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Abstract

We consider the problem of off-policy evaluation (OPE) in reinforcement learning
(RL), where the goal is to estimate the performance of an evaluation policy, πe,
using a fixed dataset, D, collected by one or more policies that may be different
from πe. Current OPE algorithms may produce poor OPE estimates under policy
distribution shift i.e., when the probability of a particular state-action pair occurring
under πe is very different from the probability of that same pair occurring in D
Voloshin et al. (2021); Fu et al. (2021). In this work, we propose to improve the
accuracy of OPE estimation by projecting the ground state-space into a lower-
dimensional state-space using concepts from the state abstraction literature in RL.
Specifically, we consider marginalized importance sampling (MIS) OPE algorithms
which compute distribution correction ratios to produce their OPE estimate. In
the original state-space, these ratios may have high variance which may lead to
high variance OPE. However, we prove that in the lower-dimensional abstract
state-space the ratios can have lower variance resulting in lower variance OPE. We
then present a minimax optimization problem that incorporates the state abstraction.
Finally, our empirical evaluation on difficult, high-dimensional state-space OPE
tasks shows that the abstract ratios can make MIS OPE estimators achieve lower
mean-squared error and more robust to hyperparameter tuning than the ground
ratios.1

1 Introduction

This study focuses on the problem of off-policy evaluation (OPE) Fu et al. (2021); Voloshin et al.
(2021), where the goal is to evaluate a policy of interest by leveraging offline data generated by
possibly different policies. Solving the OPE problem would enable us to estimate the performance of
a potentially risky policy without having to actually deploy it.

The core OPE problem is to produce accurate policy value estimates under policy distribution shift.
This problem is particularly difficult on tasks with high-dimensional state-spaces Voloshin et al.
(2021); Fu et al. (2021). For example, consider the AntUMaze problem illustrated on the left side
of Figure 1. In this task, an ant-like robot with a high-dimensional state representation moves in a
U-shaped maze and receives a reward only for reaching a specific 2D coordinate goal location. The
state-space of this task includes information such as 2D location, ant limb angles, torso orientation
etc., resulting in a 29-dimensional state-space. The OPE task is to evaluate the performance of a
particular policy’s ability to take the ant to the 2D goal location using data that may be collected by
different policies. Policy distribution shift is common in this type of high-dimensional task since
the chances of different policies inducing similar limb angles, torso orientations, paths traversed

1A fuller version of this paper will also be published at the Association for the Advancement of Artificial
Intelligence (AAAI) 2023.
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Figure 1: Left side: AntUMaze domain. Right side: Projecting high-dimensional ant into lower-dimensional
point-mass.

etc. are incredibly slim. Notice, however, that while different policies may induce different body
configurations, they may traverse similar 2D paths since all (successful) policies must move the ant
through roughly the same path to reach the goal. Moreover, the only critical information needed
from the state-space to determine the ant’s per-step reward are its 2D coordinates. Motivated by this
observation, we propose to improve the accuracy of OPE algorithms on high-dimensional state-space
tasks by projecting the high-dimensional state-space into a lower-dimensional space. This idea is
illustrated on the right side of Figure 1 where the ant is reduced to a 2D point-mass.

With this general motivation in mind, in this paper, we leverage concepts from the state abstraction
literature Li et al. (2006) to improve the accuracy of marginalized importance sampling (MIS) OPE
algorithms which estimate state-action density correction ratios to compute a policy value estimate
Liu et al. (2018a); Xie et al. (2019). Due to the low chances of similarity between states of policies in
high-dimensional state-spaces, current MIS algorithms can produce high variance state-action density
ratios, resulting in high variance OPE estimates. However, if we are given a suitable state abstraction
function, we can project the high-dimensional ground state-space into a lower-dimensional abstract
state-space. The projection step increases the chances of similarity between these lower-dimensional
states, resulting in low variance density ratios and OPE estimates.

2 Preliminaries

In this section, we discuss background information.

2.1 Notation and Problem Setup

We consider an infinite-horizon Markov decision process (MDP), M = ⟨S,A,R, P, γ, d0⟩, where S
is the state-space, A is the action-space, R : S×A → ∆([0,∞)) is the reward function, P : S×A →
∆(S) is the transition dynamics function, γ ∈ [0, 1) is the discount factor, and d0 ∈ ∆(S) is the
initial state distribution. The agent acting, according to policy π, in the MDP generates a trajectory:
s0, a0, r0, s1, a1, r1, ..., where s0 ∼ d0, at ∼ π(·|st), rt ∼ R(st, at), and st+1 ∼ P (·|st, at) for
t ≥ 0. We define r(s, a) := Er∼R(s,a)[r] and the agent’s discounted state-action occupancy measure

under policy π as dπ(s, a) := limT→∞

(∑T−1
t=0 γtdπ(st, at)

)
/
(∑T−1

t=0 γt
)

, where dπ(st, at) is
the probability the agent will be in state s and take action a at time-step t under policy π. Finally, we
define the performance of policy π to be its average reward, ρ(π) := E(s,a)∼dπ,r∼R(s,a)[r].

2.2 Off-Policy Evaluation (OPE)

In behavior-agnostic OPE, the goal is to estimate the performance of an evaluation policy πe given
only a fixed offline data set of transition tuples, D := {(si, ai, s′i, ri)}mT

i=1, where (si, ai) ∼ dD, m is
the batch size (# of trajectories), and T is the fixed length of each trajectory, generated by unknown
and possibly multiple behavior policies. The difficulty in OPE is to estimate ρ(πe) under dπe

given
samples only from dD.
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We define the average-reward in dataset D to be r̄D := E(s,a)∼dD,r∼R(s,a)[r]. As in prior OPE work,
we assume that if dπe

(s, a) > 0 then dD(s, a) > 0. Empirically, we measure the accuracy of an
estimate ρ̂(πe) by generating M datasets and then computing the relative mean-squared error (MSE):
MSE(ρ̂(πe)) :=

1
M

∑M
i=1

(ρ(πe)−ρ̂i(πe))
2

(ρ(πe)−r̄Di)
2 , where ρ̂i(πe) is computed using dataset Di and r̄Di is the

average reward in Di.

