
Paving the Way for NFV

By

Junaid Khalid

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2018

Date of final oral examination: 07/18/2018

The dissertation is approved by the following members of the Final Oral
Committee:

Aditya Akella, Professor, Computer Sciences
Remzi Arpaci-Dusseau, Professor, Computer Sciences
Kassem Fawaz, Assistant Professor, Electrical & Computer Engineering
Eric Rozner, Research Staff Member, IBM Research
Michael Swift, Professor, Computer Sciences

i

Abstract

Network functions (NF) or middleboxes play a vital role in improving the
performance and ensuring the security of networks, along with providing
other network functionalities. Recent years have seen an increased trend
towards network functions virtualization (NFV) by replacing traditional
middleboxes with virtualized instances of NFs. Such NFs run on top of
generic compute resources. NFV enables network operators to realize
custom network policies by traversing network traffic through sequence of
NFs (NF chains). Despite the fact that NFV promises a greater flexibility
to operators for network handling, its potential has not been fully realized.
In this dissertation, we designed systems to overcome some of the major
hindrances in NFV adoption.

One of our major contributions is showing that containers do not pro-
vide hard enough isolation needed to deploy network intensive applica-
tions such as NFs. To mitigate this issue we designed a scheme named
Iron, this scheme ensures hard isolation of network-based CPUs in con-
tainerized environment. Iron accounts for the time spent in the networking
stack on behalf of a container and ensures this processing cannot adversely
impact co-located containers through novel enforcement mechanisms.

As our second contribution, we designed CHC, a ground-up framework
to ensure chain-wide correctness and provide good performance. To
ensure fault tolerance and hide the complexity of elastic scaling from the
NF developers, CHC relies on manging state, external to NFs. It couples

ii

state externalization with novel caching and state updating mechanisms
to ensure high performance and correctness.

Our third contribution is to simplify the process of modifying NF
codes to support NFV frameworks. To realize this goal we designed a
system termed as StateAlyzr, which automates the process of modifying
existing NFs to support new frameworks with minimal manual effort.
StateAlyzr leverages the tools from program analysis to design new algo-
rithms that can provably and automatically identify all the states that must
be cloned/migrated to ensure consistent NF output during redistribution
of network traffic.

iii

To my parents,
Ruby, Ruby, Ruby, and Khalid

iv

Acknowledgments

This dissertation would have not been possible without the support and
encouragement from a lot of people, to whom I wish to thank.

First and foremost I would like to thank my advisor and my mentor,
Aditya Akella for his dedication and support. I am extremely grateful for
all the freedom he gave me in pursuing my research interests. His feedback
on my research work was always extremely insightful and it helped me
shape and develop my research ideas into a mature work. He also guided
me on creating simple but elegant solutions for complex problems

I am deeply indebted to Eric Rozner for the constant support and
encouragement that he provided not only during our collaboration but
even after that. He not only helped me with polishing research ideas but
also spent a tremendous amount of time in debugging the code with me
and other minor details to make a solid paper.

Aaron Gember-Jacobson has not only been an awesome collaborator
and fun person to work with, he also taught me how to do good research
in the early years of my PhD.

I am grateful to all my peers and collaborators who contributed their
time and insights: Sharad Aggarwal, Mark Coatsworth, Sourav Das, Wes-
ley Felter, Alexandre Ferreira, Keqiang He, Roney Michael, Anubhav
Nidhi, Jitu Padhye, Karthick Rajamani, Arjun Singhvi and Cong Xu.

I have been lucky enough to have found a lot of wonderful friends
and colleagues who were always there to share the ups and downs of
PhD life: Osama Khalid, my brother and my best friend was always there

v

to provide his support in all possible ways. His support has played a
key role in the success of my PhD life. Aimal Khan, provided constant
support, despite being remote. Robert Grandl was not just my officemate
but also an amazing friend, who was always there to encourage and push
me. Shoban Preeth, who shared my love for food, was always there to
provide his insightful and unbiased opinions over dinner. Rohit Bhat and
Jyotsna Negi who were always ready to go on roadtrips with me. Despite
the distance, Rohit was always able to take time out of his schedules to
give me advice whenever I needed it and Jyotsna was always there with
the bad relationship advice. Raajay Viswanathan for procrastinating with
me during our PhDs, and barely managing to meet the deadlines. I would
also like to thank Theo Benson for being there in the difficult moments
and providing his support remotely. And a similar thanks for all my
other friends who were always there to provide their support Shoaib Bin
Altaf, Shaleen Deep, Ram Durairajan, Mobin Javed, Yanfang Le, Kshiteej
Mahajan, Haroon Raja, Brent Stephens, Kaushik Subramanian, and Wenfei
Wu.

I appreciate the valuable feedback provided by thesis committee mem-
bers: Remzi Arpaci-Dusseau, Kassem Fawaz, Eric Rozner and Michael
Swift.

I am extremely grateful to Syed Ali Khayam and Syed Akbar Mehdi,
who helped discover and hone my passion for research.

I am extremely grateful for my brother Talha and my parents. Despite
been in a different continent, they were always able to provide encour-
agement. My PhD journey would have not been possible without their
continuous support and guidance.

vi

Contents

Abstract i

Acknowledgments iv

Contents vi

List of Figures and Tables x

1 Introduction 1
1.1 Challenges with NFV adoption 3

1.1.1 Isolating network based CPU 3
1.1.2 Ensuring correctness and performance for stateful

chained NFs 4
1.1.3 Simplifying NF modification 4

1.2 Contributions 5
1.2.1 Iron [74] 6
1.2.2 CHC [72] 6
1.2.3 StateAlyzr [73] 6

2 Iron 8
2.1 Background and Motivation 11

2.1.1 Network traffic breaks isolation 11
2.1.2 Putting Iron in context 13
2.1.3 Impact of network traffic 16

2.2 Design 21

vii

2.2.1 Accounting 21
2.2.2 Enforcement 24

2.3 Evaluation 28
2.3.1 Macrobenchmarks 29
2.3.2 Microbenchmarks 33

2.4 Related Work 35
2.5 Conclusion 38

3 CHC 39
3.1 Motivation 42

3.1.1 Key Requirements for COE 43
3.1.2 Related work, and Our Contributions 46

3.2 Framework: Operator View 49
3.3 Traffic and State Management 50

3.3.1 Traffic partitioning 50
3.3.2 Communication 52
3.3.3 State Maintenance 52

3.4 Correctness 55
3.4.1 R2, R3: Elastic scaling 56
3.4.2 R4: Chain-wide ordering 58
3.4.3 R5: Straggler mitigation 59
3.4.4 R6: Safe Fault Recovery 61

3.5 Implementation 67
3.6 Evaluation 69

3.6.1 State Management Performance 69
3.6.2 Metadata Overhead 73
3.6.3 Correctness Requirements: R1–R6 73

3.7 Conclusion 77

4 StateAlyzr 78
4.1 Motivation 80

viii

4.1.1 Need for Handling State 80
4.1.2 Approaches for Handling State 81
4.1.3 Simplifying Modification and its Requirements 83
4.1.4 Options 84

4.2 Overview of StateAlyzr 85
4.3 StateAlyzr Foundations 88

4.3.1 Per-/Cross-Flow State 90
4.3.2 Updateable State 95
4.3.3 State Flowspaces 96

4.4 Enhancements 99
4.4.1 Output-Impacting State 99
4.4.2 Tracking Runtime Updates 101

4.5 Implementation 103
4.6 Evaluation 104

4.6.1 Effectiveness 105
4.6.2 Runtime efficiency and manual effort 107
4.6.3 Practicality 110

4.7 Other Related Work 111
4.8 Summary 112

5 Conclusion and Future Work 114
5.1 Iron 114
5.2 CHC 115
5.3 StateAlyzr 115

A Appendix 117
A.1 Proofs of soundness 117
A.2 Handling non-deterministic values 120
A.3 Proofs of Correctness and Chain Output Equivalence 121

A.3.1 Consistency Guarantees of Cross-flow State Up-
date 121

ix

A.3.2 Consistency Guarantees of Cached Cross-flow State
Update 122

A.3.3 Safe Recovery of a Root Instance 122
A.3.4 Safe Recovery of an NF Instance 123
A.3.5 Safe Recovery of a Store Instance 124

