
Robust On-Policy Sampling for Data-Efficient Policy
Evaluation in Reinforcement Learning

Rujie Zhong1, Duohan Zhang2,?, Lukas Schäfer1, Stefano V. Albrecht1, Josiah P. Hanna3,?
1 School of Informatics, University of Edinburgh

2 Statistics Department, University of Wisconsin – Madison
3 Computer Sciences Department, University of Wisconsin – Madison

? Correspondence to {dzhang357, jphanna}@wisc.edu

Abstract

Reinforcement learning (RL) algorithms are often categorized as either on-policy
or off-policy depending on whether they use data from a target policy of interest
or from a different behavior policy. In this paper, we study a subtle distinction be-
tween on-policy data and on-policy sampling in the context of the RL sub-problem
of policy evaluation. We observe that on-policy sampling may fail to match the
expected distribution of on-policy data after observing only a finite number of tra-
jectories and this failure hinders data-efficient policy evaluation. Towards improved
data-efficiency, we show how non-i.i.d., off-policy sampling can produce data that
more closely matches the expected on-policy data distribution and consequently
increases the accuracy of the Monte Carlo estimator for policy evaluation. We in-
troduce a method called Robust On-Policy Sampling and demonstrate theoretically
and empirically that it produces data that converges faster to the expected on-policy
distribution compared to on-policy sampling. Empirically, we show that this faster
convergence leads to lower mean squared error policy value estimates.

1 Introduction

Reinforcement learning (RL) algorithms are often categorized using the dichotomy of on-policy
versus off-policy. On-policy algorithms learn about a particular target policy using data collected
by behaving according to the target policy. Off-policy algorithms use data collected by behaving
according to a different behavior policy. We study a subtle distinction between on-policy data versus
on-policy sampling as a step towards more data-efficient RL algorithms. To better understand this
distinction, consider a simple example. In this example, a certain target policy repeatedly visits a state
in which it takes action A with probability 0.2 and action B with probability 0.8. Under on-policy
sampling, after five visits to this state, we might actually observe action A 2 times and action B
3 times instead of the expected 1 and 4 times. Alternatively, we could collect data off-policy by
deterministically tracking the expected target policy action proportions; doing so results in observing
the exact expected action frequencies. Though the latter case uses off-policy sampling, it produces
data that is arguably more on-policy than the data produced by on-policy sampling.

In this paper, we study the distinction between on-policy sampling and on-policy data in the context
of the RL sub-problem of policy evaluation [Zinkevich et al., 2006]. In policy evaluation, we are given
an evaluation policy and asked to estimate the expected return that would be accrued when running
the evaluation policy on a task of interest. This problem is important for high confidence deployment
of RL-trained policies. In RL applications, such as robotics, data-efficient policy evaluation is of the
utmost importance – we desire the most accurate estimate with minimal collected data. While much
research has gone into how to most efficiently use a set of already collected data, i.e., the off-policy
policy evaluation problem [Jiang and Li, 2016, Thomas and Brunskill, 2016], an implicit assumption

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

11
1.

14
55

2v
2

 [
cs

.L
G

]
 1

0
O

ct
 2

02
2

in the RL community is that on-policy data is preferred to off-policy data when available. When data
can be collected on-policy, we can use the Monte Carlo estimator which computes a mean return
estimate using trajectories sampled i.i.d. by running the evaluation policy. In the limit, with infinite
trajectories, the empirical proportion of each trajectory will converge to its true probability under the
evaluation policy and the estimate will converge to the true expected return. However, for any finite
sample-size, the empirical proportion of each trajectory will likely fail to match the true probability
and the estimate will have error. Such sampling error is an inevitable feature of i.i.d. sampling. The
probability of each new trajectory is unaffected by the trajectories occurring in the past and thus the
only way to ensure the empirical distribution matches the true probability is to sample a large enough
data set. That is, it is only in the limit that on-policy sampling produces exactly on-policy data.

The observations made so far raise the question: “can non-i.i.d., off-policy trajectory sampling cause
the empirical distribution of trajectories to converge to the expected on-policy distribution faster?" We
answer this question affirmatively by introducing a method that adapts the data collecting behavior
policy to consider what data has already been collected when selecting future actions. We call
this method Robust On-Policy Sampling (ROS)1 since the empirical distribution of data it produces
converges faster to the expected on-policy trajectory distribution compared to standard on-policy
sampling. We give a theoretical result supporting this claim and then confirm our theory with policy
evaluation experiments in finite and continuous-valued state- and action-space domains showing 1)
ROS reduces sampling error in finite datasets and 2) consequently lowers the MSE of policy value
estimates compared to i.i.d. on-policy sampling.

Our paper contributes to the field of RL on two fronts. On one front, we introduce a practical method
for data collection and demonstrate empirically that it leads to more accurate policy evaluation
compared to on-policy sampling. Simultaneously, our work examines nuance in the on-policy versus
off-policy dichotomy. A better understanding of this nuance opens up the possibility of designing
new data collection procedures to improve the data efficiency of any RL algorithm that relies upon
on-policy data.

2 Related Work

Data collection is a fundamental part of the RL problem. The most widely studied data collection
problem is the question of how an agent should explore its environment to learn an optimal pol-
icy [Schäfer et al., 2022, Ostrovski et al., 2017, Tang et al., 2017]. In contrast to these approaches, our
work focuses on the question of how an agent should collect data to evaluate a fixed policy. When
given a choice of how to collect data for policy evaluation, on-policy data collection is generally
preferable to off-policy data collection [Sutton and Barto, 1998]. Notable exceptions are adaptive
importance sampling (AIS) methods [Oosterhuis and de Rijke, 2020, Hanna et al., 2017, Ciosek and
Whiteson, 2017, Bouchard et al., 2016, Frank et al., 2008] and quasi-Monte Carlo methods [Arnold
et al., 2022]. Both these AIS methods and the Quasi-Monte Carlo method of Arnold et al. [2022]
lower variance in estimates computed with future samples while our method lowers the total error in
the estimate computed from both past and future samples.

In one of our experiments, we consider a setting where we already have some data (collected off-
policy) and must decide how to collect additional data for policy evaluation. This problem has been
previously studied in the bandit literature [Tucker and Joachims, 2022] or when there are only a finite
number of policies that could be ran [Konyushova et al., 2021]. These prior works also show that
on-policy data collection is a sub-optimal choice. They differ from (and are complementary to) our
work in that they still use i.i.d. sampling for data collection whereas we show how non-independent
sampling can be used to produce data that more closely matches a desired distribution.

The method we introduce in this paper is motivated by the idea of decreasing sampling error in all
collected data. Previous work has considered how sampling error can be reduced after data collection
by re-weighting the obtained samples. For example, Hanna et al. [2021] show how importance
sampling with an estimated behavior policy can lower sampling error and lead to more accurate policy
evaluation. Similar methods have also been studied for policy evaluation in multi-armed bandits
[Narita et al., 2019, Li et al., 2015] and temporal-difference learning [Pavse et al., 2020]. These prior
works assume data is available a priori and ignore the question of how to collect it when unavailable.

1We provide an open-source implementation of ROS and all experimental data at https://github.com/
uoe-agents/robust_onpolicy_data_collection.

2

https://github.com/uoe-agents/robust_onpolicy_data_collection
https://github.com/uoe-agents/robust_onpolicy_data_collection

Finally, the idea of adapting the sampling distribution, (i.e., behavior policy) has analogs outside
of policy evaluation in Markov decision processes. O’Hagan [1987] identifies flaws with i.i.d.
sampling for Monte Carlo estimation that motivate taking past samples into account. Rasmussen and
Ghahramani [2003] use Gaussian processes to represent uncertainty in an expectation to be evaluated
and use this uncertainty to guide future sample generation. Concurrent to this work, Mukherjee et al.
[2022] introduced an uncertainty aware method for data collection in policy evaluation that can be
seen as an adaptation of these ideas to the RL.

3 Preliminaries

In this section, we introduce notation, formalize the policy evaluation problem, and introduce the
Monte Carlo estimator for policy evaluation.

3.1 Notation

We assume the environment is a finite-horizon, episodic Markov decision process (MDP) with state
set S, action set A, transition function, P : S ×A× S → [0, 1], reward function R : S ×A → R,
discount factor γ, maximum horizon l, and initial state distribution d0 [Puterman, 2014]. We assume
that S and A are finite though our empirical analysis considers both settings. We assume that the
transition and reward functions are unknown. A policy, π : S ×A → [0, 1], is a function mapping
states and actions to probabilities. We use π(a|s) := π(s, a) to denote the conditional probability of
action a given state s and P (s′|s, a) := P (s, a, s′) to denote the conditional probability of state s′
given state s and action a. Since we assume a finite-horizon, we assume the state definition implicitly
includes temporal information [Agarwal et al., 2022].

Let h := (s0, a0, r0, s1, . . . , sl−1, al−1, rl−1) be a trajectory and g(h) :=
∑l−1
t=0 γ

trt be the dis-
counted return of h. Any policy induces a distribution over trajectories, Pr(h|π). We define the
value of a policy, v(π), as the expected discounted return when sampling a trajectory by following
policy π: v(π) := E[g(H)|H ∼ π] =

∑
h Pr(h|π)g(h) where H is a random variable representing

a trajectory and H ∼ π denotes sampling H by running π in the given environment.