2.2.1 Marginalized Importance Sampling (MIS)

In this work, we focus on MIS methods, which evaluate πe by using the ratio between dπe and
dD. That is, MIS methods evaluate πe by estimating ρ(πe) := E(s,a)∼dD,r∼R(s,a)[ζ(s, a)r],
where ζ(s, a) := dπe

(s, a)/dD(s, a) is the state-action density ratio for state-action pair (s, a)
and dπ(s, a) = dπ(s)π(a|s). When the true ζ is known, the empirical estimate of ρ(πe) is:

ρ̂(πe) :=
1

N

N∑
i=1

ζ(si, ai)r(si, ai) (1)

where N is the number of samples. In practice, however, ζ is unknown and must be estimated.

One set of ζ-estimation algorithms is the DICE family Yang et al. (2020). While there are many
variations, the general DICE optimization problem is:

max
ζ:S×A→R

min
ν:S×A→R

J(ζ, ν) :=

E(s,a,s′)∼dD,a′∼πe
[ζ(s, a)(ν(s, a)− γν(s′, a′))]

− (1− γ)Es0∼d0,a0∼πe
[ν(s0, a0)]

(2)

where the solution to the optimization, ζ∗(s, a), are the true ratios. The estimator we present in
Section 3 builds upon the DICE framework.

2.3 State Abstractions

We define a state abstraction function as a mapping ϕ : S → Sϕ, where S is called the
ground state-space and Sϕ is called the abstract state-space. We consider state abstraction
functions that partition the ground state-space into disjoint sets. We can use ϕ to project the
original MDP into a new abstract MDP with the same action-space A and reward and transi-
tion dynamics functions defined as: Rϕ(sϕ, a) =

∑
s∈ϕ−1(sϕ) w(s)R(s, a) and Pϕ(s′ϕ|sϕ, a) =∑

s∈ϕ−1(sϕ),s′∈ϕ−1(s′ϕ) w(s)P (s′|s, a), where w : S → [0, 1] is a ground state weighting func-
tion where for each sϕ,

∑
s∈ϕ−1(sϕ) w(s) = 1 Li et al. (2006). Similarly a policy can be trans-

formed into its abstract equivalent as: πϕ(a|sϕ) = ∑
s∈ϕ−1(sϕ) w(s)π(a|s). In this work, we use

wπ(s) =
dπ(s)∑

s′∈ϕ−1(sϕ)
dπ(s′)

and only consider abstractions that satisfy:

Assumption 1 (Reward distribution equality). ∀s1, s2 ∈ S such that s1, s2 ∈ sϕ, ∀a,R(s1, a) =
R(s2, a).

3 Abstract MIS

Marginalized IS methods may suffer from high variance in high-dimensional state-spaces. To
potentially reduce this high variance, we propose to first use ϕ to project D into the abstract state-
space to obtain: Dϕ := {(sϕ, a, rϕ, s′ϕ)} where sϕ = ϕ(s) and rϕ(s, a) = r(s, a)∀s ∈ sϕ, and then
use the following estimator on Dϕ to estimate πϕ

e :

ρ̂(πϕ
e ) :=

1

N

N∑
i=1

dπϕ
e
(sϕi , ai)

dDϕ(sϕi , ai)
rϕ(sϕi , ai) (3)

where N is the number of samples, dπϕ(sϕ, a) = dπϕ(sϕ)πϕ(a|sϕ) with dπϕ(sϕ) =∑
s∈ϕ−1(sϕ) dπ(s) and πϕ constructed using wπ .

In the remainder of this section, we present theoretical results on the statistical properties of the
abstract ratios and the OPE estimator given in Equation (3). We then present a minimax optimization
problem based on the DICE framework that incorporates state abstraction.
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3.1 Theoretical Results

We now present the statistical properties of the abstract ratios and our estimator assuming it has
access to the true abstract state-action ratios. Due to space constraints, we defer proofs to Appendix
A.4.

We have Theorem 1, in which we prove that projecting S → Sϕ can lower the variance of density
ratios:

Theorem 1. Var
(

d
π
ϕ
e
(sϕ,a)

dDϕ (sϕ,a)

)
≤ Var

(
dπe (s,a)
dD(s,a)

)
where equality holds only if ϕ is the identity function i.e. ϕ(s) = s,∀s ∈ S and/or if ∀s1, s2 ∈ S
such that ∀s1, s2 ∈ sϕ and for a given action a, dπe (s1,a)

dD(s1,a)
=

dπe (s2,a)
dD(s2,a)

,∀sϕ ∈ Sϕ, a ∈ A.

Furthermore, we prove our abstract estimator is unbiased (Theorem 3 in Appendix A.4) and strongly
consistent (Theorem 2 and Corollary 1):
Theorem 2. Our estimator, ρ̂(πϕ

e ), given in Equation 3 is an asymptotically consistent estimator of
ρ(πe) in terms of MSE: limN→∞ E[(ρ̂(πϕ

e )− ρ(πe))
2] = 0.