Bibliography 126

x

List of Figures and Tables

Figure 1.1 NFV chain . 5

Figure 2.1 Penalty factor of UDP senders. 16
Figure 2.2 ksoftirqd overhead with UDP senders. 18
Figure 2.3 Penalty factor of victims with TCP senders. 18
Figure 2.4 Penalty factor when there are 10 containers on 1 core. . 20
Figure 2.5 Penalty factor when there are 10 containers on a 1 core. 20
Figure 2.6 Overview of network stack in Linux. 23
Figure 2.7 Global runtime refill at period’s end 26
Figure 2.8 Local runtime refill . 26
Figure 2.9 Performance penalty of victim with UDP senders. . . . 30
Figure 2.10 Performance penalty of victim with TCP senders. . . . 30
Figure 2.11 Performance penalty of victim when there are 8 con-

tainers on a core. 31
Figure 2.12 Performance penalty of victim when there are 8 con-

tainers on a core. 31
Figure 2.13 Penalty factor when MapReduce jobs share resources

with other workloads. 32
Figure 2.14 CPU overhead benchmarks. 33
Table 2.15 Average packet processing cost at the receiver. 34
Figure 2.16 Impact of software and hardware-based packet drop-

ping mechanisms on penalty factor for 7 receivers. . . . 35
Figure 2.17 Performance penalty with RT Linux. 37

xi

Figure 3.1 NFV chain . 40
Figure 3.2 Illustrating violation of chain-wide ordering. 44
Figure 3.3 CHC architecture . 46
Figure 3.4 Physical chain that CHC runs. 48
Table 3.5 Strategies for state management performance 52
Table 3.6 Basic operations offloaded to datastore manager 53
Figure 3.7 State handover. 57
Figure 3.8 Duplicate update suppression 60
Figure 3.9 Recovery under non-blocking operations. 62
Figure 3.10 Recovering shared state at the datastore 65
Table 3.11 Handling of correlated failures 67
Table 3.12 NFs and description of their state objects 68
Figure 3.13 Packet processing times. 70
Figure 3.14 Per packet processing latency with cross-flow state

caching . 72
Figure 3.15 Per instance throughput. 72
Figure 3.16 State sharing. 75
Figure 3.17 Fault recovery. 75
Table 3.18 Duplicate packet and state update at the downstream

portscan detector without duplicate suppression. . . . 75
Figure 3.19 Packet proc time. 76
Figure 3.20 Store recovery. 77

Figure 4.1 Scaling and failure recovery process with recently state
management frameworks 81

Table 4.2 Middlebox modifications in different frameworks . . . 82
Table 4.3 Code complexity for popular middleboxes. Those

above the line are analyzed in greater detail later. . . . 83
Figure 4.4 Logical structure of middlebox code 86
Figure 4.6 Identifying persistent variables 90
Figure 4.7 Identifying per-/cross-flow variables 92

xii

Figure 4.8 System dependence graph (SDG) 94
Figure 4.9 Identifying updateable variables 95
Figure 4.10 Identifying packet header fields that define a per-/cross-

flow variable’s associated flowspace 97
Figure 4.11 Identifying output-impacting variables 100
Figure 4.12 Implementing update tracking at run time 102
Table 4.13 Variables and their properties 105
Figure 4.14 Flowspace dims. of keyed per-/cross-flow vars 106
Figure 4.15 Per packet state transfer 109
Figure 4.16 Per packet state transfer in Snort 110
Table 4.17 Time (h) and memory usage (GB) 111

1

1
Introduction

Earlier networks were designed to just provide connectivity between dif-
ferent devices by forwarding and routing packets. The growth of networks
gave rise to new services, devices, applications and use cases. These appli-
cations evolved to provide more than just forwarding.

Nowadays, network applications range from ensuring security by in-
specting and blocking malicious traffic to improving performance by
caching content close to applications or improving data transfers by com-
pressing data, enabling new protocols by acting as proxies to provide
translations or just as a point to account and monitor traffic to support
billing and diagnosis.

Network operators provide these services by using specialized hard-
ware devices called “middleboxes” or “network functions”. These devices
sit on-path or off-path in the network and perform sophisticated analysis
on the traffic that flows through them. Some example of middleboxes that
commonly exists are:

• Intrusion detection/prevention systems (IDS/IPS): These devices
inspect the packet headers and payloads to detect anomalous be-
haviour. On identifying anomalous behaivour they can raise alarms
for the administrator and may also drop the malicious packets.

• Caching proxies: They are used for improving the response time of
a user’s request by caching the hot content close to the user.

2

• Load balancers: They are used to distribute load between different
backend servers. Load balancers can operate from L3 to L7, depend-
ing upon their requirements.

Recently, there has been a growing interest in replacing hardware
based middleboxes with software middleboxes, also known as network
functions. Unlike dedicated hardware, these NFs run on generic compute
resources. This trend of running NFs as software on generic compute
resources, rather than dedicated hardware, is known as network function
virtualization (NFV) [11].

Network function virtualization promises to offer networks a great
flexibility in handling middlebox load spikes by spinning up new virtual
instances and dynamically redistributing traffic, among these instances.
NFV promises to revolutionized the deployment of NFs by:

1. Reducing the operational cost of running NFs by consolidating re-
sources and dynamically allocating new instances and route traffic
through them as the load increases.

2. Simplifying the task of deploying, configuring and managing of
NFs. Unlike hardware middleboxes, NFs are faster to upgrade by
adding new functionality and capabilities as the network require-
ments change.

3. Simplifying deployment of richer policies to improve network man-
agement, access control and security, by routing the packet from a
sequence of NFs. This traversal of a packet from multiple NFs to
implement a policy is also called “service chaining”.

4. Reducing the deployment overhead by running NFs in virtual en-
vironment over generic compute resources. This enables efficient
resource usage by sharing the underlying hardware resources be-
tween different tenant.

3

Central to realizing these benefits of NFV is the ability to run these NFs
in multi-tenant enviroment without causing interference to other applications.
In addition to this, handling internal NF state during traffic redistribution
is critical to enforce network wide policies. As the NF state is dynamic (it
can be updated for each incoming packet) and critical (its current value
determines NF actions), the relevant internal state must be made available
when traffic is rerouted to a different NF instance [53, 98, 106].

Both the academia and the industry have been pushing NFV for over a
half decade to replace traditional middleboxes. Several frameworks [25, 31,
48, 53, 69, 86, 93, 96, 98, 104, 106, 117] exist to provide elastic scaling, ensure
fault tolerance and support service chaining. These frameworks attempt
to realize the full potential of virutalization which has been envisioned by
NFVs. However, these frameworks still have not been able to achieve their
full potential. In this dissertation, the main focus is to look at three major
challenges that are causing hurdles in the faster adoption of NFV and in
achieving its full potential.

1.1 Challenges with NFV adoption

In this section, we describe three challenges associated with the adoption
of NFV.

1.1.1 Isolating network based CPU

Containers have been rapidly adopted for deployment of NFs in multi-
tenant environments because containers are light-weight as compared to
VMs. Furthermore, NFs like memcached [6] and load balancers [122] are
the fundamental part of the micro services architecture. Multiple separate
instances of such NFs are deployed in the cloud as sharing these NFs
between different services is hard because of the security implications.
Though, containers reduces the overhead of running NFs in the multi-

4

tenant environments, it is crucial to ensure strong resource isolation. As
containers share underlying components of the host server’s operating
system (OS), it is critical for the OS to provide strong resource isolation to
the container’s assigned resources, such as CPU, disk, network bandwidth,
and memory to avoid overcharging and ensure predictable performance.
Strong isolation is critical for not only NFs which are part of micro service
architecture but also other NFs which use the network stack of the OS (e.g.
Bro [88], Squid [20] or Prads [16]).

1.1.2 Ensuring correctness and performance for stateful
chained NFs

To enforce any network policy correctly, the NF chains are required to
provide chain output equivalence (COE): given an input packet stream, at
any point in time, the collective action taken by all NF instances in an NFV
chain (Figure 1.1b.) must match that taken by an hypothetical equivalent
chain with infinite capacity always available single NFs (Figure 1.1a). COE
must hold under dynamics: under NF instance failures/slowdowns, traffic
reallocation for load balancing/elastic scaling, etc. Given that NFV is
targeted for cloud and ISP deployments, COE should not come at the cost
of performance. NFs’ statefulness makes this a challenging problem. As
most NFs maintain detailed internal state that can be updated as often as
per packet and may be shared across instances. Most existing frameworks
ignore shared states or imposes high overhead on state maintenance.

1.1.3 Simplifying NF modification

For an NF to work with all these proposed frameworks [25, 31, 48, 53,
69, 86, 93, 96, 98, 104, 106, 117], NF developers have to modify, or at least
annotate, their code to perform custom state allocation, track updates to
state, and (de)serialize state objects. Presently three factors make such

5

1

Light IDS Caching proxy

suspicious traffic

Heavy IDS

All traffic

All traffic

(a)

2

Light IDS Caching proxy

suspicious traffic

Heavy IDS

All traffic

All traffic

(b)

Figure 1.1: (a) logical view with infinite capacity NFs/links for COE (b)
Example NFV chain with multiple instances per NF.

modifications difficult: (i) middlebox software is extremely complex, and
the logic to update/create different pieces of state can be intricate; (ii)
there may be 10s-100s of object types that correspond to state that needs
explicit handling; and (iii) middleboxes are extremely diverse. Factors i
and ii make it difficult to reason about the completeness or correctness
of manual modifications. And, iiimeans manual techniques that apply
to one middlebox may not extend to another. Our own experience in
modifying middleboxes to work with OpenNF [53] underscores these
problems. Making even a simple monitoring appliance PRADS [16], with
10K LOC) OpenNF-compliant took over 120 man-hours. We had to iterate
over multiple code changes and corresponding unit tests to ascertain
completeness of our modifications; moreover, the process we used for
modifying this middlebox could not be easily adapted to other more
complex ones.

1.2 Contributions

In summary, this dissertation present three novel systems which help in
paving the way for the adoption of NFV.