3.2 Policy Evaluation

In the policy evaluation problem, we are given an evaluation policy, πe, for which we would like to
estimate v(πe). Conceptually, algorithms for policy evaluation involve two steps: collecting data (or
receiving previously collected data) and computing an estimate from that data. We assume that data
is collected by running a policy which we call the behavior policy. If the behavior policy is the same
as the evaluation policy data collection is on-policy; otherwise it is off-policy. Whether on-policy or
off-policy, we assume the data collection process produces a set of trajectories, D := {Hi}ni=1 and
write D ∼ π to denote collecting these trajectories by running policy π. The final value estimate is
then computed by a policy evaluation estimator (PE) that maps the set of trajectories to a scalar-valued
estimate of v(πe). Following earlier work in policy evaluation (e.g., [Thomas and Brunskill, 2016,
Jiang and Li, 2016]), we set our goal to be policy evaluation with low mean squared error (MSE):

MSE

[
PE

]
:= E

[(
PE(D)− v(πe)

)2 ∣∣∣∣ D ∼ πb], (1)

where πb is the behavior policy that is run to collectD and PE is a generic policy evaluation estimator.

3.3 Monte Carlo Policy Evaluation

Perhaps the most fundamental, model-free policy evaluation method is the Monte-Carlo (MC)
estimator. Given a data set, D, of n trajectories, the Monte Carlo estimate, MC(D), is the mean
return over D:

MC(D) :=
1

n

n∑
i=1

g(Hi) =
∑
h

Pr(h|D)g(h), (2)

where Pr(h|D) denotes the empirical probability of h, i.e. how often h appears in D.

3

If trajectories in D are collected i.i.d. by running πe (i.e., on-policy sampling), the Monte Carlo
estimator is unbiased and consistent assuming g(h) is bounded [Sen and Singer, 1993]. However,
this method can have high variance as on-policy sampling may require many trajectories for the
empirical trajectory distribution Pr(h|D) to accurately approximate Pr(h|πe). Since on-policy
sampling collects each trajectory i.i.d., it relies on the law of large numbers for an accurate weighting
on each possible return. We call error between Pr(h|D) and Pr(h|πe) sampling error.

4 Data-Conditioned Monte Carlo Estimates

In this section, we motivate how an estimator that uses on-policy data can benefit from off-policy
sampling. Specifically, we consider the Monte Carlo estimator and suppose that we have already
collected a data set, D1, of trajectories. We now wish to collect an additional set of trajectories, D2,
and compute the Monte Carlo estimate with the setD1∪D2. Note thatD1 is a fixed set (the trajectories
already observed) while D2 is a random variable (the trajectories yet to be observed). How should
D2 be collected for minimal MSE policy evaluation with the Monte Carlo estimator? Our analysis
in this section suggests that i.i.d. sampling of trajectories with πe may be a sub-optimal choice.

In this setting, the Monte Carlo estimator using D1 ∪D2 can be written as:

MC(D1 ∪D2) :=
1

n

nD1∑
i=1

g(hi)︸ ︷︷ ︸
fixed value

+
1

n

nD2∑
i=1

g(Hi)︸ ︷︷ ︸
random variable

, (3)

where nD1
and nD2

are the number of trajectories in D1 and D2, respectively and n = nD1
+ nD2

.
We refer to (3) as the data-conditioned Monte Carlo estimator.

Viewing the Monte Carlo estimator as a sum between a fixed quantity and a random quantity changes
how we view the statistical properties of the estimator. For instance, while the Monte Carlo estimator
is known to be unbiased under on-policy sampling, its data-conditioned estimate is biased as shown
in the following proposition.
Proposition 1. The data conditioned Monte Carlo estimator is biased under on-policy sampling of
D2 unless MC(D1) = v(πe) or D1 = ∅. That is:

E

[
MC(D1 ∪D2)

∣∣∣∣ D2 ∼ πe
]
6= v(πe).

Proof. See Appendix A.

Remark 1. Proposition 1 holds even if D1 was collected under on-policy sampling as well. When
D1 was collected under on-policy sampling then the Monte Carlo estimator is unbiased considering
all possible realizations of D1. However, once the trajectories in D1 are fixed, it no longer matters
what others values they could have taken.

Can we reduce the bias of the data-conditioned Monte Carlo estimator by collecting D2 with a
policy that is different than πe? We conclude this section with an example showing that we can.
Consider a one-step MDP with one state, s, and two actions, a0 and a1. The return following a0 is
2 and the return following a1 is 4. The evaluation policy is πe(a0|s) = πe(a1|s) = 0.5. Suppose
that, after sampling 3 trajectories, D1 contains two of {s, a0, 2} and one occurrence of {s, a1, 4}.
Note that action a0 is over-sampled relative to its true probability in s and a1 is under-sampled.
If we collect an additional trajectory with πe the expected value of the Monte Carlo estimate is:
1
4 (2 + 2 + 4 + 2πe(a0) + 4πe(a1)) =

11
4 = 2.75. The true value, v(πe) = 3 and thus, conditioned

on prior data, the Monte Carlo estimate is biased in expectation as shown in Proposition 1. If instead
we choose the behavior policy such that πb(a1) = 1 then neither action is over- or under-sampled and
the expected value of the Monte Carlo estimate is the exact true value: 1

4 (2 + 2 + 4 + 4) = 12
4 = 3.

This example highlights that adapting the behavior policy to consider previously collected data can
lower the expected finite-sample error of policy evaluation. In the next section, we introduce an
adaptive data collection method that adjusts the behavior policy based on what data has already been
observed so as to lower the MSE of a Monte Carlo estimate using all observed data.

4

5 Robust On-Policy Data Collection

In this section, we introduce a method that adapts the data-collecting behavior policy online to
minimize sampling error in the data used by the Monte Carlo estimator. Specifically, let Dt denote
all trajectories observed up to time-step t of the current trajectory (including the partial current
trajectory). At time-step t, our method sets the behavior policy so as to reduce the current sampling
error, i.e., divergence between Pr(h|πe) and Pr(h|Dt). Our method can be run starting with Dt = ∅
or already containing trajectories in a setting like that described in the preceding section.

To reduce sampling error when collecting future trajectories, we want to adjust the behavior policy to
increase the probability of under-sampled trajectories, i.e., h for which Pr(h|Dt) < Pr(h|πe). Unfor-
tunately, the trajectory distributions are unknown because the transition function, P , is also unknown.
Instead, we will increase the probability of under-sampled actions. Let πD : S ×A → [0, 1] denote
the empirical policy which gives the proportion of times that each action was taken in each state
in Dt. If πD(a|s) < πe(a|s), then a has appeared less often in the data than it would in expectation
under πe. Thus, we should increase the probability of a in s for future data collection.

When the state and action spaces are finite, πD can be computed exactly as the maximum likelihood
policy under Dt:

πD := argmax
π
L(π), L(π) :=

∑
h∈Dt

l−1∑
t′=0

log π(at′ |st′), (4)

where the argmax is taken with respect to all policies. In larger MDPs, we require function approxi-
mation which may make πD hard to compute and update online as new data is collected. Fortunately,
with an additional assumption we can determine the direction to adjust action probabilities without
explicitly computing πD. This assumption is that πe belongs to a class of differentiable, parameterized
policies and is parameterized by vector θ ∈ Rd. This assumption is mild for many RL applications
as it permits tabular, linear, and neural network policy representations. We use θe to represent the
parameter values for πe. We show in the next subsection that the gradient of the log-likelihood at
θe, ∇θL(πθ)|θ=θe , can be used to make sampling-error-reducing changes to the behavior policy.

5.1 Robust On-Policy Sampling

Our primary algorithmic contribution – Robust On-Policy Sampling (ROS) – reduces sampling error
by adapting the behavior policy with a single step of gradient descent on the log-likelihood at each
time-step. From here on, we use ∇θL to denote the gradient of the log-likelihood evaluated at θe.
Observe that ∇θL provides a direction to adjust θe to increase the probability of actions that were
over-sampled relative to their probability under πe. Thus, −∇θL provides a direction to adjust
θe to decrease the probability of over-sampled actions for which πD(a|s) > πe(a|s). With this
insight, ROS is able to adapt θe so that πD tracks πe without ever computing πD. At each time-step,
ROS computes ∇θL with all state-action pairs previously observed and then changes the evaluation
policy parameters with a single step of gradient descent so that under-sampled actions have greater
probability than they would have under πe.

Pseudocode for ROS is given in Algorithm 1. ROS first computes ∇θL with previously collected
trajectories if any are provided (Line 4). ROS then collects n additional trajectories by interacting
with the given MDP (Lines 6-14). For each action selection, ROS sets the behavior policy parameters
as θe − α∇θL(πθ)|θ=θe (Lines 9 and 10). It then computes ∇θ log πθ(A|s)|θ=θe and updates
∇θL(πθ)|θ=θe

(Lines 11 and 12). Finally, the chosen action is executed in the environment, a reward
received, and the agent moves to the next state (Line 13). Importantly, note that updating ∇θL
requires per-timestep computation that is linear in the number of policy parameters and remains
constant as the size of D grows.

5.2 ROS Convergence

This section develops our theoretical understanding of ROS. Due to space constraints, we defer all
proofs to Appendix B. First, we show that ROS converges to the expected state visitation frequencies
under πe. Second, we show that, for a fixed state, πD(·|s) converges to πe(·|s) faster under ROS
compared to on-policy sampling. Finally, we introduce an upper bound on the squared error between

5

Algorithm 1 Robust On-Policy Sampling.
1: Input: Evaluation policy πe with parameters θe, step size α, previously collected trajectories to

be used for policy evaluation, D1 (possibly empty), number of trajectories to collect, n.
2: Output: Data set of trajectories.
3: k ← number of state-action tuples in D1

4: ∇θL ← 1
k

∑
(s,a)∈D1

∇θ log πθ(a|s)|θ=θe

5: D ← D1

6: for 0 ≤ i < n do
7: s0 ∼ d0
8: for 0 ≤ t < l do
9: θb ← θe − α∇θL

10: at ← A ∼ πθb
(·|st)

11: ∇θL ← k
k+1∇θL+ 1

k+1∇θ log πθ(at|st)|θ=θe

12: k ← k + 1
13: st+1 ∼ P (·|st, at), rt ← R(st, at)
14: end for
15: D ← D ∪ {(s0, a0, r0, ..., sl−1, al−1, rl−1)}
16: end for
17: Return D

the Monte Carlo estimate and v(πe) in terms of sampling error which shows how ROS’s faster
convergence affects the MSE of policy evaluation. These results use the following assumption:
Assumption 1. The discrete state-space of the MDP has a directed acyclic graph (DAG) structure.
Specifically, states in S can be partitioned into l disjoint sets St indexed by episode step. The
transition function is such that P (s′|s, a) > 0 implies that s ∈ St and s′ ∈ St+1.