3.2 MIS OPE with Abstract DICE

To test the effectiveness of state abstraction for OPE, we evaluate the DICE framework on Dϕ. We
focus on BestDICE Yang et al. (2020), and call our algorithm AbstractBestDICE, which solves the
following optimization problem:

min
ν,λ

max
ζ

J(ν, ζ, λ) := −EDϕ

[
1

2
ζ(sϕ, a)2

]
+ EDϕ

[
ζ(sϕ, a)

(
γ Ea′∼πϕ

e
[ν(s′ϕ, a′)]− ν(sϕ, a)− λ

)]
+ (1− γ)Esϕ0∼d

0ϕ
,a0∼πϕ

e
[ν(sϕ0 , a0)] + λ

(4)

where ν : Sϕ×A → R, λ ∈ R, and ζ : Sϕ×A → R≥0. The solution to this optimization, ζ∗(sϕ, a),
is then plugged into the estimator given in Equation (3) to get an OPE estimate. Note that we have
not proven whether this optimization recovers the true abstract density ratios. However, in Section 4
we show that AbstractBestDICE can still lead to accurate OPE in high-dimensional state-spaces.

4 Empirical Study

We will now show how projecting S → Sϕ can produce data-efficient and stable OPE estimates in
practice.

4.1 Empirical Setup

In this section, we describe the algorithms and domains of our empirical study. Due to space
constraints, we defer supporting details to the appendix (A.5 and A.6).

4.1.1 Algorithms

We compare AbstractBestDICE to ground BestDICE. As also reported by Yang et al. (2020); Fu et al.
(2021), we found in preliminary experiments that BestDICE performed much better than the other
DICE variants such as DualDICE Nachum et al. (2019), GenDICE Zhang et al. (2020a), etc.

4.1.2 Domains

We focus on high-dimensional state-space tasks, which have been known to be particularly challenging
for DICE methods Fu et al. (2021). We specify the fixed ϕ for each environment in Appendix A.6.

• Reacher. A robotic arm tries to move to a goal location. Here, s ∈ R11, a ∈ R2, and
sϕ ∈ R4.
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• Walker2D. A bi-pedal robot tries to move as fast as possible. Here, s ∈ R18, a ∈ R6, and
sϕ ∈ R3.

• Pusher. A robotic arm tries to push an object to a goal location. Here, s ∈ R23, a ∈ R7,
and sϕ ∈ R6.

• AntUMaze. This sparse-reward task requires an ant to move from one end of the U-shaped
maze to the other end. Here, s ∈ R29, a ∈ R8, and sϕ ∈ R2.

4.2 Empirical Results

In this section, we describe our main empirical results; additional experiments can be found in
appendix A.6.

4.2.1 Data-Efficiency

Figure 2 shows the results of our (relative) MSE vs. batch size experiment for the function ap-
proximation case. For a given batch size, we train each algorithm for 100k epochs with different
hyperparameters sets, record the (relative) MSE on the last epoch by each hyperparameter set, and
plot the lowest MSE achieved by these hyperparameter sets. We find that AbstractBestDICE is able
to achieve lower MSE than BestDICE for a given batch size. We note that while hyperparameter
tuning is difficult in OPE, in this experiment, we aim to evaluate each algorithm assuming each had
favorable hyperparameters.
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Figure 2: Relative MSE vs. Batch Size (# of trajectories). Vertical axis is log-scaled. Errors are computed over
15 trials with 95% confidence intervals. Lower is better.

4.2.2 Hyperparameter Robustness

Finally, we study the robustness of these algorithms to hyperparameters tuning. In practical OPE,
hyperparameter tuning with respect to MSE is impractical since the true ρ(πe) is unknown Fu
et al. (2021); Paine et al. (2020). Thus, we want OPE algorithms to be as robust as possible to
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Figure 3: Robustness of BestDICE and AbstractBestDICE to hyperparameters on the Pusher domain for batch
size (# of trajectories) of 50. Errors are computed over 15 trials with 95% confidence intervals. Lower is better.
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hyperparameter tuning. The main hyperparameters for DICE are the learning rates of ζ and ν, αζ

and αν . We focus on small batch sizes, where we would expect high sensitivity. The results of this
study are in Figure 3. We find that AbstractBestDICE has a less volatile MSE than BestDICE (also
see appendix A.6).

5 Related Work

MIS and Off-Policy Evaluation. There have been broadly three families of MIS algorithms in
the OPE literature to estimate state-action density ratios. One is the DICE family, which includes:
minimax-weight learning Uehara et al. (2019), DualDice Nachum et al. (2019), GenDICE Zhang et al.
(2020a), GradientDICE Zhang et al. (2020b), and BestDICE Yang et al. (2020). The second family
of MIS algorithms is the COP-TD algorithm Hallak and Mannor (2017); Gelada and Bellemare
(2019), which learns the state density ratios with an online TD-styled update. The third family is the
variational power method Wen et al. (2020) algorithm which generalizes the power iteration method
to estimate density ratios. While our focus has been on MIS algorithms, there are many other OPE
algorithms such as model-based methods Zhang et al. (2021b); Hanna et al. (2017); Liu et al. (2018b),
fitted-Q evaluation Le et al. (2019), and IS Precup et al. (2000); Thomas (2015); Hanna et al. (2019).

State Abstraction. The literature on state abstraction is extensive Singh et al. (1994); Dietterich
(1999); Ferns et al. (2011); Li et al. (2006); Abel (2020). However, much of this work has been
exclusively focused on building a theory of abstraction and learning optimal policies. To the best of
our knowledge, no work has leveraged state abstraction to improve the accuracy of OPE algorithms.

6 Summary and Future Work

In this work, we showed that we can improve the accuracy of OPE estimates by projecting the
original ground state-space into a lower-dimensional abstract state-space using state abstraction and
performing OPE in the resulting abstract Markov decision process. We showed that AbstractBestDICE
obtained more accurate estimates with added hyperparameter robustness on difficult, high-dimensional
state-space tasks.