6

1.2.1 Iron [74]

We show how the standard techniques used for years to provide isolation
by Linux break when large amount of network traffic is handled. We
developed a scheme called Iron that monitors, charges, and enforces CPU
usage to process network traffic. Iron relies on a careful set of kernel
instrumentations in order to obtain the cost of processing packets at a
fine-grained level, while maintaining the efficiency and responsiveness of
interrupt processing in the kernel. Iron integrates with the Linux sched-
uler to charge the appropriate container for its traffic. Charging alone
cannot provide hardened isolation because processing traffic received by
a container after it consumes its CPU allocation will break isolation. As
a result, Iron implements a novel hardware-based scheme to drop the
packets destined for a container that has exhausted its resource allocation.

1.2.2 CHC [72]

Providing support for high performance service chaining with COE is
tedious, and is slowing down the wider adoption of NFV. We designed
CHC to make it easier for developers to build scalable and highly avail-
able NFs. CHC relies on managing state external to NFs, but couples
that with several novel caching and state update algorithms to ensure low
latency and high throughput. In addition, it leverage simple metadata
to ensure various correctness properties are maintained even under traf-
fic reallocation, NF failures, as well as failures of key CHC framework
components.

1.2.3 StateAlyzr [73]

To reduce manual effort and ease adoption, we develop StateAlyzr, a
system that relies on data and control-flow analysis to automate identification
of state objects that need explicit handling. Using StateAlyzr’s output,

7

developers can easily make framework-compliant changes to arbitrary NFs.
We shows that the novel state characterization algorithms of StateAlyzr
provide high precision while ensuring soundness.

8

2
Iron

Our first step towards paving the way for NFVs is to look at containerized
virtualization environment to run NFs. Containers provide an ability
to share the underlying resources with minimum overhead. In order to
provide consistent and reliable performance, containerized environments
must ensure that NFs cannot adversely interfere with each other.

Nowadays container are widely used for the deployment of applica-
tions in the cloud such as IBM, Google, Microsoft and Amazon, in this
chapter, we do not limit our scope to just NFs. Any application which is de-
ployed in a container requires strong isolation of resources for predictable
performance. When resource availability is compromised due to overpro-
visioning or ineffective resource isolation, latency-sensitive applications
can suffer from performance degradation, which can ultimately impact rev-
enue [22, 32, 41, 79]. In serverless computing, billing is time-based [61] and
insufficient resource isolation can cause users to be needlessly overcharged.
Cloud providers also rely on resource isolation to employ efficient con-
tainer orchestration schemes [4, 7, 113] that enable hyper-dense container
deployments per server. However, without hardened bounds on container
resource consumption, providers are faced with a trade-off: either under-
provision dedicated container resources on each server (and thus waste
potential revenue by selling spare compute to lower priority jobs) or allow
loose isolation that may hurt customer performance on their cloud.

we show containers are able to utilize more CPU than allocated by their
respective cgroup when sending or receiving network traffic, effectively

9

breaking isolation. Modern OS kernels process traffic via interrupts, and
the time spent handling interrupts is often not charged to the container
sending or receiving traffic. Without accurately charging containers for
network processing, the kernel cannot provide hardened resource isola-
tion. In fact, our measurements indicate the problem can be quite severe:
containers with high traffic rates can cause colocated compute-driven con-
tainers to suffer an almost 6X slowdown. The interference can be high
because kernels are responsible for a significant amount of network pro-
cessing: from servicing interrupts, to protocol handling, to implementing
network function virtualizations (e.g., , switches, firewalls, rate limiters,
etc). Modern datacenter line rates are very fast (10-100 Gbps), and stud-
ies have shown network processing can incur significant computational
overhead [58, 60, 66, 95].

Interference in multi-tenant datacenters is a known problem [79, 82,
105], and researchers have developed schemes to isolate CPU [28, 33, 111]
and network bandwidth [26, 56, 67, 85, 90, 91, 100, 107]. In contrast, the
recent study of isolating network-based processing has been limited. Prior
schemes cannot be applied to modern containerized ecosystems [57] or al-
ter the network subsystem in such a way that interrupt processing becomes
less efficient [27, 47].

We present Iron (Isolating Resource Overhead from Networking), a
system that monitors, charges, and enforces CPU usage for processing net-
work traffic. Iron relies on a careful set of kernel instrumentations in order
to obtain the cost of processing packets at a fine-grained level, while main-
taining the efficiency and responsiveness of interrupt processing in the
kernel. Iron integrates with the Linux scheduler to charge the appropriate
container for its traffic. Charging alone cannot provide hardened isolation
because processing traffic received by a container after it consumes its
CPU allocation will break isolation. As a result, Iron implements a novel
hardware-based scheme to drop the packets destined for a container that

10

has exhausted its resource allocation.
Providing isolation is challenging in containerized systems for many

reasons. A container’s traffic traverses the whole network stack on the
server OS and thus charging should be performed in a fine-grained manner
to capture variations in processing different types of packets. A given
solution must be computationally light-weight because linerate per-packet
operations are prone to high overhead and keeping state across cores can
lead to inefficient locking. Finally, limiting interference due to packet
receptions is difficult because administrators may not have control over
traffic sources.

Iron addresses these challenges to effectively enforce isolation for
network-based processing. In short, the contributions are as follows:

• A case study that shows the computational burden of processing
network traffic can be quite high. Current cgroup scheduling mech-
anisms do not account this burden properly, which can cause an 6X
slowdown for some container workloads.

• A system called Iron to provide hardened isolation. Iron consists of a
charging mechanism that integrates with the Linux cgroup scheduler
in order to ensure containers are properly charged or credited for
network-based processing. Iron also provides a novel packet drop-
ping mechanism to limit the effect, with minimal overhead, of a noisy
neighbor that has exhausted its resource allocation.

• An evaluation showing MapReduce jobs can experience over 50%
slowdown competing with trace-driven network loads and compute-
driven jobs can experience a 6X slowdown in controlled settings. Iron
effectively isolates and enforces network-based processing to reduce
these slowdowns to less than 5%.

11

2.1 Background and Motivation

This section first describes the interference problem: how the network traffic
of one container can interfere with CPU allocated to another container.
Afterwards, we place Iron in the context of past solutions, and finally
empirically examine the impact of interference.

2.1.1 Network traffic breaks isolation

Sending or receiving traffic can allow a container to obtain more CPU uti-
lization than allowed by its cgroup. In short, this occurs because the Linux
scheduler does not properly account for time spent servicing interrupts
for network traffic. A brief background on Linux container scheduling,
Linux interrupt handling, and kernel packet processing follows.

Linux container scheduling Cgroups can limit the amount of CPU al-
located to a container by defining how long a container can run (quota)
over a certain time period. At a high-level, the scheduler keeps a runtime
variable that accrues how long the container has run within the current
period. When the total runtime of a container reaches its allocated quota,
the container is throttled. At the end of a period, the container’s runtime
can be recharged to its quota. The scheduler is discussed in [111].

Interrupt handling in Linux Linux limits interrupt overhead by servicing
interrupts in two parts: a top half (i.e., , hardware interrupts) and bottom
half (i.e., , software interrupts). A hardware interrupt can occur at any
time, regardless of which container or process is running. The top half is
designed to be light-weight, and it only performs the critical actions nec-
essary to service an interrupt. For example, the top half will acknowledge
the hardware’s interrupt and may directly interface with the device. The
top half then schedules the bottom half to execute (i.e., raises a software
interrupt). The bottom half is responsible for actions that can be delayed
without affecting the performance of the kernel or I/O device. Networking

12

in Linux typically employs softirqs (a type of software interrupt) to imple-
ment the bottom half. Softirqs are used to transmit deferred transmissions,
manage packet data structures, and navigate received packets through the
network stack.

The way in which Linux handles softirqs directly leads to the interfer-
ence problem. Software interrupts are checked at the end of hardware
interrupt processing or whenever the kernel reenables softirq processing.
Software interrupts run in process context. That is, whichever unlucky
process is running will have to use its scheduled time to service the softirq.
Here, isolation is broken when a container has to use its own CPU time to
process another container’s network traffic.

The kernel tries to minimize softirq handling in process context, so as
a result, it allows the softirq handler to run for a certain time or budgeted
amount of packets. When the budget is exceeded, the softirq code stops
executing and schedules ksoftirqd to run. Ksoftirqd is a kernel thread (it
does not run in process context) that services the remaining softirqs. There
is one ksoftirqd thread per processor. Because ksoftirqd is a kernel thread,
the time it spends processing packets is not charged to any container. This
breaks isolation by limiting the amount of available time to schedule other
containers or allowing a container that has already exhausted its cgroup
quota to obtain more processing resources.

Kernel packet processing Consider a “normal" packet transmission in
Linux: a packet traverses the kernel from its socket to the NIC. Although
this traversal is done in the kernel, it is performed in process context, and
hence the time spent sending a packet is charged to the correct container.
There are, however, two cases in which isolation can break on the sender.
First, when the NIC finishes a packet transmission, it schedules an inter-
rupt to free packet resources. This work is done in softirq context, and
hence may be charged to a container that did not send the traffic. The
second case arises when there is buffering along the stack, which can

13

commonly occur with TCP (for congestion control and reliability) or with
traffic shaping (in qdisc [8]). The packet is taken from the socket to the
buffer in process context. Upon buffering the packet, however, the kernel
system call exits. Software interrupts are then responsible for dequeueing
the packet from its buffer and moving it further down the network stack.
As before, this breaks isolation when softirqs are handled by ksoftirqd or
charged to a container that didn’t send the traffic to begin with.