Note that Assumption 1 is mild as any finite-horizon MDP can be made a DAG by including the current
time-step as part of the state (as we have already assumed in Section 3.1).
Assumption 2. ROS uses a step-size of α → ∞ and the behavior policy is parameterized as a
softmax function, i.e., πθ(a|s) ∝ eθs,a , where for each state, s, and action, a, we have a parameter
θs,a. As we formally show in Appendix B, this assumption implies that ROS always takes the most
under-sampled action in each state.

We also introduce the notation of dtπ(s) as the probability of visiting state s at episode time t while
following policy π and dtn(s) as the empirical frequency of visitations to state s at episode time t
after observing n trajectories.
Theorem 1. Under Assumptions 1 and 2 and ROS action selection, dtn(s) converges to dtπ(s) with
probability 1 for all s ∈ S and 0 < t < l:

lim
n→∞

dtn(s) = dtπ(s), ∀s ∈ S, 0 ≤ t < l.

Theorem 2. Let s be a particular state that is visited m times during data collection and assume
that |A| ≥ 2. Under Assumption 2, DKL(πD(·|s)||π(·|s)) = Op(

1
m2) under ROS sampling while

DKL(πD(·|s)||π(·|s)) = Op(
1
m) under on-policy sampling, whereOp denotes stochastic boundedness.

Theorem 3. Assume ∀s ∈ S, a ∈ A that R(s, a) ≤ Rmax. The squared error in the Monte Carlo
estimate using D can be upper-bounded by:

(v(πe)−MC(D))2 ≤
l−1∑
t=0

γ2tR2
max

√
2DKL(dtn||dtπe

) + 2ES∼dtn [DKL(πD(·|S)||πe(·|S)].

Remark 2. The second term in the bound in Theorem 3 is the KL-divergence between πD and
πe which Theorem 2 tells us will decrease faster under ROS action selection. The first term is the
KL-divergence between the empirical and true state distributions which depends both on sampling

6

101 102 103 104

Timesteps

10−4

10−3

10−2

10−1

Sa
m

pl
in

g
er

ro
r

OS
BPG
ROS

(a) Without initial data

101 102 103 104

Timesteps

10−4

10−3

10−2

10−1

Sa
m

pl
in

g
er

ro
r

OS
OPD+OS
OPD+BPG
OPD+ROS

(b) With initial data

Figure 1: Sampling error (KL) curves of data collection in the GridWorld domain. Each strategy is
followed to collect data with 213T steps, and all results are averaged over 200 trials with shading
indicating one standard error intervals. Figures 1(a) and 1(b) show the sampling error curves of data
collection without and with initial data, respectively. Axes in these figures are log-scaled.

error in action selection as well as sampling error in the transition and initial state distributions.
While the former decreases faster under ROS, the latter will decrease the same for both ROS and
on-policy sampling. Hence, the theoretical faster rate of ROS for reducing sampling error in action
selection may be muted by high environment stochasticity. The experimental results given in Figure
12(a) complement this theoretical observation.

6 Empirical Study

We next conduct an empirical study of ROS in policy evaluation problems. Our primary goal is to
answer the following questions:

1. Does ROS reduce sampling error compared to on-policy sampling?
2. Does ROS lower policy evaluation MSE when starting with and without off-policy data?

We conduct policy evaluation experiments in four domains covering discrete and continuous state
and action spaces: a multi-armed bandit problem [Sutton and Barto, 1998], Gridworld [Thomas and
Brunskill, 2016], CartPole, and Continuous CartPole [Brockman et al., 2016]. Since these domains
are widely used, we defer their descriptions to Appendix C. Our primary baseline for comparison is
on-policy sampling (OS) of i.i.d. trajectories with the Monte Carlo estimator used to compute the final
policy value estimate (denoted OS-MC). We also compare to BPG which finds a minimum variance
behavior policy for the ordinary importance sampling (OIS) policy value estimator [Hanna et al.,
2017] (denoted BPG-OIS). We provide full experimental details concerning how πe and v(πe) were
determined in Appendix C.2.

6.1 Policy Evaluation without Initial Data

We first run experiments in a setting without initial data, in which all data is collected from scratch.
Letting T denote the average length of a trajectory, in each domain, we collect a total of 213T
environment steps with each method and compute metrics every 21, 22, ..., 213 trajectories. Note that
we specify the number of environment steps rather than number of trajectories in our empirical results.
For Bandit T = 1, for GridWorld T = 7.43, CartPole T = 48.48, and for CartPoleContinuous
T = 49.56. The hyper-parameter settings for all experiments are presented in Appendix E.

We first verify that ROS reduces sampling error compared to on-policy sampling. We measure
sampling error with the KL-divergence (KL) between πe and a parametric maximum likelihood
estimate of πD from the observe data. In Appendix D, we give a complete definition of the measure
as well as an alternative measure that leads to qualitatively similar results. Due to space constraints,
we only show this result for the GridWorld domain (Figure 1(a)); results for other domains are
qualitatively the same and can be found in Appendix D.1. Figure 1(a) shows that with ROS sampling
error decreases faster than OS. Unsurprisingly, BPG increases sampling error as it is an off-policy
method which adapts the behavior policy away from πe. These results answer our first empirical

7

101 103

Timesteps

10−4

10−3

10−2

10−1

100

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) Bandit

101 102 103 104
Timesteps

10−4

10−2

100

(b) GridWorld

102 103 104 105
Timesteps

10−4

10−2

100

(c) CartPole

102 103 104 105
Timesteps

10−4

10−3

10−2

10−1

100

(d) CartPoleContinuous

OS-MC BPG-OIS ROS-MC

Figure 2: Mean squared error (MSE) of policy evaluation in the without initial data setting. Policy
evaluation is conducted on the data collected from each strategy, and these curves show the MSE of
the estimates (lower is better). The vertical axis gives MSE and the horizontal axis is the amount of
environment steps taken (both are log-scaled). Shading indicates one standard error.

101 103

Timesteps

10−4

10−3

10−2

10−1

100

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) Bandit

101 102 103 104
Timesteps

10−4

10−2

100

(b) GridWorld

102 103 104 105
Timesteps

10−5

10−4

10−3

10−2
10−1

(c) CartPole

102 103 104 105
Timesteps

10−4

10−3

10−2

10−1

(d) CartPoleContinuous

OS-MC (OPD+OS)-MC (OPD+BPG)-OIS (OPD+OS)-(WIS+MC) (OPD+ROS)-MC

Figure 3: Mean squared error (MSE) of policy evaluation in the with initial data setting. Policy
evaluation is conducted on the data collected from each strategy and a small set of initial data collected
off-policy. Axes and confidence intervals are the same as in Figure 2.

question and confirm our theoretical claim that non-i.i.d. off-policy sampling can cause the empirical
distribution of data to converge to the expected on-policy distribution faster.

Ultimately, this paper focuses on reducing sampling error for lower MSE policy evaluation. Figure 2
shows that ROS lowers MSE compared to both OS and BPG across all domains.2 These results address
our second empirical question and support the claim that reducing sampling error decreases the MSE
of the Monte Carlo estimator for policy evaluation.

6.2 Policy Evaluation with Initial Data

Our next set of experiments considers a setting with initial data, in which a set of 100 trajectories are
already available and we wish to use these trajectories in our policy value estimate. These trajectories
are collected via i.i.d. off-policy sampling with a behavior policy that is slightly different than πe.
This setting is intended to represent a setting where πe has just been updated from an older policy and
we would like to still use the off-policy data already collected from the older policy combined with
the data to be collected. In addition to the off-policy data (OPD), we collect an additional 213T steps
of environment interaction with each method. We do not count the initial 100 trajectories towards the
total collected data.

For ROS, we use the OPD to initialize∇θL. We expect to see that ROS will collect data to combine
with the OPD such that the aggregate data set looks as if it had been collected with πe to begin with.
We compare ROS to the following baseline methods. (OPD + OS)-MC collects additional data with OS
and uses the Monte Carlo estimator with the total data-set. (OPD + OS)-(WIS + MC) uses weighted
importance sampling (WIS) to compute an estimate from the OPD combines the WIS estimate with a
Monte Carlo estimate using on-policy data. (OPD + BPG)-OIS collects additional data with BPG and
uses ordinary importance sampling as the estimator with all data. Finally, (OS - MC) replaces the 100

2Numeric values for the final MSE of each method can be found in Appendix F. We also report median and
interquartile ranges of the error of each method in Appendix G.

8

initial trajectories with trajectories from OS, then collects the remaining data with OS and uses the
Monte Carlo estimator. In the case of (OS - MC), the 100 initial trajectories are counted towards the
total data collected.

