,θ(at|st)

)(
T∑
t=0

∇θ log(πb,θ(at|st))

) (24)

Combining 23 and 24, we get

∇θMSE(ĉπ,αn (θ)) = EH∼πb,θ

[
RISK(H, θ)2

T∑
t=0

∇θ log πb,θ(at|st) +∇θRISK(H, θ)2

]
(25)

Consider the gradient∇θRISK(H, θ)2.

∇θRISK(H, θ)2 = ∇θ
(

(vπ,α −G(H))+

α

(
ρπ(H)

ρπb,θ (H)

))2

= 2

(
(vπ,α −G(H))+

α

(
ρπ(H)

ρπb,θ (H)

))
∇θ
(

(vπ,α −G(H))+

α

(
ρπ(H)

ρπb,θ (H)

))
= −2

(
(vπ,α −G(H))+

α

(
ρπ(H)

ρπb,θ (H)

))2 T∑
t=0

∇θ log(πb,θ(at|st))

(26)
Plugging 26 in 25 gives Proposition 3. The gradient∇θMSE(v̂π,αn ) can be similarly derived.
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