Receiving packets incurs higher softirq overhead than sending packets.
Under reception, packets are moved from the ring buffer all the way to the
application socket in softirq context. This traversal may require interfacing
with multiple protocol handlers (IP, TCP), NFVs, NIC offloads (GRO [36]),
or even sending new packets (TCP ACKs or ICMP messages). In summary,
the whole of the receive chain is performed in softirq context and therefore
a substantial amount of time may not be charged to the correct container.

2.1.2 Putting Iron in context

Previous works can mitigate the interference problem by designing new
abstractions to account for container resource consumption or redesigning
the OS. Below, Iron’s contributions are put in context.

System container abstraction In a seminal paper Banga proposed re-
source containers [27], an abstraction to capture and charge system re-
sources in use by a particular activity. The work extends Lazy Receiver
Processing (LRP) [47]. When a process is scheduled, a receive system
call lazily invokes protocol processing in the kernel, and thus time spent
processing packets is correctly charged to a process. This approach is
inefficient for TCP because at most one window of data can be consumed
between successive system calls [47], and therefore LRP employs a per-
socket thread that is associated with the receiving process to perform
asynchronous protocol processing such that CPU consumption is charged

14

appropriately.
Although LRP solves the accounting problem, the following issues

must be considered. First, as the name implies, LRP only handles re-
ceiving traffic and cannot fully capture the overheads of sending traffic.
Second, LRP requires a per-socket thread to perform asynchronous TCP
processing1. Maintaining extra threads leads to additional context switch-
ing, which can incur significant overhead for processing large amounts of
flows [66]. Third, the scheduler must be made aware of, and potentially
prioritize, threads with outstanding protocol processing otherwise TCP
can suffer from increased latencies and even drops while it waits for its
socket’s thread to be scheduled. A similar notion of per-thread softirq
processing was proposed in the Linux Real-Time kernel, but ultimately
dropped because it increases configuration complexity and reduces per-
formance [55].

Iron explicitly addresses the above concerns. First, Iron correctly ac-
counts for transmission overheads. Second, Iron seamlessly integrates
with interrupt processing in Linux to maintain efficiency and responsive-
ness. In Linux, all of a core’s traffic is processed by that core’s softirq
handler. Processing interrupts in this shared manner, rather than in a
per-thread manner, maintains efficiency by minimizing context switching.
Additionally, by servicing hardware interrupts in process context, network
protocol processing is performed in a responsive fashion. Linux’s design,
however, directly leads to the interference problem. Therefore, a major
contribution of our work is showing accurate accounting for network pro-
cessing is possible even when interrupt handling is performed in a shared
manner.

Redesigning the operating system Library OSes [51, 78, 89, 92] redesign
the OS by moving network protocol processing from the kernel to applica-
tion libraries. In these schemes, packet demultiplexing is performed at the

1Banga’s paper uses a per-process asynchronous thread

15

lowest level of the network stack: typically the NIC directly copies packets
to buffers shared with applications. Since applications process packets
from their buffers directly, network-based processing is correctly charged.

Library OSes have numerous practical concerns, however. First, these
works face similar challenges as LRP with threaded protocol process-
ing. Second, explicitly removing network processing from the kernel can
make management more difficult. In multi-tenant datacenters, servers
can host services such as rate limiting, virtual networking, billing, traffic
engineering, health monitoring, and security. In the library OS model,
admin-defined network processing must be performed in the NIC or in
user-level software. Neither approach is ideal. Application libraries linked
by developers make it difficult for admins to insert policies and functional-
ities at the host. For example, this may limit an admin’s ability to perform
traffic shaping or simply configure a TCP stack. Furthermore, porting net-
work services to user-level applications on the host reintroduces network
processing overheads that must be charged to tenants in order to reduce
interference. NIC-based techniques can cost more (upgrade all hosts),
scale more poorly in the number of flows and services, and be less flexible
and harder to configure than software. And while NICs are becoming
more flexible [123], it is likely network management will be dictated by a
combination of admin-controlled software and hardware in the future. As
such, schemes like Iron can help track and enforce software-based network
processing. Finally, adapting Library OSes to support multi-tenancy and
replacing currently deployed ecosystems can have a high barrier to entry
for providers and customers.

Contributions summary Iron differs from prior art in that it easily inte-
grates with Linux interrupt handling to account for network-based process-
ing in the kernel. In addition, Iron implements novel enforcement schemes
to provide hardened isolation in a low-overhead manner. Iron is designed
to be practical with a low barrier to entry. Finally, a measurement study

16

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

0 1 2 3 4 5 6 inf

Pe
n
a
lt

y
Fa

ct
o
r

TC queue limit (Gbps)

2 per core
3 per core
6 per core

10 per core

Figure 2.1: Penalty factor of UDP senders.

details the interference problem in modern containerized environments.

2.1.3 Impact of network traffic

In this section, a set of controlled experiments quantifies the impact of
both UDP and TCP network processing on isolation in containerized envi-
ronments.

Methodology In each experiment, n containers are allocated per core,
where n varies from 2, 3, 6, or 10. Each container is configured to ob-
tain an equal share of the core (i.e., , quota = period/n). This allocation
is replicated over all cores. NICs are 25 Gbps, and Section 2.3 further
details methodology. One container per core, denoted the victim, runs
a CPU-intensive sysbench workload [76]. The time to complete each vic-
tim’s workload is measured under two scenarios. In the first scenario all
non-victim containers, henceforth denoted interferers, also run sysbench.
This serves as a baseline case. In the second scenario, the interferers run
a simple network flooding application that sends as many back-to-back
packets as possible. The victim’s completion time is measured under both
scenarios, and a penalty factor indicates the fraction of time the victim’s
workload takes when competing with traffic versus competing with sys-
bench. Penalty factors greater than one indicate isolation is broken because
traffic is impacting the victim in an adverse way.

17

For the reception tests, containers are allocated on a single core and
all NIC interrupts are serviced on the same core as the containers. This
ensures cores without containers will not process any traffic. As before,
the victim container runs sysbench, but the interferers now run a simple
receiver. A multi-threaded sender varies its rate to the core, using 1400
byte packets and dividing flows evenly amongst the receivers. All results
are averaged over 10 runs.

UDP senders These results show the impact when the interfering con-
tainers flood 1400 byte UDP traffic. Studies have shown rate limiters can
increase computational overhead [95], so the penalty factor is measured
when no rate limiters are configured and also when hierarchical token
bucket (HTB) [8] is deployed for traffic shaping.

Figure 2.1 presents the results. In this figure, lines denote how many
containers are allocated on a core. The x-axis denotes the rate limit imposed
on a core and the y-axis indicates the penalty factor. With n containers
per core, each container receives 1

n

th of the bandwidth allocated to the
core, regardless of the workload. The right-most point labeled “inf" is
when no rate limiter is configured. We note the following trends. First,
there is no penalty factor with no rate limiting because the application
demands are lower than the link bandwidth, so there is no queuing at
the NIC. Second, rate limiting causes penalty factors as high as 1.18. The
summed application demands can be higher than the imposed rate limit
on each core, which means packets are queued in the rate limiter. Softirq
handling interferes with the processing time of the victims, leading to high
penalty factors. Third, HTB experiences a relatively higher penalty for 1-3
Gbps. When rate limits are 4 Gbps and above, the rate limiter does not
shape traffic because senders are CPU-bound and they cannot generate
more than 4 Gbps of traffic demand. Isolation still breaks because the rate
limiters must maintain state and perform locking (this overhead was also
witnessed in [68]). For rates below 4 Gbps, senders generate more traffic

18

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 1 2 3 4 5 6 7
C

P
U

 U
sa

g
e

TC queue limit (Gbps)

2 per core
3 per core
6 per core

10 per core

Figure 2.2: ksoftirqd overhead with UDP senders.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 1 2 3 4 5 6 inf

Pe
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

1 flow
10 flows
25 flows
50 flows
75 flows

100 flows

(a) 2 containers per core

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 1 2 3 4 5 6 inf

Pe
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(b) 10 containers per core

Figure 2.3: Penalty factor of victims with TCP senders.

than the enforced rate and higher overheads occur.
Figure 2.2 shows the CPU usage of ksoftirqd (on core 0) for the HTB

experiment in Figure 2.1. The trends roughly correspond to the penalty
factor overhead. The time spent in ksoftrirqd is not attributed to any
process, which means ksoftirqd takes time on the core that cannot be issued
to other containers. This increases the time it takes for the victim workload
to complete. To understand the remaining penalty, we instrumented a
run with perf [17]. With 10 containers per core and 2 Gbps rate limit, the
victim spent 6.99% of its scheduled time servicing softirqs, even though it
had no traffic to send.