Figure 1(b) shows that sampling error decreases fastest for ROS as the additional data is collected. For
policy evaluation, we show MSE for varying amounts of data in Figure 3 and provide numerical values
for the final MSE in Appendix F. We observe that the initial data provides an immediate reduction in
MSE at the expense of injecting bias into the estimates. (OPD+OS)-MC struggles to reduce this bias
while (OPD+ROS)-MC is able to through data collection. Overall, this result highlights that ROS can
collect additional data that reduces sampling error in the aggregate data set and produce lower MSE
estimates compared to other data collection methods. Intuitively, OS requires many more samples to
dilute the bias brought on by using OPD in the Monte Carlo estimator, while ROS is able to correct
the empirical off-policy distribution to the expected on-policy distribution and use the Monte Carlo
estimator without any off-policy corrections.

The comparison to OS-MC demonstrates the potential of ROS for correcting an off-policy empirical
distribution to the expected on-policy distribution. As noted above, OS-MC has 100 fewer trajectories
than the other baselines. However – even when including the initial 100 off-policy trajectories in the
data total for all methods – ROS eventually obtains lower MSE compared to OS-MC. In this sense,
ROS has taken an initially biased dataset and collected the right trajectories to make it look as-if the
evaluation policy had collected all trajectories in the first place.

6.3 Sensitivity Study

Finally, we evaluate the sensitivity of ROS to hyper-parameter, environment, and policy settings. ROS
requires setting a step size, α, which controls how much ROS updates the behavior policy away from
πe. We show MSE curves for ROS with different step size α on GridWorld and CartPole in Figures 4
(α = 0 corresponds to OS). Figure 4(a) shows that, in GridWorld, ROS with any tested step-size
produces lower MSE policy evaluation than OS for any data set size. As it collects more data, ROS with
larger α enables lower MSE because the norm of∇θL decreases as sampling error decreases, and thus
a larger α is required to make significant updates. A larger α value is also in line with our theoretical
results which prescribe α → ∞. However, in CartPole, (Figure 4(b)), ROS with the largest tested
α (1000) diverges and the second largest (α = 100) requires many steps before it improves upon OS.
Thus, in domains with continuous state-spaces, more conservative α values may be preferred.

Our final set of experiments considers how the stochasticity of a domain and entropy of πe affect
the relative improvement that ROS offers. In this sub-section, we study these settings in the Bandit
domain for its simplicty; similar experimental results in GridWorld can be found in Appendix H. We
choose α = 1000 for the following experiments.

To study domain stochasticity, we first create variants of the Bandit environment by multiplying either
the mean or scale of the reward distribution of each action by a varying factor. In each experimental
trial, we use ROS to collect 1000T steps for the Monte Carlo estimator and compute the relative
MSE compared to the Monte Carlo estimator using OS with the same number of steps. Figure 4(c)
shows that as the factor on the mean increases, ROS provides a greater reduction in MSE as even small
amounts of sampling error translate into large MSE when the reward means are large. On the other
hand, as the scale factor increases, the MSE is dominated by reward noise and the relative benefit of
reducing sampling error disappears.

We also evaluate the relative improvement of ROS as a function of the entropy of πe. For πe, we use
ε-greedy policies which select the optimal action in a state with probability 1− ε and otherwise select
an action uniformly at random. Relative improvement in MSE is shown in Figure 4(d). For all ε, ROS
improves upon the MSE of OS. The improvement is generally larger for more stochastic πe when
sampling error in action selection will be highest.

7 Discussion and Future Work

This work has shown that off-policy non-i.i.d. sampling can produce data sets that more closely
approximate the on-policy data distribution than on-policy i.i.d. sampling. We considered the problem
of policy evaluation and showed that more closely approximating the on-policy data distribution leads
to more data efficient policy evaluation across several domains. As far as we know, ROS is the first

9

101 102 103 104

Timesteps

10−4

10−2

100

M
ea

n
Sq

ua
re

d
Er

ro
r

OS(α= 0) −MC
ROS(α= 10) −MC
ROS(α= 100) −MC
ROS(α= 1000) −MC
ROS(α= 10000) −MC

(a) GridWorld

102 103 104 105

Timesteps

10−4

10−2

100

M
ea

n
Sq

ua
re

d
Er

ro
r

OS−MC
ROS(α= 1) −MC
ROS(α= 10) −MC
ROS(α= 100) −MC
ROS(α= 1000) −MC

(b) CartPole

10−1 100 101

Factors

10−2

10−1

100

Re
la

tiv
e

M
SE

ROS(mean)
ROS(scale)

(c) Environment Noise

0.0 0.2 0.4 0.6 0.8
Epsilon

0.3

0.4

0.5

0.6

0.7

Re
la

tiv
e

M
SE

ROS

(d) Policy Noise

Figure 4: MSE of ROS with different step-size, α (4(a) and 4(b)). Relative improvement of ROS in
Bandit compared to OS with different stochasticity in the environment (4(c)) and policy (4(d)). The
relative MSE is computed as the MSE of ROS divided by the MSE of OS. Results in these figures are
averaged over 500 trials.

data collection method for policy evaluation that uses off-policy sampling to produce more closely
on-policy data than the data produced by on-policy sampling.

While ROS is a first step towards off-policy algorithms that produce data matching a target distribution,
we highlight a few limitations of the algorithm and our study. In our view, the main limitations of
the ROS algorithm are the need to set a step-size parameter (in contrast to parameter-free on-policy
sampling) and the need to update ∇θL at each action step. For the former, future work should
investigate robust methods for setting the step-size, particularly in settings where πθ generalizes
across the state-space. For the latter limitation, a future study could consider only updating ∇θL at
the end of each episode instead of after each action choice (assuming more computation can be done
between episodes). In terms of our study, for this paper we chose to study many different facets of
ROS on a suite of simpler domains (see the appendices for additional ablations and extensions); a
future study should assess the scalability of ROS with more complex function approximators. Finally,
our theoretical results were conducted in the tabular setting; an important open question is at what
rate ROS converges when πθ uses a function approximator that must generalize across states. Beyond
these minor technical limitations, our paper addresses fundamental research questions in RL and thus
we do not see obvious negative societal impacts that are unique to this work in comparison to other
work in RL and policy evaluation.

While we evaluated ROS for policy evaluation, the long-term importance of this work may be in
exploring the distinction between on-policy sampling and on-policy data. On-policy RL algorithms
require on-policy data and our work suggests that adaptive off-policy sampling can produce on-policy
data more efficiently than on-policy sampling. In the future, we wish to study these insights for
on-policy policy improvement algorithms (e.g., policy gradient methods [Williams, 1992, Schulman
et al., 2017]) and to extend our convergence results to non-tabular settings.

8 Conclusion

In this paper, we have introduced a novel data collection method for policy evaluation in reinforcement
learning environments. Our method – Robust On-Policy Sampling (ROS) – considers previously
collected data when selecting actions to reduce sampling error in the entire collected data set. We show
both in theory and in practice that data from ROS converges faster to the on-policy data distribution
compared to on-policy sampling. Empirically, we find that faster convergence to the on-policy data
distributions lowers the MSE of policy evaluation.

Acknowledgments and Disclosure of Funding

We thank Ishan Durugkar, Brahma Pavse, Subhojyoti Mukherjee, Elliot Fosong, and Filippos
Christianos for their feedback which greatly strengthened the paper. We also wish to acknowledge the
anonymous reviewers for their comments and constructive criticisms. Support for this research was
provided by the Office of the Vice Chancellor for Research and Graduate Education at the University
of Wisconsin — Madison with funding from the Wisconsin Alumni Research Foundation.

10

References
Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. Reinforcement learning: Theory and

algorithms. 2022.

Alen Alexanderian. Some notes on asymptotic theory in probability. Notes. University of Maryland,
2009.

Sébastien M. R. Arnold, Pierre L’Ecuyer, Liyu Chen, Yi-fan Chen, and Fei Sha. Policy learning
and evaluation with randomized quasi-monte carlo. In International Conference on Artificial
Intelligence and Statistics, 2022.

Guillaume Bouchard, Théo Trouillon, Julien Perez, and Adrien Gaidon. Online learning to sample.
arXiv preprint arXiv:1506.09016, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Kamil Ciosek and Shimon Whiteson. OFFER: Off-environment reinforcement learning. In AAAI
Conference on Artificial Intelligence, 2017.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust
off-policy evaluation. In International Conference on Machine Learning, 2018.

Jordan Frank, Shie Mannor, and Doina Precup. Reinforcement learning in the presence of rare events.
In International Conference on Machine Learning, 2008.

Josiah P. Hanna, Philip S. Thomas, Peter Stone, and Scott Niekum. Data-efficient policy evaluation
through behavior policy search. In International Conference on Machine Learning, 2017.

Josiah P. Hanna, Scott Niekum, and Peter Stone. Importance Sampling in Reinforcement Learning
with an Estimated Behavior Policy. Machine Learning, 110(6):1267–1317, May 2021.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, 2020.

Nan Jiang and Lihong Li. Doubly robust off-policy evaluation for reinforcement learning. In
International Conference on Machine Learning, 2016.

Ksenia Konyushova, Yutian Chen, Thomas Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J.
Mankowitz, Misha Denil, and Nando de Freitas. Active offline policy selection. In Advances in
Neural Information Processing Systems, 2021.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Interna-
tional Conference on Machine Learning, 2019.

Lihong Li, Rémi Munos, and Csaba Szepesvári. Toward minimax off-policy value estimation. In
International Conference on Artificial Intelligence and Statistics, 2015.

Jay Mardia, Jiantao Jiao, Ervin Tánczos, Robert D Nowak, and Tsachy Weissman. Concentration
inequalities for the empirical distribution of discrete distributions: beyond the method of types.
Information and Inference: A Journal of the IMA, 9(4):813–850, 2019.