As for future work, it would be interesting to leverage existing ideas Gelada et al. (2019); Zhang
et al. (2021a) to learn ϕ instead of using a fixed ϕ. Another interesting direction would be to apply
abstraction to other OPE algorithms. While this work focused exclusively on MIS algorithms,
a promising direction will be to apply abstraction techniques to model-based, trajectory IS, and
value-function based OPE.
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A Appendix

A.1 A Hard Example for Ground MIS Ratios

Figure 4: TwoPath MDP where ground density ratios for (s1, a0) and (s2, a0) are high variance. However,
upon aggregation of equivalent states (grey dotted lines), the abstract density ratio of (sϕ1 , a0) is low variance.

We present a hard example for ground MIS ratios in Figure 4 that provides intuition for why the
abstract MIS ratios can have lower variance ratios than the ground ratios. Consider two symmetric
policies, πe and πD, executed in the ground MDP (left side). In this example, the high variance
of the true state-action density ratios dπe (s1,a0)

dπD (s1,a0)
≈ 0 and dπe (s2,a0)

dπD (s2,a0)
≈ 100 can lead to high

variance estimates of ρ(πe). Notice, however, that states s1 and s2 are essentially equivalent i.e.
r(s1, a) = r(s2, a)∀a ∈ A and can be aggregated together into a single state, sϕ1 (Assumption 1).

We find that the state-action density ratio in this abstract MDP (right side)
d
π
ϕ
e
(sϕ1 ,a0)

d
π
ϕ
D
(sϕ1 ,a0)

= 1 is of low

variance, which can lead to low variance estimates of ρ(πe).

A.2 Preliminaries

This section provides the supporting lemmas and definitions that we leverage to prove our lemmas
and theorems.

Definition 1 (Almost Sure Convergence). A sequence of random variables, (Xn)
∞
n=1, almost surely

converges to the random variable, X if

P
(
lim
n→∞

Xn = X
)
= 1

We write Xn
a.s.→ X to denote that the sequence (Xn)

∞
n=1 converges almost surely to X .

Definition 2 ((Strongly) Consistent Estimator). Let θ be a real number and (θ̂n)
∞
n=1 be an infinite

sequence of random variables. We call θ̂n a (strongly) consistent estimator of θ if and only if θ̂n
a.s.→ θ.

Lemma 1. If (Xi)
∞
i=1 is a sequence of uniformly bounded real-valued random variables, then

Xn
a.s.→ X if and only if limN→∞ E[(Xn −X)2] = 0.

Proof See Lemma 3 in Thomas and Brunskill (2016).

A.3 Assumptions and Definitions

In the main paper, we provided the major assumptions required for our theoretical and empirical work
relevant to abstraction and OPE. Here we provide supporting assumptions typically used in the OPE
literature used for the theoretical analysis.

Assumption 2 (Coverage). For all (s, a) ∈ S ×A, if πe(a|s) > 0 then πb(a|s) > 0.

Assumption 3 (Non-negative reward). We assume that the reward function is bounded between
[0,∞).
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Definition 3 (Ground state normalized weightings). For a given policy π, each ground state s ∈ sϕ,
has a state aggregation weight, wπ(s) = dπ(s)∑

s′∈ϕ−1(sϕ)
dπ(s′)

, where dπ(s) is the discounted state-

occupancy measure of π.

A.4 Proofs

In the proofs below, we denote the collection of behavior policies that generated D with πD. That is,
πD is the conditional probability of an action occurring in a given state in the data. Similarly, we also
have πϕ

D. These minor changes give us dD = dπD and dDϕ = dπϕ
D

.

Lemma 2. For an arbitrary function, f , Esϕ∼d
πϕ ,a∼πϕ

[
f(sϕ, a)

]
= Es∼dπ,a∼π [f(ϕ(s), a)].

Proof
Esϕ∼d

πϕ ,a∼πϕ

[
f(sϕ, a)

]
=
∑
sϕ,a

dπϕ(sϕ)πϕ(a|sϕ)f(sϕ, a)

(a)
=
∑
sϕ,a

dπϕ(sϕ)
∑

s∈ϕ−1(sϕ)

π(a|s)dπ(s)
dπϕ(sϕ)

f(sϕ, a)

=
∑
sϕ,a

∑
s∈ϕ−1(sϕ)

π(a|s)dπ(s)f(sϕ, a)

=
∑
s,a

π(a|s)dπ(s)f(ϕ(s), a)

Esϕ∼dϕ
π,a∼πϕ

[
f(sϕ, a)

]
= Es∼dπ,a∼π [f(ϕ(s), a)]

where (a) is due to Definition 3 and we can replace sϕ with ϕ(s) when we know s ∈ sϕ.

Theorem 1. Var
(

d
π
ϕ
e
(sϕ,a)

dDϕ (sϕ,a)

)
≤ Var

(
dπe (s,a)
dD(s,a)

)
Proof

Before comparing the variances, we note that due to Assumption 2 and Lemma 2:

Es∼dπD ,a∼πD

[
dπe

(s)πe(a|s)
dπD (s)πD(a|s)

]
= Es∼d

π
ϕ
D
,a∼πϕ

D

 dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)

 = 1

Denote, V g := Var
(

dπe (s)πe(a|s)
dπD (s)πD(a|s)

)
and V ϕ := Var

(
d
π
ϕ
e
(sϕ)πϕ

e (a|s
ϕ)

d
π
ϕ
D
(sϕ)πϕ

D(a|sϕ)

)
. Now consider the differ-

ence between the two variances.
D = V g − V ϕ

= Var
(

dπe
(s)πe(a|s)

dπD (s)πD(a|s)