TCP senders Figure 2.3 shows TCP sender performance for 2 and 10 con-
tainers per core. Different from the UDP results, the number of flows

19

per core is varied, and flows are divided equally amongst all sending
containers on a core. We note the following trends. First, TCP overheads
are higher than UDP overheads– in the worst case, the overhead can be
as high as 1.95X. TCP overheads are higher because TCP senders receive
packets, i.e., , ACKs, and also buffer packets at the TCP layer. Both ACK
processing and pushing buffered packets to the NIC are completed via
softirqs. Therefore, the no rate limit cases have higher overhead in TCP
than UDP. The second interesting trend is overheads increase as the num-
ber of flows increase. This occurs for two reasons. First, the number of
TCP ACKs increase with flows, and in general, there exists more protocol
processing for more flows. Second, a single TCP flow can adapt to the rate
limit enforced upon it, but multiple flows create burstier traffic patterns
that increase queuing at the rate limiter.

UDP receivers Figure 2.4 shows the UDP receiver results. Ten containers
are allocated on the core, and the number of receivers varies. If i contain-
ers receive UDP traffic, then 10 − i containers run sysbench. The sender
increases its sending rate from 1 Gbps to 12 Gbps at 1 Gbps increments.
For each sending rate, 10 trials are run. Each green dot represents the
result of a trial. The x-axis indicates the input rate to the core, which may
be different from the sending rate due to drops. The red line averages
the penalty factor in 500 Mbps buckets and is provided for reference only.
We varied the number of receivers from 1 to 9, but only show 1, 5, and 9
receivers in the interest of space.

We note the following trends. First, the penalty factor for receiving
UDP is higher than sending UDP. Packets traverse the whole network stack
in softirq context and therefore overheads are larger. Next, as more of the
core is allocated to receive (as i increases), the rate at which the server can
process traffic increases. As the rate of incoming traffic increases, so does
the penalty factor. Under high levels of traffic, the overheads from softirqs
cause the victim to take almost 4.5X longer.

20

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 1000 2000 3000 4000 5000 6000

Pe
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

(a) 1 receiver

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pe
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

(b) 5 receivers

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2000 4000 6000 8000 10000 12000

Pe
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

(c) 9 receivers

Figure 2.4: Penalty factor when there are 10 containers on 1 core. i = 1, 5, 9
of the containers are UDP receiver.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 500 1000 1500 2000 2500 3000 3500

Pe
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

1 flow
10 flows
25 flows
50 flows
75 flows

100 flows

(a) 1 receiver

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1000 2000 3000 4000 5000 6000 7000

Pe
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(b) 5 receivers

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 1000 2000 3000 4000 5000 6000 7000 8000

Pe
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(c) 9 receivers

Figure 2.5: Penalty factor when there are 10 containers on a 1 core. i =
1, 5, 9 of the containers are TCP receivers.

TCP receivers Figure 2.5 shows the results when the interfering containers
receive TCP traffic. Different from the UDP experiment, TCP senders are
configured to send as much as they can. TCP will naturally adapt its rate
when drops occur (from congestion control) or when receive buffers fill
(from flow control). As before, the penalty factor increases as the input rate
increases and also when the number of flows increase. In the worst case,
interference from TCP traffic can cause the victim to take almost six times
longer. To further understand this overhead, we instrument sysbench with
perf for nine TCP receivers and 100 flows. Here, ksoftirqd used 54% of the
core and sysbench spent 37% of its time servicing softirqs. This indicates
that isolation techniques must capture softirq overhead in both ksoftirqd
and process context.

21

2.2 Design

This section details Iron’s design. At a high-level, Iron first accounts for time
spent sending and receiving packets in softirq context. After obtaining
packet costs, Iron integrates with the Linux scheduler to charge or credit
containers for their softirq processing. When a container’s runtime is
exhausted, Iron enforces hardened isolation by throttling containers and
dropping incoming packets via a novel hardware-based method.

2.2.1 Accounting

This section outlines how to obtain per-packet costs in order to ensure
accounting is accurate. First, receiver-based accounting is detailed, fol-
lowed by sender-based accounting. Afterwards, we describe how to assign
packets to containers and the state used for accounting.

Receiver-based accounting In Linux, packets traverse the network stack
through a series of nested function calls (see Figure 2.6a). For example,
the IP handler of a given packet will directly call the transport handler.
Therefore, a function low in the call stack can obtain the time spent pro-
cessing a packet by subtracting the time the function starts from the time
the function ends. Iron instruments netif_receive_skb to obtain per-packet
costs because it is the first function that handles individual packets outside
the driver, regardless of their transport protocol2.

Obtaining the time difference is nontrivial because the kernel is pre-
emptable and functions in the call tree can be interrupted at any time.
To ensure only the time spent processing packets is captured, Iron relies
on scheduler data. The scheduler keeps the cumulative execution time a
thread has been running (cumtime), as well as the time a thread was last
swapped in (swaptime). Coupled with the local clock (now), the start and
end times can be calculated as: time = cumtime+ (now− swaptime).

2TCP first traverses GRO, but we instrument here for uniformity

22

Besides the per-packet cost, there is also a fixed cost associated with
processing traffic. That is, there are overheads for entering the function that
processes hardware interrupts (do_IRQ), processing softirqs, and perform-
ing skb garbage collection. In Iron, these overheads are lumped together
and assigned to packet costs in a weighted fashion. In Linux, six types
of softirqs are processed by the softirq handler (do_softirq): HI, TX, RX,
TIMER, SCSI, and TASKLET. For each interrupt, we obtain the total do_IRQ
cost, denoted H, and the cost for processing each specific softirq (denoted
SHI, STX, etc). Note software interrupts are processed at the end of a
hardware interrupt, so H >

∑
i Si. Then the overhead associated with

processing an interrupt is defined as: O = H−
∑
i Si and the fair share of

the receive overhead within that interrupt is: ORX = O SRX∑
i Si

. Last, ORX is
evenly split amongst packets processed in a given do_softirq iteration to
obtain a fixed charge that is added to each packet.

Finally, we note this scheme is effective in capturing TCP overhead.
That is, Iron gracefully handles TCP ACK overhead and TCP buffering.
A TCP flow is handled within a single thread, so when a data packet is
received, the thread directly calls a function to send an ACK. When the
ACK function returns, the received data packet continues to be processed
as normal. Therefore, ACK overhead is captured by our start and end
timestamps. Buffering is also handled correctly. Say packet i − 1 is lost
and therefore received packet i is buffered. The system call exits at that
point, and netif_receive_skb moves to the next packet in its list. When
retransmitted packet i−1 is received the gap in sequence numbers is filled,
and TCP will push up all of the packets to the socket. This means correct
charging occurs because the cost of moving packet i from the buffer to the
socket is captured in the cost of the retransmitted packet i− 1.

Sender-based accounting The transmit chain is different from the receive
chain. When sending packets, the kernel has to obtain a lock on the ap-
propriate NIC queue. Obtaining a lock on a per-packet basis has high

23

do_softirq

net_tx_action

qdisc_run

dequeue_skb

ndo_start_xmit

…

NET_TX_SOFTIRQ

NIC

Queueing
Discipline  

 
 

IP

TCP/UDP

Driver 
Queue

do_softirq

net_rx_action

napi_gro_receive

netif_receive_skb

do_irq

ip_rcv

NET_RX_SOFTIRQ

(a) (b) (c)

Figure 2.6: Overview of network stack in Linux.

overhead, so as a result, packets are often batched for transmission [38].
Therefore, Iron measures the cost of sending a batch and then charges
each packet within the batch for an equal share of the batch cost. The
do_softirq function calls net_tx_action to process transmit softirqs (refer to
Figure 2.6b,c). Then net_tx_action calls into the qdisc layer to retrieve pack-
ets. Multiple qdisc queues can be dequeued, and each queue may return
multiple packets. As a result, a linked list of skbs is eventually created
and sent to the NIC. Similar to the receiver instrumentation, net_tx_action
obtains a start and end time for sending the batch. As with the sender,
OTX is obtained to split the transmission’s fixed cost overheads. This in-
formation is processed per core because HTB is work conserving and may
dequeue a packet on a different core than it was enqueued on.

Mapping packets to containers Iron must identify the container a given
packet belongs to. On the sender, an skb is associated with its cgroup
when enqueued in the qdisc layer. This allows us to determine how many
packets each container sends within each batch. On the receiver, Iron
maintains a hash table on IP addresses that is filled when copying packets
to a socket.

Accounting data structures As described in Section 2.2.2, the time spent
processing packets needs to be associated to the appropriate cgroup.

24

In Iron, each process maintains a local (per-core) list of the packets it
processed in softirq context and their individual costs. The per-process
structures are eventually merged into a global per-cgroup structure. Iron
does this in a way that does not increase locking by only merging state
when the scheduler obtains a global lock. The per-cgroup structure main-
tains a variable (gained) that indicates if a cgroup should be credited for
network processing.

2.2.2 Enforcement

This subsection shows how isolation is enforced. Isolation is achieved
by integrating accounting data with bandwidth control in Linux’s CFS
scheduler [111] and dropping packets when a container becomes throttled.

Scheduler integration The CFS scheduler implements bandwidth control
for cgroups via a hybrid scheme that keeps both local (i.e., , per core) and
global state. Containers are allowed to run for a given quota within a period.
The scheduler minimizes locking overhead by updating local state on a
fine-grained level and interfacing with global state on a coarse-grained
level. At the global level a runtime variable is set to quota at the beginning
of a period. The scheduler subtracts a slice from runtime and allocates it
to a local core. The runtime continues to be decremented until either it
reaches zero or the period ends. Regardless, at the end of a period runtime
is refilled to the quota.