Subhojyoti Mukherjee, Josiah P. Hanna, and Robert Nowak. ReVar: Strengthening Policy Evalu-
ation via Reduced Variance Sampling. In International Conference on Uncertainty in Artificial
Intelligence (UAI), August 2022.

Yusuke Narita, Shota Yasui, and Kohei Yata. Efficient counterfactual learning from bandit feedback.
In AAAI Conference on Artificial Intelligence, 2019.

Anthony O’Hagan. Monte carlo is fundamentally unsound. The Statistician, pages 247–249, 1987.

11

Harrie Oosterhuis and Maarten de Rijke. Taking the counterfactual online: Efficient and unbiased
online evaluation for ranking. In International Conference on Theory of Information Retrieval,
2020.

Georg Ostrovski, Marc G. Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems. 2019.

Brahma S. Pavse, Ishan Durugkar, Josiah P. Hanna, and Peter Stone. Reducing sampling error in
batch temporal difference learning. In International Conference on Machine Learning, 2020.

Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Carl Edward Rasmussen and Zoubin Ghahramani. Bayesian monte carlo. In Advances in Neural
Information Processing Systems, 2003.

Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, and Stefano V. Albrecht. Decoupled rein-
forcement learning to stabilise intrinsically-motivated exploration. In International Conference on
Autonomous Agents and Multiagent Systems, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pranab K. Sen and Julio M. Singer. Large Sample Methods in Statistics: An Introduction with
Applications. Chapman & Hall, 1993.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in neural information processing systems, 2017.

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, 2016.

Aaron David Tucker and Thorsten Joachims. Variance-optimal augmentation logging for counterfac-
tual evaluation in contextual bandits. arXiv preprint arXiv:2202.01721, 2022.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Martin Zinkevich, Michael Bowling, Nolan Bard, Morgan Kan, and Darse Billings. Optimal unbiased
estimators for evaluating agent performance. In AAAI Conference on Artificial Intelligence, 2006.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

12

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section
5.2 and Appendix B.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendices A
and B.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Included in
supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6 and Appendices C.2 and E.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] Experiments use RL domains and
algorithms that can be ran on a typical personal computer. Minimal compute resources
required to reproduce any experiment in the paper.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Proof of Proposition 1

In this appendix we prove Proposition 1 from Section 4.
Proposition 1. The data conditioned Monte Carlo estimator is biased under on-policy sampling of
D2 unless MC(D1) = v(πe) or D1 = ∅. That is:

E

[
MC(D1 ∪D2)

∣∣∣∣ D2 ∼ πe
]
6= v(πe).

Proof. In the following, we use Eπe [·] as shorthand for E[·|D ∼ πe]. Let v̂1 := 1
nD1

∑nD1
i=1 g(hi) =

MC(D1).

Eπe

[
MC(D1 ∪D2)

]
= Eπe

[
1

n

nD1∑
i=1

g(hi) +
1

n

nD2∑
i=1

g(Hi)

]
(5)

= Eπe

[
1

n

nD1∑
i=1

g(hi)

]
+ Eπe

[
1

n

nD2∑
i=1

g(Hi)

]
(6)

(a)
=

1

n

nD1

nD1

nD1∑
i=1

g(hi) + Eπe

[
1

n

nD2

nD2

nD2∑
i=1

g(Hi)

]
(7)

(b)
=
nD1

n
v̂1 +

nD2

n
Eπe

 1

nD2

nD2∑
i=1

g(Hi)︸ ︷︷ ︸
MC(D2)

 (8)

(c)
=
nD1

n
v̂1 +

nD2

n
v(πe) (9)

=
nD1

n
(v̂1 − v(πe)) +

nD2

n
v(πe) +

nD1

n
v(πe) (10)

=
nD1

n
(v̂1 − v(πe)) + v(πe) (11)

where (a) uses the fact that no random variables appear inside the first expectation, (b) uses the
definition of v̂, and (c) uses the fact that MC(D2) is an unbiased estimator of v(πe). The proposition
follows by observing that equation 11 is equal to v(πe) if and only if nD1 = 0 (i.e., D1 = ∅) or if
v̂ = v(πe).

Note that the latter case in which the data-conditioned Monte Carlo estimator is unbiased only occurs
when the Monte Carlo estimate only using D1 has non-zero error. If g(H) has non-zero variance
under on-policy sampling then the probability that MC(D1) is exactly equal to v(πe) with a finite-size
D2 is low.

B Proofs of ROS Properties

Before giving the proofs for Theorems 1 and 2 we re-state our key assumption.
Assumption 2. ROS uses a step-size of α → ∞ and the behavior policy is parameterized as a
softmax function, i.e., πθ(a|s) ∝ eθs,a , where for each state, s, and action, a, we have a parameter
θs,a. As we formally show in Appendix B, this assumption implies that ROS always takes the most
under-sampled action in each state.

We next derive two lemmas that will be used in the proofs of our theorems.
Lemma 1. Let Sm(a) denote the number of times that action a was taken after visiting a particular
state, s, m times in D and let k := |A|. Under Assumption 2 and ROS collection of D, we have that:

sup
a∈A
|Sm(a)−mπe(a|s)| ≤ k − 1. (12)

14

Proof. We first formally show that Assumption 2 implies that ROS always taking the most under-
sampled action at each time-step. Because we only consider a single state, we suppress dependencies
on the state in this proof, e.g., we write πe(a) instead of πe(a|s) and θa instead of θs,a for the
softmax parameters. We have L(πθ) =

∑
a Sm(a)θa −m log(

∑
b∈A e

θb) and ∇θaL(πθ)|πθ=πe =
Sm(a)(1− πe(a))− πe(a)(m− Sm(a)) = Sm(a)−mπe(a), which is exactly the number of times
that action a was over-sampled. The softmax parameter for action a after the ROS update is given by:

θ′a = θe,a − α(Sm(a)−mπe(a))

where θe,a is the softmax parameter for action a under the evaluation policy. Taking the limit as
α→∞, we see that the θe,a term is dominated by the α(Sm(a)−πe(a)m) term. Thus the parameter
for each action is:

θ′a = α((mπe(a)− Sm(a)).

Interpreting α as the inverse of the softmax temperature, we can see that α→∞ corresponds to a
softmax temperature→ 0 which in turn corresponds to a hard max over the (mπe(a)−Sm(a)) values.
Thus, the updated behavior policy puts all probability mass on the action for which πe(a)m− Sm(a)
is largest. Hence we select the most under-sampled action if we take α→∞ in Algorithm 1.

Now we show that under ROS action selection that the amount of over- or under-sampling is bounded.
First, we observe that, ∑

a∈A
(Sm(i)−mπe(i)) = m−m = 0,

and we claim that,
Sm(a)−mπe(a) ≤ 1

for any a ∈ A. We prove this claim by contradiction. Assume not: Sm(j)−mπe(j) > 1 for some
j ∈ A. Let Xm(j) := 1 if action j was taken at step m and 0 otherwise. If Xm(j) = 1, we have that:

Sm(j)−mπe(i) > 1 =⇒
Sm−1(j) + 1− (m− 1)πe(j)− πe(j) > 1 =⇒

Sm−1(j)− (m− 1)πe(j) > 1− 1 + πe(j) > 0.

However, this results in a contradiction since we have that action j was over-sampled at the previous
step but action j would not be selected by ROS if it was over-sampled. So, in order for Sm(j) −
mπe(j) > 1, we must have that Xm(j) = 0. Combining the fact that Xm(j) = 0 with our
assumption that Sm(j)−mπe(j) > 1 tells us that:

Sm(j)−mπe(j) > 1

(a)
=⇒ Sm−1(j)−mπe(j) > 1

=⇒ Sm−1(j)− (m− 1)πe(j) > 1

where (a) is because Sm−1(j) must be equal to Sm(j) if Xm(j) = 0. By the same logic we get
that Xm−1(j) = xm−2(j) = · · · = X1(j) = 0 which implies that S1(j) − πe(j) = 0 − πe >
1 which is a contradiction. Thus, we conclude that Sm(j) − mπe(j) ≤ 1 for any j, i.e., any
action can be over-sampled by at most 1. Combining this conclusion with the observation that∑
a∈A Sm(a) −mπe(a) = m −m = 0 tells us that any action can be under-sampled by at most

k − 1. Thus, the absolute difference |Sm(a)−mπe(a)| is at most k − 1 for any action a ∈ A which
completes the proof.

Lemma 2. Let s be a state that we visit m times. Under ROS sampling, we have ∀a ∈ A that:

lim
m→∞

πD(a|s) = πe(a|s).

Proof. The proof follows from Lemma 1. As in the proof of Lemma 1, we suppress the dependency
on s in our notation since we are only concerned with a fixed state. Using the notation from the proof

15

of Lemma 1, we have that πD(a) =
Sm(a)
m .

|Sm(a)−mπe(a)| ≤ k − 1

=⇒ |Sm(a)−mπe(a)|
m

≤ k − 1

m

=⇒ lim
m→∞

|Sm(a)−mπe(a)|
m

≤ lim
m→∞

k − 1

m
=⇒ lim

m→∞
|πD(a)− πe(a)| ≤ 0

=⇒ lim
m→∞

|πD(a)− πe(a)| = 0

=⇒ lim
m→∞

πD(a) = πe(a).

Theorem 1. Under Assumptions 1 and 2 and ROS action selection, dtn(s) converges to dtπ(s) with
probability 1 for all s ∈ S and 0 < t < l:

lim
n→∞

dtn(s) = dtπ(s), ∀s ∈ S, 0 ≤ t < l.

Proof. The proof is by induction. For the base case, note that d0π(s) = d0(s) and thus
limn→∞ d0n(s) = d0π(s) ∀s with probability 1 by the strong law of large numbers.