)
− Var

 dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)


= Es∼dπD ,a∼πD

[(
dπe

(s)πe(a|s)
dπD (s)πD(a|s)

)2
]
− Esϕ∼d

π
ϕ
D
,a∼πϕ

D


 dπϕ

e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)

2


=
∑
s,a

dπD (s)πD(a|s)
(

dπe
(s)πe(a|s)

dπD (s)πD(a|s)

)2

−
∑
sϕ,a

dπϕ
D
(sϕ)πϕ

D(a|sϕ)

 dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)

2

=
∑
sϕ,a

∑
s∈sϕ

dπD (s)πD(a|s)
(

dπe(s)πe(a|s)
dπD (s)πD(a|s)

)2

− dπϕ
D
(sϕ)πϕ

D(a|sϕ)

 dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)

2
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We can analyze this difference by looking at one abstract state and one action and all the states that
belong to it. That is, for a fixed abstract state, sϕ, and fixed action, a, we have:

D′ =
∑
s∈sϕ

dπD (s)πD(a|s)
(

dπe(s)πe(a|s)
dπD (s)πD(a|s)

)2

−

dπϕ
D
(sϕ)πϕ

D(a|sϕ)

 dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)

2


=

∑
s∈sϕ

(dπe
(s)πe(a|s))2

dπD (s)πD(a|s)

−

 (dπϕ
e
(sϕ)πϕ

e (a|sϕ))2

dπϕ
D
(sϕ)πϕ

D(a|sϕ)


(a)
=

∑
s∈sϕ

(dπe
(s)πe(a|s))2

dπD (s)πD(a|s)

−

 (dπϕ
e
(sϕ)πϕ

e (a|sϕ)2

dπϕ
D
(sϕ)πϕ

D(a|sϕ)



where (a) is due to Definition 3.

If we can show that D′ ≥ 0 for all possible sizes of |sϕ|, we will the have the original difference, D,
is a sum of only non-negative terms, thus proving Theorem 1. We will prove D′ ≥ 0 by inductive
proof on the size of |sϕ| from 1 to some n ≤ |S|.
Let our statement to prove, P (n) be that D′ ≥ 0 where n = |sϕ|. This is trivially true for P (1) where
the ground state equals the abstract state. Now consider the inductive hypothesis, P (n) is true for
n ≥ 1. Now with the inductive step, we must show that P (n+ 1) is true given P (n) is true. Starting
with the inductive hypothesis:

D′′ =

∑
s∈sϕ

(dπe
(s)πe(a|s))2

dπD (s)πD(a|s)


︸ ︷︷ ︸

S

−

 (

C︷ ︸︸ ︷
(dπϕ

e
(sϕ)πϕ

e (a|sϕ))2

dπϕ
D
(sϕ)πϕ

D(a|sϕ)︸ ︷︷ ︸
C′

 ≥ 0

We define S :=
(∑

s∈sϕ
(dπe (s)πe(a|s))2
dπD (s)πD(a|s)

)
, C := (dπϕ

e
(sϕ)πϕ

e (a|sϕ), and C ′ := dπϕ
D
(sϕ)πϕ

D(a|sϕ).
After making the substitutions, we have:

C2 ≤ SC ′ (5)

We have the above result holding true for when the |sϕ| = n. Now consider the inductive step in
relation to the inductive hypothesis where a new state, sn+1 is added to the abstract state. We have
the following difference:

D′′ = S +
(dπe

(sn+1)πe(a|sn+1))
2

dπD (sn+1)πD(a|sn+1)
− (C + dπe

(sn+1)πe(a|sn+1))
2

C ′ + dπD (sn+1)πD(a|sn+1)

11



For ease in notation, let x = dπe(sn+1)πe(a|sn+1) and y = dπD (sn+1)πD(a|sn+1). The above
difference is then:

D′′ = S +
x2

y
− (C + x)2

C ′ + y

=
Sy + x2

y
− (C + x)2

C ′ + y

=
1

y(C ′ + y)
((Sy + x2)(C ′ + y)− (C + x)2y)

=
1

y(C ′ + y)
(SyC ′ + Sy2 + x2C ′ + x2y − C2y − x2y − 2Cxy)

=
1

y(C ′ + y)
(SyC ′ + Sy2 + x2C ′ − C2y − 2Cxy)

The above difference, D′′, is minimized most when C is as large as possible. From the inductive
hypothesis, we have C ≤

√
SC ′. The minimum difference can be written as:

D′′ =
1

y(C ′ + y)
(Sy2 + x2C ′ − 2

√
SC ′xy)

=
1

y(C ′ + y)
(y
√
S − x

√
C ′)2

≥ 0

So we have D′′ ≥ 0 for |sϕ| = n+ 1, which means D′ ≥ 0 . We have showed that P (n) is true for
all n. We now have the original difference, D, to be a sum of non-negative terms after performing
this same grouping for all abstract states and actions, which results in:

Var

 dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)

 ≤ Var
(

dπe
(s)πe(a|s)

dπD (s)πD(a|s)

)

Thus, we have:

Var

(
dπϕ

e
(sϕ, a)

dπϕ
D
(sϕ, a)

)
≤ Var

(
dπe

(s, a)

dπD (s, a)

)

Proposition 1. If Assumption 1 holds, the average reward of ground policy π executed in ground
MDP M, ρ(π), is equal to the average reward of abstract policy πϕ executed in abstract MDP Mϕ

constructed with wπ , ρ(πϕ). That is, ρ(π) = ρ(πϕ).
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Proof Consider the definition of Rϕ
π:

ρ(πϕ) =
∑
sϕ,a

dπϕ(sϕ)πϕ(a|sϕ)r(sϕ, a)