On the local level, a rt_remain variable is assigned the slice intervals
pulled from the global runtime. The scheduler decrements rt_remain as
the task within a cgroup consumes CPU. When rt_remain hits zero, the
scheduler tries to obtain a slice from the global pool. If successful, rt_remain
is recharged with a slice and the task within the cgroup can continue to
run. If the global pool is exhausted, then the local cgroup gets throttled
and its tasks are no longer scheduled until the period ends.

25

Iron’s modifications to the global scheduler are presented in Algo-
rithm 2.7. A global variable gained is added to track the time a container
should get back because it processed another container’s softirqs. Line
2 adds gained to runtime. Next, runtime is reset to 0 if the container didn’t
use its previous allocation because it was limited by its demand (lines 5-7).
This preserves a CFS policy that disallows unused cycles to be accumu-
lated for use in subsequent periods. Last, line 8 refills runtime. The old
runtime is positive when interference prevents a container from using its
allocation and negative when a container exceeds its allocated time by
sending or receiving too much traffic.

Iron’s local algorithm is listed in Algorithm 2.8. The scheduler invokes
this function when rt_remain6 0 and after obtaining appropriate locks. The
cpuusage variable is added to maintain local accounting: positive values
indicate the container needs to be charged for unaccounted networking
cycles and negative values indicate the container needs a credit for work it
did on another container’s behalf. Lines 3-9 cover when a container is to be
charged, trying to take from gained first if possible. Lines 10-12 cover the
case when a container is to be credited, so gained is increased. Lines 14-18
cover a corner case where the runtime may be exhausted, but some credit
was accrued and can be used. Lines 19-22 are unchanged: they ensure the
container has global runtime left to use. If not, then the amount variable
will remain 0. Line 23 updates the new rt_remain by amount.

Dropping excess packets While scheduler-based enforcement improves
isolation, packets may still need to be dropped so a throttled container can-
not accrue more network-based processing. The current implementation
of Iron does not explicitly drop packets at the sender because throttled
containers already cannot generate more outgoing traffic. There exists a
corner case when a container has some runtime left and sends a large burst
of packets. Currently, the scheduler will charge this overage on the next
quota refill. We did implement a proactive charging scheme that estimates

26

1: if gained > 0 then
2: runtime← runtime + gained
3: gained← 0
4: end if
5: if cgroup_idled() and runtime > 0 then
6: runtime← 0
7: end if
8: runtime← quota + runtime
9: set_timer(now + period)

Figure 2.7: Global runtime refill at period’s end

1: amount← 0
2: min_amount← slice - rt_remain
3: if cpuusage > 0 then
4: if cpuusage > gained then
5: runtime← runtime - (cpuusage - gained)
6: gained← 0
7: else
8: gained← gained - cpususage
9: end if

10: else
11: gained← gained + abs(cpuusage)
12: end if
13: cpuusage← 0
14: if runtime = 0 and gained > 0 then
15: refill←min(min_amount, gained)
16: runtime← refill
17: gained← gained - refill
18: end if
19: if runtime > 0 then
20: amount←min(runtime, min_amount)
21: runtime← runtime - amount
22: end if
23: rt_remain← rt_remain + amount

Figure 2.8: Local runtime refill

27

the cost of packet transmission, charges it up-front, and drops packets if
necessary. This scheme didn’t substantially affect performance, however.

Dropping the receiver’s excess packets is more important because a
throttled receiver may continue to receive network traffic, hence breaking
isolation. Iron implements a novel hardware-based dropping mechanism
that integrates with current architectures. Today, NICs can insert incoming
packets into multiple queues. Each queue has its own interrupt that can be
assigned to specified cores. To improve isolation, packets are steered to the
core in which their container runs via advanced receive flow steering [62]
(FlexNIC [71] also works). Upon reception, the NIC DMAs a packet to
a ring buffer in shared memory. Then, the NIC generates an IRQ for
the queue, which triggers the interrupt handler in the driver. Modern
systems manage network interrupts with NAPI [13]. Upon receiving a
new packet, NAPI disables hardware interrupts and notifies the OS to
schedule a polling method to retrieve packets. Meanwhile, additionally
received packets are simply put in the ring buffer by the NIC. When the
kernel polls the NIC, it removes as many packets from the ring buffer as
possible, bounded by a budget. NAPI polling exits and interrupt-driven
reception is resumed when the number of packets removed is less than
the budget.

Our hardware-based dropping mechanism works as follows. First, as-
sume the NIC has one queue per container. Iron augments the NAPI
queue data structure with a map from a queue to its container (i.e., ,
task_group). When the scheduler throttles a container, it modifies a
boolean in task_group. Different from default NAPI behavior, Iron does
not poll packets from queues whose containers are throttled. From the
kernel’s point of view, the queue is stripped from the polling list so that
it isn’t constantly repolled. From the NIC’s point of view, the kernel is
not polling packets from the queue, so it stays in polling mode and keeps
hardware interrupts disabled. If new packets are received, they are simply

28

inserted into the ring buffer. This technique effectively mitigates receiving
overhead because the kernel is not being interrupted or required to do any
work on behalf of the throttled container. When the scheduler unthrottles
a container, it resets its boolean and schedules a softirq to process any
packets that may be enqueued.

As a slight optimization, Iron can also drop packets before a container
is throttled. That is, if a container is receiving high amounts of traffic
and the container is within T% of its quota, packets can be dropped. This
allows the container to use some of its remaining runtime to stop a flood
of incoming packets.

The hardware-based dropping technique is effective when there are
a large number of queues per NIC. Even though NICs are increasingly
outfitted with extra queues (e.g., , Solarflare SFN8500-series NICs have
2048 receive queues), in practice the number of queues may not equal
the number of containers. Iron can allocate a fixed number of queues
per core and then dynamically map problematic containers onto their
own queue. Containers without heavy traffic can incur a software-based
drop by augmenting the __netif_receive_skb function early in the softirq
processing stack. This dynamic allocation scheme draws inspiration from
SENIC [95], which uses a similar approach to scale NIC-based rate limiters.
Alternatively, containers can be mapped to queues based on prepurchased
bandwidth allocations.

2.3 Evaluation

This section evaluates the effectiveness of Iron. First, a set of macrobench-
marks show Iron isolates controlled and realistic workloads. Then, a set
of microbenchmarks investigates Iron’s overhead and design choices.

Methodology The tests are run on Super Micro 5039MS-H8TRF servers
with Intel Xeon E3-1271 CPUs. The machines have four cores, with hyper-

29

threading disabled and CPU frequency fixed to 3.2 Ghz. The servers are
equipped with Broadcom BCM57304 NetXtreme-C 25 Gbps NICs (driver
1.2.3 and firmware 20.2.25/1.2.2). The servers run Ubuntu 16.04 LTS with
Linux kernel 4.4.17. The NICs are set to 25 Gbps for UDP results and 10
Gbps for TCP results (we noticed some instability with TCP at 25 Gbps).

We use lxc to create containers and Open Virtual Switch as the vir-
tual switch. Simple UDP and TCP sender and receiver programs create
network traffic. The sysbench’s CPU benchmark is used to measure the
computational overhead from competing network traffic. Rate limiters are
configured with default burst settings.

2.3.1 Macrobenchmarks

Sender-side experiments We run the same experiments in Section 2.1
to evaluate how well Iron isolates sender interference. Figure 2.9 shows
the impact of UDP senders on sysbench. Note this experimental setup
is the same as Figure 2.1. Iron obtains average penalty factors less than
1.01 for 2, 3, and 6 containers, as compared penalty factors as high as 1.11
without Iron. With 10 containers, Iron’s penalty factor remains below 1.04,
a significant decrease from the maximum of 1.18 without Iron.

Figure 2.10 shows the performance of Iron with TCP senders, and can
be compared to Figure 2.3a. The maximum penalty factor experienced
by Iron is 1.04, whereas the maximum penalty factor without Iron is 1.85.
These results show Iron can effectively curtail interference from network-
based processing associated with sending traffic.

Receiver-side experiments We rerun the experiments in Section 2.1 to
evaluate how well Iron isolates receiver interference. Even though our
NICs support more than eight receive queues, we were unable to modify
the driver to expose more queues than cores. Therefore, different from
Section 2.1, a single core is allocated with 8 containers, instead of 10. In

30

 0.9
 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06

 0 1 2 3 4 5 6 7

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

2 per core
3 per core

6 per core
10 per core

Figure 2.9: Performance penalty of victim with UDP senders. Compare to
Figure 2.1.

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 0 1 2 3 4 5 6 7

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

1 flow
10 flows

25 flows
50 flows

75 flows
100 flows

Figure 2.10: Performance penalty of victim with TCP senders. Compare
to Figure 2.3a.

these experiments, the number of receiver containers varies from 1, 4, or
7. Containers that are not receivers run an interfering sysbench workload.
For the UDP experiments, the hardware-based enforcing mechanism was
employed, while the TCP experiments utilize our software-based enforcing
mechanism.