For the induction step, we assume limn→∞ dtn(s) = dtπ(s) ∀s with probability 1 for some episode
step t < l. We want to show that this implies that limn→∞ dt+1

n (s) = dt+1
π (s) with probability 1

for all s. Let Pn denote the empirical state transition function, i.e., Pn(s′|s, a) := cn(s,a,s
′)

cn(s,a)
where

cn(s, a, s
′) is the number of times that (s, a, s′) occurred in D and similarly for cn(s, a). Note that

dt+1
n (s) =

∑
s̃

∑
a d

t
n(s̃)πD(a|s̃)Pn(s|s̃, a) and dt+1

π (s) =
∑
s̃

∑
a d

t
π(s̃)π(a|s̃)P (s|s̃, a). The

former claim follows as a consequence of the finite-horizon MDP setting in which the state implicitly
must depend on the current time-step. In this setting Pn(s′|s, a) and πD(a|s) are only computed with
samples from a particular time-step (or pair of subsequent time-steps in the case of Pn). Then we
have that:

lim
n→∞

dt+1
n (s) = lim

n→∞

∑
s̃

∑
a

dtn(s̃)πD(a|s̃)Pn(s|s̃, a)

=
∑
s̃

∑
a

lim
n→∞

dtn(s̃)πD(a|s̃)Pn(s|s̃, a)

=
∑
s̃

∑
a

lim
n→∞

dtn(s̃) · lim
n→∞

πD(a|s̃) · lim
n→∞

Pn(s|s̃, a)

=
∑
s̃

∑
a

lim
n→∞

dtn(s̃) · lim
n→∞

πD(a|s̃) · lim
n→∞

Pn(s|s̃, a)

(a)
=
∑
s̃

∑
a

dtπ(s̃)π(a|s̃)P (s|s̃, a)

=dt+1
π (s)

where (a) follows from the induction hypothesis, Lemma 2, and limn→∞ Pn(s
′|s, a) = P (s′|s, a)

follows from the strong law of large numbers. This completes the proof.

Theorem 2. Let s be a particular state that is visited m times during data collection and assume
that |A| ≥ 2. Under Assumption 2, DKL(πD(·|s)||π(·|s)) = Op(

1
m2) under ROS sampling while

DKL(πD(·|s)||π(·|s)) = Op(
1
m) under on-policy sampling, where Op denotes stochastic bounded-

ness.

Proof. This proof has two parts. Since we only consider a particular state, we suppress the state-
dependency in policies throughout this proof, i.e., we write π(a) instead of π(a|s). The on-policy

16

sampling rate is adapted from Theorem 1 of Mardia et al. [2019] which implies that, the KL-
divergence between the empirical distribution of a discrete distribution and that discrete distribution
itself is Op(1

m). In our case, πe is the discrete distribution and πD is the empirical distribution.

Then we have from Mardia et al. [2019] that 2mDKL(πD||πe)
d−→ χ2

k−1 where k is the number of
actions. So we have that DKL(πD||πe) = Op(

1
m) from Lemma 5.3 of Alexanderian [2009] since

convergence in distribution implies bounded in probability.

Second, we obtain the ROS rate. Define the vectors π̃e := (πe(1), · · · , πe(k − 1)) and π̃D :=
(πD(1), · · · , πD(k− 1)). We write the KL-divergence between πe and πD as a function of these two
vectors:

DKL(π̃D||π̃e) =
k−1∑
i=1

π̃D(i) log(
π̃D(i)

π̃e(i)
) + (1−

k−1∑
j=1

π̃D(j)) log(
1−

∑k−1
j=1 π̃D(j)

1−
∑k−1
j=1 π̃e(j)

).

Let g denote the gradient of DKL(π̃D||π̃e) with respect to π̃D, evaluated at point π̃e and H denotes
the Hessian matrix of DKL(πD||πe) evaluated at point π̃e. Clearly, g = 0 because setting πD to πe
will minimize DKL(πD||πe). We take the Hessian from Mardia et al. [2019]:

H(i, j) =

{
1

πe(k)
i 6= j

1
πe(i)

+ 1
πe(k)

i = j

Alternatively, we can write H = 1
πe(k)

11> + diag(π̃−1e) where diag(π̃−1e) is the (k − 1× k − 1)

matrix with 1
π̃e

on its diagonal. Using a Taylor Series expansion for DKL, we have:

m2DKL(πD||πe) = m2DKL(πe||πe) +m2gT (π̃D − π̃e) +
1

2
m(π̃D − π̃e)THm(π̃D − π̃e)︸ ︷︷ ︸

Quadratic Term

+Qm

where Qm consists of the higher order terms. Note that since DKL(πe||πe) = 0, the first two terms are
both 0 so we only need to bound the quadratic term and higher terms. By Lemma 1 every component
of m(π̃D − π̃e) is bounded by k − 1, so the quadratic term is bounded by 1

2

∑
i,jH(i, j)(k − 1)2,

which is of orderO(1) since H is a constant when evaluated at π̃e. The higher order termsQm contain
higher powers of (π̃D − π̃e) multiplied by m2. Using Lemma 1, we can bound all components of any
m(π̃D − π̃e) by k − 1 to replace each m with a constant (trivially, all components of (π̃D − π̃e) can
also be bounded by k − 1) and higher-order derivatives of DKL evaluated at πe are also constant with
respect to m. Thus higher order terms are also O(1) which gives us that m2DKL(πD||πe) = O(1)
and thus that DKL(πD||πe) = O(1

m2). Deterministic convergence to zero implies probabilistic
convergence and thus, under ROS action selection, DKL(πD||πe) = Op(

1
m2).

Theorem 3. Assume ∀s ∈ S, a ∈ A that R(s, a) ≤ Rmax. The squared error in the Monte Carlo
estimate using D can be upper-bounded by:

(v(πe)−MC(D))2 ≤
l−1∑
t=0

γ2tR2
max

√
2DKL(dtn||dtπe

) + 2ES∼dtn [DKL(πD(·|S)||πe(·|S)].

Proof. First, we introduce some additional notation. We define µtn(s, a) :=
nt(s,a)
n as the empirical

distribution of a state-action pair at time t, where nt(s, a) is the number of times that state s and
action a occur jointly at time t across trajectories in D. Let µtπe

(s, a) be the probability of state s
and action a occurring jointly at time t while following πe. Note that µtn(s, a) = dtn(s)πD(a|s) and
µtπe

(s, a) = dtπe
(s)πe(a|s). Finally, we define n(s0, a0, . . . , sl−1, al−1) as the number of times that

state-action trajectory s0, a0, . . . , sl−1, al−1 occurs in D.

17

Observe that the Monte Carlo estimate can be re-written as:

MC(D) =
1

n

n∑
i=1

l−1∑
t=0

γtR(si,t, ai,t)

=
1

n

∑
s0

∑
a0

· · ·
∑
sl−1

∑
al−1

n(s0, a0, . . . , sl−1, al−1)

l−1∑
t=0

γtR(st, at)

=
1

n

l−1∑
t=0

γt
∑
s0

∑
a0

· · ·
∑
sl−1

∑
al−1

n(s0, a0, . . . , sl−1, al−1)R(st, at)

=
1

n

l−1∑
t=0

γt
∑
s

∑
a

nt(s, a)R(s, a)

=

l−1∑
t=0

γt
∑
s

∑
a

µtn(s, a)R(s, a).

Similarly, the true value of the evaluation policy can be re-written in terms of the state-action
distribution at each time step under policy πe:

v(πe) =
∑
h

Pr(h|πe)
l−1∑
t=0

γtR(sh,t, ah,t)

=
∑
s0

∑
a0

· · ·
∑
sl−1

∑
al−1

d0(s0)πe(a0|s0)
l−1∏
i=1

πe(ai|si)P (si|si−1, ai−1)︸ ︷︷ ︸
=Pr(h=(s0,a0,...,sl−1,al−1)|πe)

l−1∑
t=0

γtR(st, at)

=

l−1∑
t=0

γt
∑
s0

∑
a0

· · ·
∑
sl−1

∑
al−1

d0(s0)πe(a0|s0) · · ·P (sl−1|sl−2, al−2)R(st, at)

=

l−1∑
t=0

γt
∑
s

∑
a

µtπe
(s, a)R(s, a)

Now, we use these alternative formulations to bound the squared error between the true value and the
Monte Carlo estimate computed with a fixed data-set D.

(v(πe)−MC(D))2 =

(
l−1∑
t=0

γt
∑
s

∑
a

R(s, a)(µtn(s, a)− µtπe
(s, a))

)2

(a)

≤
l−1∑
t=0

γ2t
∑
s

∑
a

(
R(s, a)(µtn(s, a)− µtπe

(s, a))
)2

(b)

≤
l−1∑
t=0

γ2tR2
max

∑
s

∑
a

(
µtn(s, a)− µtπe

(s, a)
)2

(c)

≤
l−1∑
t=0

γ2tR2
max

∑
s

∑
a

∣∣µtn(s, a)− µtπe
(s, a)

∣∣
(d)

≤
l−1∑
t=0

γ2tR2
max

√
2DKL(µtn||µtπe

)

where (a) uses Jensen’s inequality, (b) replaces R(s, a) with the constant rmax, (c) notes that −1 ≥
µtn(s, a)−µtπe

(s, a) ≤ 1 so |µtn(s, a)−µtπe
(s, a)| ≥ (µtn(s, a)−µtπe

(s, a))2, and (d) uses Pinsker’s
inequality. All that remains is to use the definition of the KL-divergence and properties of logarithms

18

and expectations to obtain the final form of the bound:

l−1∑
t=0

γ2tR2
max

√
2DKL(µtn||µtπe

) =

l−1∑
t=0

γ2tR2
max

√
2ES∼dtn,A∼πD

[log
dtn(S)πD(A|S)
dtπe

(S)πe(A|S)
]

=

l−1∑
t=0

γ2tR2
max

√
2ES∼dtn,A∼πD

[log
dtn(S)

dtπe
(S)

+ log
πD(A|S)
πe(A|S)

]

=

l−1∑
t=0

γ2tR2
max

√
2DKL(dtn||dtπe

) + 2ES∼dtn [DKL(πD(·|S)||πe(·|S)].