=
∑
sϕ,a

 ∑
s∈ϕ−1(sϕ)

dπ(s)

 ∑
s∈ϕ−1(sϕ)

π(a|s)wπ(s)

 r(sϕ, a)


(a)
=
∑

ϕ(s),a

 ∑
s∈ϕ−1(sϕ)

dπ(s)

 ∑
s∈ϕ−1(sϕ)

π(a|s)dπ(s)∑
s′∈ϕ−1(sϕ) dπ(s

′)

 r(sϕ, a)


(b)
=
∑

ϕ(s),a

 ∑
s∈ϕ−1(sϕ)

π(a|s)dπ(s)

 r(sϕ, a)

(c)
=
∑

ϕ(s),a

 ∑
s∈ϕ−1(sϕ)

π(a|s)dπ(s)r(s, a)


=
∑
s,a

π(a|s)dπ(s)r(s, a)

ρ(πϕ) = ρ(π)

where (a) is due to Definition 3, (b) is due to Definition 3 and Assumption 1

Theorem 3. If Assumption 1 holds, our estimator, ρ̂(πϕ
e ) as defined in Equation 3, is an unbiased

estimator of ρ(πe).

Proof

We first consider the expectation of a single sample, X =
d
π
ϕ
e
(sϕ)πϕ

e (a|s
ϕ)

d
π
ϕ
D
(sϕ)πϕ

D(a|sϕ)
rϕ(sϕ, a):

Es∼dπD ,a∼πD [X] =
∑
s,a

dπD (s)πD(a|s)
dπϕ

e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)
rϕ(sϕ, a)

(a)
=
∑
sϕ,a

∑
s∈ϕ−1(sϕ)

dπD (s)πD(a|s)
dπϕ

e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)
rϕ(sϕ, a)

(b)
=
∑
sϕ,a

dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)
∑

s∈ϕ−1(sϕ)

dπD (s)πD(a|s)rϕ(sϕ, a)

(c)
=
∑
sϕ,a

dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)
rϕ(sϕ, a)

∑
s∈ϕ−1(sϕ)

dπD (s)πD(a|s)

=
∑
sϕ,a

dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)
rϕ(sϕ, a)

∑
s′∈ϕ−1(sϕ)

dπD (s
′)

∑
s∈ϕ−1(sϕ)

dπD (s)πD(a|s)∑
s′∈ϕ−1(sϕ) dπD (s

′)

=
∑
sϕ,a

dπϕ
e
(sϕ)πϕ

e (a|sϕ)
dπϕ

D
(sϕ)πϕ

D(a|sϕ)
rϕ(sϕ, a)(dπϕ

D
(sϕ)πϕ

D(a|sϕ))

=
∑
sϕ,a

dπϕ
e
(sϕ)πϕ

e (a|sϕ)rϕ(sϕ, a)

(d)
= ρ(πϕ

e )

Es∼dπD ,a∼πD [X]
(e)
= ρ(πe)
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where (c) is due to Definition 3 and Assumption 1, (d) is due to Assumption 2, and (e) is due to
Proposition 1.

We have the bias defined as:

Bias[ρ̂(πϕ
e )] = Es∼dπD ,a∼πD [ρ̂(π

ϕ
e )]−Rπe

= Es∼dπD ,a∼πD

 1

mT

mT∑
i=1

dπϕ
e
(sϕi )π

ϕ
e (ai|sϕi )

dπϕ
D
(sϕi )π

ϕ
D(ai|sϕi )

rϕ(sϕi , ai)

−Rπe

(a)
=

1

mT

mT∑
i=1

Esi∼dπD ,ai∼πD

 dπϕ
e
(sϕi )π

ϕ
e (ai|sϕi )

dπϕ
D
(sϕi )π

ϕ
D(ai|sϕi )

rϕ(sϕi , ai)

−Rπe

(b)
=

(
1

mT

mT∑
i=1

Rπe

)
−Rπe

= ρ(πe)− ρ(πe)

Bias[ρ̂(πϕ
e )] = 0

where (a) is due to linearity of expectation and (b) is due to expectation of a single sample.

Theorem 2. Our estimator, ρ̂(πϕ
e ), given in Equation 3 is an asymptotically consistent estimator of

ρ(πe) in terms of MSE: limN→∞ E[(ρ̂(πϕ
e )− ρ(πe))

2] = 0.

Proof We have the MSE of ρ̂(πϕ
e ) w.r.t ρ(πe) defined in terms of the bias and variance as follows:

MSE(ρ̂(πϕ
e )) = E[(ρ̂(πϕ

e )− ρ(πe))
2] = Var[ρ̂(πϕ

e )] + (Bias[ρ̂(πϕ
e )])

2

(a)
= Var[ρ̂(πϕ

e )]

=
1

(mT )2
Var

mT∑
i=1

dπϕ
e
(sϕi )π

ϕ
e (ai|sϕi )

dπϕ
D
(sϕi )π

ϕ
D(ai|sϕi )

rϕ(sϕi , ai)


where (a) is because ρ̂ is an unbiased estimator as shown in Theorem 3.

Due to Assumptions 2 and 3,

(∑mT
i=1

d
π
ϕ
e
(sϕi )π

ϕ
e (ai|sϕi )

d
π
ϕ
D
(sϕi )π

ϕ
D(ai|sϕi )

rϕ(sϕi , ai)

)
is a bounded value. Thus, as

mT → ∞, Var[ρ̂(πϕ
e )] → 0. We then have limmT→∞ E[(ρ̂(πϕ

e )− ρ(πe))
2] = 0. Thus, the estimator

ρ̂(πϕ
e ) is consistent in MSE.