Figure 2.11 shows the impact of UDP receivers. The x-axis shows
aggregated traffic rate at the sender. This is different from the graphs in
Section 2.1 because Iron drops packets when container quotas are exceeded,
causing received rates to converge. Each number of receivers is indicated
by a different bar color. The error bars represent the 5% and 95%. The
height of the bars indicate the 25% to 75% and the red horizontal line
within each bar is the median. In the previous results without Iron, penalty

31

1 3 5 7 10
Transmit rate of senders (Gbps)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

P
e
n
a
lt

y
 F

a
ct

o
r

1 rcv 4 rcv 7 rcv

Figure 2.11: Performance penalty of victim when there are 8 containers on
a core. i of the containers are UDP receivers.

1 10 25 50 75 100
Number of flows

0.94

0.96

0.98

1.00

1.02

1.04

P
e
n
a
lt

y
 F

a
ct

o
r

1 rcv 4 rcv 7 rcv

Figure 2.12: Performance penalty of victim when there are 8 containers on
a core. i of the containers are TCP receivers.

factors ranged from maximums of 2.45 to 4.45. With Iron, the median
penalty factor ranges between 0.98 and 1.02 and never exceeds 1.05. The
penalty factor can be lower than 1 when Iron overestimates hard interrupt
overheads.

Figure 2.12 shows when interfering containers receive TCP traffic. Un-
like UDP, TCP adapts its rate when packet drops occur. Therefore, the
software-based rate limiter is effective in reducing interference. In Sec-
tion 2.1, the maximum penalty factor ranged from 2.2 to 6. However,
with Iron, penalty factors do not exceed 1.05.

Realistic applications Here we evaluate the impact of interference on real
applications. We run the experiment on a cluster of 48 containers spread

32

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(a) with TeraSort

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(b) with data-mining
workload

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(c) with web-search work-
load

Figure 2.13: Penalty factor when MapReduce jobs share resources with
other workloads.

over 6 machines. Each machine has 8 containers (2 per core). The cluster
is divided into two equal subclusters such that a container in a subcluster
does not share the core with a container from the same subcluster. HTB
evenly divides bandwidth between all containers on a machine.

Three MapReduce applications serve as the victims: pi computes the
value of pi, wordcount counts word frequencies in a large file, and grep
searches for a given word in a file. Three different trace-based interfer-
ers run on the other subcluster: the shuffle phase of a TeraSort job with
a 115GB input file, a web-search workload [22] and a data-mining work-
load [21]. For the latter two workloads, applications maintain long-lived
TCP connections to every other container in the subcluster, sequentially
sending messages to a random destination with sizes distributed from each
trace. Figure 2.13 shows the impact of interference on real applications.
Iron obtains an average penalty factor less than 1.04 over all workloads,
whereas the average penalty factor ranges from 1.21-1.57 without Iron.
These results show Iron can effectively eliminate interference that arises
in realistic conditions.

33

0 5 10 15 20 25

Time (sec)

0
20
40
60
80

100

T
o
ta

l
C

P
U

 (
%

)
per core usage

(a) CPU usage with senders

0 5 10 15 20 25

Time (sec)

0
20
40
60
80

100

T
o
ta

l
C

P
U

 (
%

)

per core usage

(b) CPU usage with receivers

Figure 2.14: CPU overhead benchmarks.

2.3.2 Microbenchmarks

This subsection evaluates Iron’s overhead, the usefulness of runtime packet
cost calculation, and the benefits of hardware-based packet dropping.

Performance overhead To measure how accurately Iron limits CPU
usage, we allocated 3 containers on a core with each container having 30%
of the core. One of the containers ran sysbench, while the other two were
UDP senders. Figure 2.14a shows the total CPU used by all containers over
a 30 second window. On average, the consumed CPU was around 90.02%.
In an ideal case, no more than 90% of the CPU should be utilized. This
indicates Iron does not have high overhead in limiting cgroup bandwidth
to its respective limits. We also ran the experiment with a UDP receiver,
as shown in Figure 2.14b. On average Iron ensures an idle CPU of 10.07%,
which again shows the effectiveness of our scheme.

Next we analyzed if Iron hurts a network-intensive workload. We
instrumented a container to receive traffic and allowed it 100% of the core.
Then, at the sender, we generated UDP traffic at 2 Gbps. Using mpstat,
we measured the CPU consumed by the receiver. The receiver consumed
35% of the core and received traffic at 1.93 Gbps. Next, we ran the same
experiment with the receiver, but this time limited the container to 35% of
the core. With Iron limiting the CPU usage, the receiver received traffic
at 1.90 Gbps (and used no more than 35% of the CPU). This indicates

34

Packet type Average packet cost (usec)
UDP 0.706
TCP 1.670
GRE Tunnel 1.184

Table 2.15: Average packet processing cost at the receiver.

the overhead of Iron on network traffic is minimal. The slight decrease
in throughput is attributed to Iron’s preemptive dropping mechanism
described in Section 2.2.2. We ran a similar experiment with the UDP
sender and observed no degradation in traffic rate. Unlike the receiver, if
a sender is out of CPU cycles it will be throttled, thus generating no extra
traffic.

Packet cost variation A simple accounting mechanism may charge a
fixed packet cost. This scheme is likely to be ineffective because packet
processing costs vary significantly at the receiver. Table 2.15 shows the
average packet cost for three different classes of traffic. TCP requires
bookkeeping for flow control and reliability and results in higher costs
than UDP. UDP packets encapsulated in GRE experience extra cost because
those packets traverse the stack twice.

Dropping mechanism We compared the impact of software-based
dropping versus hardware-based dropping. UDP traffic is generated with
8 containers on a core and 7 of those containers are configured as receivers.
The sending rate is varied. As shown in Figure 2.16, both approaches
mitigate interference when rates of traffic are low. However, when rates
of traffic are high, the median penalty factor of the software-based rate
limiter increases to 1.19, with the 95% approaching a penalty factor of
1.6. The hardware rate-limiter maintains a near-constant penalty factor,
regardless of rate.

35

1 3 5 7 10
Transmit rate of senders (Gbps)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

P
e
n
a
lt

y
 F

a
ct

o
r

hw drop sw drop

Figure 2.16: Impact of software and hardware-based packet dropping
mechanisms on penalty factor for 7 receivers.

2.4 Related Work

Here we augment Section 2.1.2 to further detail prior art.

Isolation of kernel-level resources in servers Many studies have exam-
ined how colocated computation suffers from interference [79, 82, 105, 120].
As such, providing resource isolation to underlying server hardware has
been a rich area of research. For example, researchers have investigated
how to isolate CPU time [28, 33, 111], processor caches [50, 70], memory
bandwidth [65, 118], and storage [83, 109, 115, 119]. These schemes ad-
dress problems orthogonal to our work, and none can be generalized to
solve the problem Iron solves.

A large class of research allocates network bandwidth over shared
datacenter environments [26, 56, 67, 85, 90, 91, 100, 107]. In short, these
schemes partition and isolate network bandwidth, but do nothing for
network-based processing time. Therefore, these schemes are compli-
mentary to Iron. Last, some schemes isolate dataplane and application
processing on core granularity [29, 66], but do not generalize to support
many containers per core nor explicitly study the interference problem.

Resource management and isolation in cloud Determining how to place
computation within the cloud has received significant attention. For exam-
ple, Paragon [42] schedules jobs in an interference-aware fashion to ensure

36

service-level objectives can be achieved. Several other schemes, such as
Borg [113], Quasar [43], Heracles [79], and Retro [80] can provision, moni-
tor, and control resource consumption in colocated environments to ensure
performance is not degraded due to interference. Iron is largely comple-
mentary to these schemes. By providing hardened isolation, Iron allows
resource managers to make more informed decisions, so network-heavy
jobs cannot impact colocated processor-heavy jobs.

VM network-based accounting Gupta’s scheme accounts for processing
performed in device drivers for an individual VM [57]. The scheme mea-
sures VM-based resource consumption in the hypervisor, integrates with
the scheduler to charge for usage, and limits traffic when necessary. Iron
differs in many regards. Iron provides performance isolation in container-
based environments, instead of VM-based environments. The difference is
significant because packets consume more processing time with containers
because the network stack lies within the server’s kernel, and not the VM’s.
Gupta relies on a fixed cost to charge for packet reception and transmission,
but our results show packet costs vary significantly. Furthermore, because
container-based environments incur more processing overhead for traffic,
it is important that received traffic is discarded efficiently when neces-
sary. Hence, Iron contains a novel hardware-based enforcement scheme,
whereas Gupta’s work relies on software.

Shared NFV infrastructure Many works study how to allocate multiple
NFVs and their resources on a server [45, 54, 77, 81, 112]. Similar to library
OSes, NFV servers require kernel bypass for latency and control. As
discussed, kernel bypass approaches cannot easily generalize to solve the
interference problem in multi-tenant containerized clouds.