C Experiment Domains

This appendix provides additional details on our experimental set-up.

C.1 Extended Domain Descriptions

This section describes the domains used in our empirical evaluation. Figure 5 illustrates each domain.

0 10 20 30
Action

1

0

1

2

R
ew

ar
d

di
st

rib
ut

io
n

(a) Bandit (b) GridWorld (c) CartPole

Figure 5: Experimental Domains. Figure 5(a) shows the distribution of rewards from each action
in a 30-armed bandit problem, with black dots indicating the mean rewards and shading indicating
the scale of the distribution. Figure 5(b) shows a 4 × 4 GridWorld with the agent starting from
the bottom-left corner and the goal state in the top-right corner. Figure 5(c) shows the CartPole
environment in which the goal is to keep the pole from falling over. ContinuousCartPole is the same
as CartPole except with a modified action space.

Our first domain, Bandit, is a 30-armed bandit problem modelled after the 10-armed bandit in Sutton
and Barto [1998, Chapter 2]. This domain has a single state, 30 actions, and episodes terminate after
the first action is taken. The reward following each action is normally distributed with a randomly
generated mean and scale parameter. The reward distribution parameters are sampled from a uniform
distribution on [0, 1] at the start of each experimental trial.

Our second domain, GridWorld, is a discrete state and action domain that has been used in prior
policy evaluation research (e.g., [Thomas and Brunskill, 2016, Farajtabar et al., 2018]). The domain
(shown in Figure 5(b)) has 4× 4 states. The agent starts from (0, 0) and has the action space {left,
right, up, down}. The reward is −1 in all non-terminal states except (1, 1) where the reward is −10
and (1, 3) where the reward is +1. The agent receives +10 in terminal state (3, 3). The maximum
number of steps is 100 and γ = 1 in this domain.

Our last two domains are based on the CartPole problem from OpenAI Gym [Brockman et al., 2016].
In CartPole, the agent tries to balance a pole, mounted on a cart, by moving the cart left and right.

19

States are given as vectors that describe the cart position and velocity and pole angle and angular
velocity. Our third domain is the standard variant in which the agent controls the cart by choosing
either a constant leftward force of −1, no force, or a constant rightward force of +1. Our fourth
domain is a continuous control variant in which the agent can control the exact force ranging from
−1 to 1. In either case, the agent receives a reward of +1 for each time-step until termination when
the pole falls or the cart moves out of bounds. The maximum number of steps is 200 and γ = 0.99 in
this domain.

C.2 Creation of Pre-trained Evaluation Policy

Each domain requires creation of an evaluation policy to serve as πe. In the three domains with a
discrete action space we use softmax policies of the form:

πθ(a|s) ∝
ew
>
a φ(s)∑

b∈A e
w>b φ(s)

(13)

where φ is a one-hot encoding operator for domains with discrete state space (Bandit and GridWorld)
and a feed-forward neural network for continuous state spaces (CartPole). For ContinuousCartPole,

πθ(a|s) := N
(
a;w>µ φ(s),

(
w>σ φ(s)

)2)
, (14)

where φ is a function of the state given by a feed-forward neural network. The policy parameters, θ,
denote all policy parameters. For Bandit and GridWorld, this is just the vectors wa and for CartPole
and ContinuousCartPole, θ also includes the neural network weights and biases. When φ is a neural
network, it is constructed with one batch normalization layer as the first layer, followed by two hidden
layers, both of which have 64 hidden states and use ReLU as the activation function. We use PyTorch
for neural network implementations [Paszke et al., 2019] and NumPy for linear algebra computations
[Harris et al., 2020].

For all domains, we use REINFORCE [Williams, 1992] to train the policy model, and choose a policy
snapshot during training as the evaluation policy, which has higher returns than the uniformly random
policy, but is still far from convergence. To obtain v(πe), we use on-policy sampling to collect 106
trajectories and compute the Monte Carlo estimate of v(πe).

C.3 Off-policy Data for With Initial Data Experiments

To create an initial data set of slightly off-policy data for each domain, we create the behavior policy
πb based on the evaluation policy πe. For domains with discrete action space, the off-policy behavior
policy is built as:

πb(a|s) = (1− δ)πe(a|s) + δ
1

|A|

where δ ∈ (0, 1] controls the probability of randomly choosing an action from the action space, and
otherwise sampling an action from the evaluation policy πe. For ContinuousCartPole, the behavior
policy is built as:

πb(a|s) = N
(
a;µe(s), ((1 + δ)σe(s))

2
)

where µe(s) and σe(s) are the output mean and standard deviation of the evaluation policy πe in state
s, and δ (for δ > 0) increases the standard deviation. In all domains, we use δ = 0.1 and collect 100
trajectories to create the initial off-policy data set.

D Measuring Sampling Error

One of our central claims is that ROS reduces sampling error and reducing sampling error corresponds
to a reduction in MSE for policy evaluation. To evaluate this claim, we must define a metric for
measuring sampling error. In this appendix, we describe two possible metrics and demonstrate how
these metrics change as OS and ROS collect data for policy evaluation.

20

D.1 KL-divergence of Data Collection

Our first metric (also used in the main paper), is to measure sampling error in the collected data D by
using KL-divergence of the empirical policy πD and the evaluation policy πe. The KL-divergence
between πD and πe in a particular state s is defined as:

DKL(πD, πe) := E
[
log

πD(A|s)
πe(A|s)

∣∣∣∣ A ∼ πD].
To obtain an explicit representation of πD, we use a parametric estimate by maximizing the log-
likelihood function over a parametric policy class. Specifically, we use:

θ̂ = argmax
θ′

∑
(s,a)∈D1

log πθ′(a|s)

for a policy class parameterized by θ. We then use πθ̂ in place of πD when computing the KL-
divergence. Our final sampling error metric for a data set D1 is:

DKL(πe, D) :=
∑

(s,a)∈D1

log π
θ̂′
(a|s)− log πe(a|s).

The sampling error curves of data collection without and with initial data are shown in Figure 6
and 7, respectively. We observe from these experiments that ROS can collect data with lower sampling
error than OS and BPG.

101 103

Timesteps

10−4

10−3

10−2

10−1

100

Sa
m

pl
in

g
er

ro
r

(a) Bandit

101 102 103 104
Timesteps

10−4

10−3

10−2

10−1

(b) GridWorld

102 103 104 105
Timesteps

10−4

10−3

10−2

10−1

(c) CartPole

102 103 104 105
Timesteps

10−4

10−3

10−2

10−1

(d) ContinuousCartPole

OS BPG ROS

Figure 6: Sampling error (KL) of data collection without initial data. Each strategy is followed to
collect data with 213T steps, and all results are averaged over 200 trials with shading indicating one
standard error intervals. Axes in these figures are log-scaled.

101 103

Timesteps

10−4

10−2

100

Sa
m

pl
in

g
er

ro
r

(a) Bandit

101 102 103 104
Timesteps

10−4

10−3

10−2

10−1

(b) GridWorld

102 103 104 105
Timesteps

10−4

10−3

10−2

10−1

(c) CartPole

102 103 104 105
Timesteps

10−4

10−3

10−2

10−1

(d) ContinuousCartPole

OS OPD+OS OPD+BPG (OPD+ROS)-MC

Figure 7: Sampling error (KL) of data collection with initial data. Steps, axes, trials and intervals
are the same as Figure 6.

D.2 l1-Norm of the Log-likelihood Gradient

In this section, we propose an alternative sampling error measure based on the norm of the log-
likelihood gradient evaluated at πe. If πe is the maximum likelihood policy under D then the norm of

21

the gradient evaluated at θe will be zero when sampling error is zero. A non-zero norm indicates the
parameters must change from θe to maximize the log-likelihood under the observed data. We show
empirically that this measure of sampling error roughly corresponds to using the KL-divergence by
computing the gradient norm of log-likelihood with respect to the data collection without and with
initial data, shown in Figure 8 and 9, respectively. These curves are generally consistent with their
corresponding sampling error curves in Appendix D.1.

101 103
Timesteps

10−3

10−2

||∇
||

(a) Bandit

101 102 103 104
Timesteps

10−4

10−3

10−2

(b) GridWorld

102 103 104 105
Timesteps

10−5

10−4

10−3

(c) CartPole

102 103 104 105
Timesteps

10−4

10−3

(d) ContinuousCartPole

OS BPG ROS

Figure 8: Log-likelihood gradient of the data collection without initial data. Steps, axes, trials and
intervals are the same as Figure 6.

101 103
Timesteps

10−4

10−3

10−2

||∇
||

(a) Bandit

101 102 103 104
Timesteps

10−4

10−3

10−2

(b) GridWorld

102 103 104 105
Timesteps

10−5

10−4

10−3

(c) CartPole

102 103 104 105
Timesteps

10−4

10−3

(d) ContinuousCartPole

OS OPD+OS OPD+BPG (OPD+ROS)-MC

Figure 9: Log-likelihood gradient of the data collection with initial data. Steps, axes, trials and
intervals are the same as Figure 6.

E Hyper-parameter Configurations

This appendix gives the hyper-parameter settings for the policy evaluation experiments. Settings
for the without initial data experiments are given in Table 1 and settings for the with initial data
experiments are given in Table 2. For BPG, k denotes the batch-size and α the step-size.