Corollary 1. If Assumption 1 holds, then our estimator, ρ̂(πϕ
e ) as defined in Equation 3 is an

asymptotically strongly consistent estimator of ρ(πe).

Proof Theorem 2 showed that ρ̂(πϕ
e ) is consistent in terms of MSE. Then by applying Lemma

1, we have ρ̂(πϕ
e ) to be an asymptotically strongly consistent estimator of ρ(πe). That is,

ρ̂(πϕ
e )

a.s.→ ρ(πe).

A.5 Tabular Experiments and Details with True Ratios

We conduct the following tabular experiment on the MDP pictured in Figure 4. All trajectories are
100 time-steps long.
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Figure 5: MSE vs. Batch size (# of trajectories). The vertical axis axis is log-scaled. Errors are computed over
15 trials with 95% confidence intervals. Lower is better. Since ρ(πe) = ρ(πb) due to their symmetry, we use
regular MSE instead of relative.

We conduct an experiment on the TwoPath MDP to estimate ρ(πe) where we apply the ground
estimator given in Equation (1) and our abstract estimator given in Equation (3), assuming both have
access to their respective true ratios. The results of this experiment are illustrated in Figure 5(a).
We can observe that the abstract estimator with the true abstract ratios produces substantially more
data-efficient and lower variance OPE estimates for different batch sizes compared to the ground
equivalent.

A.6 Additional Function Approximation Experiments and Details

A.6.1 Environment Descriptions

• Reacher Brockman et al. (2016). A robotic arm tries to move to a goal location. Here,
s ∈ R11 and a ∈ R2. Since the reward function is the Euclidean distance between the arm
and goal, ϕ extracts only the arm-to-goal vector, and angular velocities from the ground
state, resulting in sϕ ∈ R4. All trajectories are 200 time-steps long.

• Walker2D Brockman et al. (2016). A bi-pedal robot tries to move as fast as possible. Here,
s ∈ R18 and a ∈ R6. We use the Euclidean distance from the start location as the reward
function and use a ϕ that extracts x and z coordinates and top angle of the walker’s body,
resulting in sϕ ∈ R3. All trajectories are 500 time-steps long.

• Pusher Brockman et al. (2016). A robotic arm tries to push an object to a goal location.
Here, s ∈ R23 and a ∈ R7. Since the reward function is the Euclidean distance between
object and arm and object and goal, ϕ extracts only object-to-arm and object-to-goal vectors,
resulting in sϕ ∈ R6. All trajectories are 300 time-steps long.

• AntUMaze Fu et al. (2020). This sparse-reward task requires an ant to move from one end
of the U-shaped maze to the other end. Here, s ∈ R29 and a ∈ R8. We use the “play"
version where the goal location is fixed. Since the reward function is +1 only if the 2D
location of the ant is at a certain Euclidean distance from the 2D goal location, ϕ extracts
only the 2D coordinates of the ant, resulting in sϕ ∈ R2. All trajectories are 500 time-steps
long.

A.6.2 Oracle ρ(πe) Values

On each domain, we executed πe for 200 episodes and averaged the results.

A.6.3 Policies

For each of the domains, we used the following policies:
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• Reacher: We trained a policy using PPO Schulman et al. (2017). πe was the trained policy
after 100k time-steps with a standard deviation of 0.1 on the action dimensions while πb

used 0.5 as the standard deviation.

• Walker2D: We trained a policy using PPO Schulman et al. (2017). πe was the trained policy
after 100k time-steps with a standard deviation of 0.1 on the action dimensions while πb

used 0.5 as the standard deviation.

• Pusher: We trained a policy using PPO Schulman et al. (2017). πe was the trained policy
after 100k time-steps with a standard deviation of 0.1 on the action dimensions while πb

used 0.5 as the standard deviation.

• AntUMaze: We used the policies made available Fu et al. (2021). πe was the final 10th
snapshot saved and πb was the 5th snapshot. Each also had 0.1 standard deviation on the
action dimensions.

A.6.4 Trajectory Length

For each of the domains, the trajectory length is: 200 for Reacher, 500 for Walker2D, 300 for Pusher,
and 500 for AntUMaze.

A.6.5 Hyperparameters

For BestDICE and AbstractBestDICE, we fixed the following hyperparameters:

• γ = 0.995 in all experiments.

• Neural net architecture: All neural networks are 2 layers with 64 hidden units using tanh
activation.

• Unit mean constraint learning rate Zhang et al. (2020b); Yang et al. (2020): λ = 1e−3.

• Optimizer: Adam optimizer with default parameters in Pytorch.

• Positivity constraint: squaring function on the last layer of the neural network.

We conducted a search for the learning rate of ν (αν) and learn-
ing rate of ζ (αζ), . The learning rate search for (αν , αζ) was over
{(5e−5, 5e−5), (1e−4, 1e−4), (3e−4, 3e−4), (7e−4, 7e−4), (1e−3, 1e−3)}. The optimal hyper-
parameters (αν = αζ) for each environment and batch size were:

5 10 50 75 100 300 500 1000
Reacher 5e−5 1e−4 1e−3 1e−4 1e−4 7e−4 1e−3 7e−4

Walker2D 1e−3 5e−5 5e−5 5e−5 5e−5 5e−5 5e−5 5e−5

Pusher 5e−5 5e−5 5e−5 5e−5 1e−4 5e−5 5e−5 5e−5

AntUMaze 3e−4 5e−5 5e−5 5e−5 5e−5 5e−5 5e−5 5e−5

Table 1: Optimal hyparameters for AbstractBestDICE on each batch size and environment.