Domain BPG - k BPG - α ROS - α
Bandit 10 0.01 10000.0

GridWorld 10 0.01 1000.0
CartPole 10 5e-05 10.0

CartPoleContinuous 10 1e-06 0.1
Table 1: Hyper-parameters for experiments without initial data.

22

Domain BPG - k BPG - α ROS - α
Bandit 10 0.01 10000.0

GridWorld 10 0.01 10000.0
CartPole 10 5e-05 10.0

CartPoleContinuous 10 1e-06 0.1
Table 2: Hyper-parameters for experiments with initial data.

F Numerical Results of Policy Evaluation with Initial Data

This appendix provides the numerical final values for the MSE of policy evaluation with each data
collection method. Table 3 gives these values for the without initial data experiments and Table 4
gives these values for the with initial data experiments. These tables provide the numerical value
corresponding to the final MSE value for each method-domain pair shown in Figures 2 and 3.

Policy Evaluation Bandit GridWorld CartPole CartPoleContinuous
OS - MC 2.06e-04± 2.12e-05 2.68e-04± 2.42e-05 2.61e-05± 2.40e-06 4.44e-05± 4.01e-06

BPG - OIS 9.52e-05± 8.83e-06 2.81e-04± 2.63e-05 1.20e-05± 1.11e-06 3.62e-05± 3.54e-06
ROS - MC 6.17e-05± 5.77e-06 1.36e-05± 1.33e-06 1.01e-05± 9.79e-07 3.29e-05± 3.01e-06

Table 3: Final MSE of policy evaluation without initial data. These results give the MSE for policy
evaluation at the end of data collection, averaged over 200 trials ± one standard error.

Policy Evaluation Bandit GridWorld CartPole CartPoleContinuous
OS - MC 1.62e-04± 1.45e-05 2.68e-04± 2.42e-05 2.61e-05± 2.40e-06 4.44e-05± 4.01e-06

(OPD + OS) - MC 1.48e-04± 1.41e-05 2.80e-04± 2.82e-05 2.69e-05± 2.70e-06 4.27e-05± 3.72e-06
(OPD + OS) - (WIS + MC) 1.56e-04± 1.70e-05 2.65e-04± 2.40e-05 2.59e-05± 2.51e-06 6.02e-05± 8.51e-06

(OPD + BPG) - OIS 6.86e-05± 7.46e-06 9.20e-04± 6.27e-04 1.52e-05± 1.53e-06 1.12e-03± 9.58e-04
(OPD + ROS) - MC 4.78e-05± 4.81e-06 2.35e-06± 2.42e-07 9.60e-06± 9.35e-07 3.27e-05± 3.21e-06

Table 4: Final MSE of policy evaluation with initial data. These results give the MSE for policy
evaluation at the end of data collection, averaged over 200 trials ± one standard error.

G Median and Inter-quartile Range of Policy Evaluation

In this appendix, we present the computed median and interquartile range for the squared error of
policy evaluation both with and without initial data across all four domains. In the main paper we
present the mean squared error and standard error as is typical in the policy evaluation literature.
Here, we include the median and interquartile ranges as they are more robust statistics. We give these
results for completeness; qualitatively, they leave the conclusions from the main paper unchanged.

Figure 10 shows the median and interquartile ranges for policy evaluation without initial data.
Figure 11 gives the same for policy evaluation with initial data. From these figures, we can observe
that all data collection methords have a similar inter-quartile range and ROS lowers the median of the
squared error compared to OS.

101 103

Timesteps

10−4

10−2

100

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) Bandit

101 102 103 104
Timesteps

10−5

10−3

10−1

(b) GridWorld

102 103 104 105
Timesteps

10−5

10−3

10−1

(c) CartPole

102 103 104 105
Timesteps

10−4

10−2

100

(d) ContinuousCartPole

OS-MC BPG-OIS ROS-MC

Figure 10: Median and inter-quartile range of squared error (SE) of policy evaluation without initial
data. The lines in these figures denote the median of squared error over 200 trials, and the shading
indicates the interquartile range. Axes in these figures are log-scaled.

23

101 103

Timesteps

10−4

10−2

100

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) Bandit

101 102 103 104
Timesteps

10−6

10−4

10−2

100

(b) GridWorld

102 103 104 105
Timesteps

10−5

10−3

10−1

(c) CartPole

102 103 104 105
Timesteps

10−4

10−2

100

(d) ContinuousCartPole

OS-MC (OPD+OS)-MC (OPD+BPG)-OIS (OPD+OS)-(WIS+MC) (OPD+ROS)-MC

Figure 11: Median and inter-quartile range of squared error (SE) of policy evaluation with initial
data. Axes, trials and intervals are the same as Figure 10.

H Environment and Policy Sensitivity in GridWorld

In the main paper, we evaluated the relative MSE of ROS compared to OS in the Bandit environment
under different settings of the reward scale and variance and the stochasticity of πe. In this appendix,
we repeat the same study in the GridWorld environment. The original GridWorld domain has fixed
rewards for each state. We vary these by either 1) multiplying by a fixed factor (referred to as the mean
factor) or 2) replacing the deterministic reward with a reward sampled uniformly from [−fscale, fscale]
where fscale determines the reward variance. We then follow OS or ROS (α = 1000) to collect 1000
trajectories, and perform Monte Carlo estimation. The relative MSEs between OS and ROS are shown
in Figure 12(a). Results show an identical trend to the Bandit environment: a larger reward scale
increases the amount of improvement because small amounts of sampling error can lead to larger
amounts of error; larger reward variance decreases the amount of improvement because the MSE
becomes dominated by variance in the reward.

We also create different evaluation policies using ε-greedy policies with ε ranging from 0 to 1. We then
perform the same policy evaluation as above and compute the relative MSEs, shown in Figure 12(b).
As with the Bandit domain, we see that greater entropy in πe generally leads to a wider margin of
improvement between ROS and OS.

2 4 6 8 10
Factors

10−1

100

Re
la

tiv
e

M
SE

ROS(mean)
ROS(scale)

(a) Environment Settings

0.00 0.25 0.50 0.75 1.00
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

M
SE

ROS

(b) Policy Settings

Figure 12: Improvement of ROS compared to OS with different settings in GridWorld. Axes and trials
are the same as Figure 4.

I Mean Squared Error of Policy Evaluation with WRIS and FQE

This appendix presents preliminary results on combining ROS with estimators specifically designed
for the off-policy setting instead of the Monte Carlo estimator. Specifically, we used weighted
regression importance sampling (WRIS) [Hanna et al., 2021] and fitted q-evaluation (FQE) [Le et al.,
2019]. We study these estimators in the without initial data setting and show their MSE with varying

24

amounts of data. Figure 13 shows the MSE of different data collection methods for WRIS across the
different domains. Figure 14 shows the same except with FQE as the estimator.

We observe in tabular domains that OS cannot obtain the same level MSE as ROS, even with the help
of WRIS, which is designed to correct sampling error during the value estimation stage. This shows
the importance of reducing sampling error during the data collection stage. The same pattern can
also be observed when using FQE. In non-tabular domains, the performances of off-policy evaluation
methods with different data collection methods are very similar. However, WRIS usually requires
larger sizes of data to make accurate estimation, and can only achieve similar MSE as ROS when
collecting a large amount of data. When using FQE in non-tabular domains, data from ROS can
generally enable lower MSE than OS, although this improvement is very small.

101 103

Timesteps

10−4

10−3

10−2

10−1

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) Bandit

101 102 103 104
Timesteps

10−4

10−2

100

(b) GridWorld

102 103 104 105
Timesteps

10−4

10−2

100

(c) CartPole

102 103 104 105
Timesteps

10−4

10−2

100

(d) ContinuousCartPole

OS-MC OS-WRIS BPG-OIS BPG-WRIS ROS-MC ROS-WRIS

Figure 13: MSE of WRIS without initial data. Steps, axes, trials and intervals are the same as
Figure 2.

101 103

Timesteps

10−4

10−3

10−2

10−1

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) Bandit

101 102 103 104
Timesteps

10−6

10−4

10−2

100

(b) GridWorld

102 103 104 105
Timesteps

10−4

10−2

100

(c) CartPole

102 103 104 105
Timesteps

10−4

10−3

10−2

10−1

100

(d) ContinuousCartPole

OS-MC OS-FQE BPG-OIS BPG-FQE ROS-MC ROS-FQE

Figure 14: MSE of FQE without initial data. Steps, axes, trials and intervals are the same as Figure 2.

25

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Policy Evaluation
	3.3 Monte Carlo Policy Evaluation

	4 Data-Conditioned Monte Carlo Estimates
	5 Robust On-Policy Data Collection
	5.1 Robust On-Policy Sampling
	5.2 ROS Convergence

	6 Empirical Study
	6.1 Policy Evaluation without Initial Data
	6.2 Policy Evaluation with Initial Data
	6.3 Sensitivity Study

	7 Discussion and Future Work
	8 Conclusion
	A Proof of Proposition 1
	B Proofs of ROS Properties
	C Experiment Domains
	C.1 Extended Domain Descriptions
	C.2 Creation of Pre-trained Evaluation Policy
	C.3 Off-policy Data for With Initial Data Experiments

	D Measuring Sampling Error
	D.1 KL-divergence of Data Collection
	D.2 l1-Norm of the Log-likelihood Gradient

	E Hyper-parameter Configurations
	F Numerical Results of Policy Evaluation with Initial Data
	G Median and Inter-quartile Range of Policy Evaluation
	H Environment and Policy Sensitivity in GridWorld
	I Mean Squared Error of Policy Evaluation with WRIS and FQE