5 10 50 75 100 300 500 1000
Reacher 5e−5 1e−4 5e−5 1e−4 5e−5 1e−4 3e−4 1e−3

Walker2D 5e−5 3e−4 7e−4 7e−4 7e−4 1e−4 3e−4 1e−4

Pusher 5e−5 1e−4 1e−4 5e−5 1e−4 5e−5 1e−4 5e−5

AntUMaze 1e−4 3e−4 5e−5 5e−5 5e−5 5e−5 5e−5 5e−5

Table 2: Optimal hyperparameters for BestDICE on each batch size and environment.
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A.6.6 Empirical Estimator

In practice we use a weighted importance sampling Yang et al. (2020) approach for the function
approximation cases to estimate ρ(πe) (same for BestDICE):

ρ̂(πϕ
e ) =

∑N
i=1

d
π
ϕ
e
(sϕi ,ai)

d
π
ϕ
D
(sϕi ,ai)

rϕ(sϕi , ai)

∑N
i=1

d
π
ϕ
e
(sϕi ,ai)

d
π
ϕ
D
(sϕi ,ai)

A.6.7 Misc Abstraction Details

• For Walker2D, we modified the default reward function from incremental distance covered
at each time-step to distance from start location at each time-step to ensure Assumption 1 is
satisfied.

• For AntUMaze, the reward function is originally r(s′) i.e. it is based on the next state that
the ant moves to. To ensure Assumption 1 is satisfied, we changed this reward function to
be of the current state, r(s).

A.6.8 Additional Results

Additional Hyperparameter Robustness Results In general, we can see AbstractBestDICE can be
much more robust than BestDICE to hyperparameter tuning.

Training Stability In Figure 7 we show that ϕ can improve training stability.

Abstract Quality and Data-Efficiency. We find that not all abstractions that satisfy Assumption 1
lead to better performance. For example, the following are valid abstractions on the Reacher task: 1)
the Euclidean distance between the arm and goal, sϕ ∈ R and the 3D vector between the arm and
goal, sϕ ∈ R3 (Figure 8). However, in practice we found that these were unreliable. One possible
reason for this unreliability is that these abstractions are incredibly extreme and the algorithm may be
unable to differentiate between abstract state, resulting in outputting similar ζϕ(sϕ, a)∀sϕ.

A.7 Hardware For Experiments

• Distributed cluster on HTCondor framework
• Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz
• RAM: 5GB
• Disk space: 4GB

17



0.0002 0.0004 0.0006 0.0008 0.0010
αζ = αν

0.0

0.2

0.4

0.6

0.8
(r

el
at

iv
e)

M
S

E
(ρ

(π
e)

)
AbstractBestDICE BestDICE

(a) Reacher (Batch size: 5)

0.0002 0.0004 0.0006 0.0008 0.0010
αζ = αν

0.0

0.1

0.2

0.3

0.4

0.5

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(b) Reacher (Batch size: 10)

0.0002 0.0004 0.0006 0.0008 0.0010
αζ = αν

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(c) Reacher (Batch size: 50)

0.00025 0.00050 0.00075 0.00100
αζ = αν

0.5

1.0

1.5

2.0

2.5

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(d) Walker2D (Batch size: 5)

0.0005 0.0010
αζ = αν

0.4

0.6

0.8

1.0

1.2

1.4

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(e) Walker2D (Batch size: 10)

0.00025 0.00050 0.00075 0.00100
αζ = αν

0.2

0.4

0.6

0.8

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(f) Walker2D (Batch size: 50)

0.0002 0.0004 0.0006 0.0008 0.0010
αζ = αν

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(g) Pusher (Batch size: 5)

0.0002 0.0004 0.0006 0.0008 0.0010
αζ = αν

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(h) Pusher (Batch size: 10)

0.0002 0.0004 0.0006 0.0008 0.0010
αζ = αν

−2

0

2

4

6

8

10

12

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(i) AntUMaze (Batch size: 5)

0.0002 0.0004 0.0006 0.0008 0.0010
αζ = αν

0

2

4

6

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(j) AntUMaze (Batch size: 10)

0.0002 0.0004 0.0006 0.0008 0.0010
αζ = αν

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(r
el

at
iv

e)
M

S
E

(ρ
(π

e)
)

AbstractBestDICE BestDICE

(k) AntUMaze (Batch size: 50)

Figure 6: Hyperparameter sensitivity graph for BestDICE and AbstractBestDICE. αζ = αν Errors are
computed over 15 trials with 95% confidence intervals. Lower is better. Pusher for batch size of 50 is shown in
the main paper.
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Figure 7: Reward vs. Training Steps. Errors are computed over 15 trials with 95% confidence intervals. These
figures illustrate the training stability of AbstractBestDICE over BestDICE. Lower is better.
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Figure 8: Relative MSE vs. Batch Size. y axis is log-scaled. Errors are computed over 15 trials with 95%
confidence intervals. This figures illustrate valid abstractions can be more data-inefficient than the ground
equivalents. Lower is better.

19


	Introduction
	Preliminaries
	Notation and Problem Setup
	Off-Policy Evaluation (OPE)
	Marginalized Importance Sampling (MIS)

	State Abstractions

	Abstract MIS
	Theoretical Results
	MIS OPE with Abstract DICE

	Empirical Study
	Empirical Setup
	Algorithms
	Domains

	Empirical Results
	Data-Efficiency
	Hyperparameter Robustness


	Related Work
	Summary and Future Work
	Appendix
	A Hard Example for Ground MIS Ratios
	Preliminaries
	Assumptions and Definitions
	Proofs
	Tabular Experiments and Details with True Ratios
	Additional Function Approximation Experiments and Details
	Environment Descriptions
	Oracle (e) Values
	Policies
	Trajectory Length
	Hyperparameters
	Empirical Estimator
	Misc Abstraction Details
	Additional Results

	Hardware For Experiments