Real-time kernel Real-time (RT) kernels typically aren’t used for multi-
tenancy, but some RT OSes redesign interrupt processing in a way that
could mitigate the interference problem. For example, the RT Linux kernel

37

1.0
1.2
1.4
1.6
1.8
2.0
2.2

P
e
n
a
lt

y
 F

a
ct

o
r

Linux

RT_Preempt_Full

Figure 2.17: Performance penalty with RT Linux.

patches the OS so the only type of softirq served in a process’s context
are those which originated within that process [37]. While this patch
doesn’t help with receptions, it prevents a container with no outgoing
traffic from processing interrupts from another container’s outgoing traffic.
To understand this solution, we ran an experiment with 2 Gbps rate limit
and 6 equally-prioritized containers per core: one sysbench victim and 5
interferers that flood outgoing UDP traffic. Figure 2.17 shows the penalty
factor for normal Linux and RT Linux (RT_Preempt_Full) (Iron not shown).
It is surprising the penalty factor of RT Linux is significantly higher than
Linux because in RT Linux the victim doesn’t process interrupts in its
context. Instead, interrupt processing is moved to kernel threads. The
processing time used by the kernel threads reduces the time available to
the victim. Additionally, RT Linux tries to minimize softirq processing
latency and perf shows the victim experiences 270x more involuntary
context switches as compared to normal Linux.

Finally, Zhang [121] proposes a RT OS that increases predictability
by scheduling interrupts based on process priority and accounting for
time spent in interrupts. Zhang’s accounting scheme has up to 20% er-
ror [121], likely because it is coarse-grained in time and does not use
actual, per-packet costs. Overheads in Iron are less than 5% because its
accounting mechanism is immediately responsive to actual, per-packet
costs. In addition, Iron comprehensively studies the interference problem
and introduces novel enforcement schemes.

38

2.5 Conclusion

We present Iron, a system that provides hardened isolation for network-
based processing in containerized environments. Network-based process-
ing can have significant overhead in modern systems, and our case study
shows that a container running a CPU-intensive task may suffer up to a 6X
slowdown when colocated with a container running a network-intensive
task. Iron enforces isolation by first instrumenting a novel accounting
mechanism that accurately measures the time spent processing network
traffic in softirq context within the kernel. Then, Iron relies on an en-
forcement algorithm that integrates with the Linux scheduler to throttle
containers when necessary. Throttling alone is insufficient to provide
isolation, because a throttled container may still receive network traffic.
Therefore, Iron contains a novel hardware-based dropping mechanism to
drop packets with minimal overhead. Our scheme seamlessly integrates
with modern Linux and server architectures. Finally, the evaluation shows
Iron reduces overheads from network-based processing to less than 5%.

39

3
CHC

In chapter 2, we developed a scheme to provide strong CPU isolation in
multi-tenant environments. This enables running NFs without causing
any interference to other applications. In this chapter, we propose a new
ground up framework, which enables network operators to use multiple
NFs to implement network policies, while hiding the complexity of pro-
viding elastic scaling and ensuring fault tolerance from the NF developers
and operators. Our framework supports chain output equivalence (COE)
and high performance for NFV chains.

NFV vastly improves network management. It allows operators to
implement rich security and access control policies using NF chains [1,
11, 14, 30, 48]. Operators can overcome NF failure and performance is-
sues by spinning up additional instances, and dynamically redistributing
traffic [52, 106]. To enforce policies correctly, NFV is required to provide
COE. Ensuring COE is made challenging by NFs’ statefulness. Most NFs
maintain detailed internal state that could be updated as often as per
packet. Some of the states may be shared across instances. For example,
the IDS instances in Figure 3.1a may share cross-flow state, e.g., per port
counters. They may also maintain per-flow state, e.g., bytes per flow, which
is confined to within an instance.

Ensuring COE under statefulness requires that, as traffic is being pro-
cessed by many instances, or being reassigned across instances, updates
to state at various NFs must happen in a “correct” fashion. For example,
shared state updates due to packets arriving at IDS1 must be reflected

40

IDS 2

copy of suspicious

DPI

IDS 1
Rate

All traffic All traffic

traffic

IDS 3

Limiter 1

Rate
Limiter 2

(a)

DPI

IDS Rate
Limiter

All traffic

All traffic
copy of suspicious

traffic

(b)

Figure 3.1: (a) Example NFV chain with many instances per NF (b) logical
view with infinite capacity NFs/links for COE.

at IDS2; likewise, when reallocating a flow, say f1, from IDS1 to 2, f1’s
state should be updated due to in-flight f1 packets arriving at both IDSes 1
and 2. Finally, how the state is updated can determine an NF’s action. For
example, the off-path Trojan detector [40] in Figure 3.2 relies on knowing
the exact order in which connection attempts were made. When there
is a discrepancy in the order observed w.r.t. the true order – e.g., due to
intervening NFs running slow or failing – the Trojan detector can arrive at
incorrect decisions, violating COE.

Many NFV frameworks exist today [31, 69, 86, 96, 98, 106, 117]. Several
of them focus on managing NF state migration or updates upon traffic
reallocation during scaling or failover [53, 96, 98, 106, 117]. However, they
either violate COE, or suffer from poor performance (or both).

First, most systems ignore shared state [86, 96, 98, 106]. They assume
that NFs do not use cross-flow state, or that traffic can be split across NF
instances such that sharing is completely avoided. Unfortunately, neither
assumption is valid; many NFs [16, 20, 23, 88] have cross-flow state, and the
need for fine-grained traffic partitioning for load balancing can easily force
cross-flow state sharing across instances. Because shared state is critical
to NF processing, ignoring how it is updated can lead to inconsistent NF
actions under dynamics, violating COE (§3.1.2).

Second, existing approaches cannot support chain-level consistency.

41

They cannot ensure that the order of updates made to an NF’s state (e.g., at
the Trojan detector [40] in Figure 3.2) are consistent with the input packet
stream. This inability can lead to NFs arriving at incorrect decisions, e.g.,
missing out on detecting attacks (as is the case in Figure 3.2), violating
COE. Similar issues arise in the inability to correctly suppress spurious
duplicate updates observed at an NF due to recovery actions at upstream
NFs (§3.1.1).

Finally, existing frameworks impose high overhead on state mainte-
nance, e.g., 100s of milliseconds to move per-flow state across instances
when traffic is reallocated (§3.1.2).

We present a new NFV framework, CHC (“correct, high-performance
chains”), which overcomes these drawbacks. For COE, CHC uses three
building blocks. CHC stores NF state in an in-memory external state store.
This ensures that state continues to be available after NF instances’ recover
from failure, which is necessary for COE. Second, it maintains simple
metadata. It adds a “root” at the entry of a chain that: (1) applies a unique
logical clock to every packet, and (2) logs packets whose processing is
still ongoing in the chain. At the store and NFs, CHC tracks packet clocks
along with update operations each NF issues. Clocks help NFs to reason
about relative packet ordering irrespective of intervening NFs’ actions,
and, together with datastore logs, help suppress duplicates. We develop
failure recovery protocols which leverage clocks and logs to ensure correct
recovery from the failure. In Appendix A.3, we prove their correctness
by showing that the recovered state is same as if no failure has occurred,
thereby ensuring COE.

State externalization can potentially slow down performance of state
reads/writes. Thus, for performance, CHC introduces NF-aware algo-
rithms for shared state management. It uses scope-awareness of state
objects to partition traffic so as to minimize cross-instance shared state
coordination. It leverages awareness of the state access patterns of NFs to

42

implement strategies for shared state caching. Because most NFs today
perform a simple set of state update operations, CHC offloads operations
to the state store, which commits them in the background. This speeds
up shared state updates – all coordination is handled by the store which
serializes the operations issued by multiple NF instances.

We built a multi-threaded C++ prototype of CHC along with four NFs.
We evaluate this prototype using two campus-to-EC2 packet traces. We
find that CHC’s state management optimizations reduce latency overhead
to 0.02µs - 0.54µs per packet compared to traditional NFs (no state ex-
ternalization). CHC failover offers 6X better 75%-ile per packet latency
than [106]. CHC is 99% faster in updating strongly consistent shared state,
compared to [53]. CHC obtains per-instance throughput of 9.42Gbps
– same as maximum achievable with standalone NFs. CHC’s support
for chain-wide guarantees adds little overhead, but eliminates false pos-
itives/negatives seen when using certain security NFs in existing NFV
frameworks. Thus, CHC is the only framework to support COE, and it
does so at state-of-the-art performance.

3.1 Motivation

NFV allows operators to connect NFs together in chains, where each type
of NF can use multiple instances to process input traffic demand. Use of
software NFs and SDN [94] means that when incoming traffic load spikes,
or processing is unbalanced across instances, operators can scale up by
adding NF instances and/or reallocate flow processing across instances.
Furthermore, hot-standby NFs can be used to continue packet processing
when an instance crashes. Due to these benefits, cloud providers and ISPs
are increasingly considering deploying NFV in their networks [12].

43

3.1.1 Key Requirements for COE

NFV chains are central to security and compliance policies, they must
always operate correctly, i.e., ensure COE (§3). Ensuring COE is challeng-
ing: (1) NFs are stateful; they maintain state objects for individual and
group of flows. These state objects may be updated on every packet and
the value of these state objects may be used to determine the action on the
packet. This requires support for fine gained NF state management. (2) In
addition to this, COE also require that the per-NF and chain-wide state
updates are consistent with the input packet stream. (3) Since chaining
may create a dependency between the action taken in upstream instances
and its downstream instances, it is important that the impact of a local
action taken for failure recovery should be isolated from the rest of the
chain. These challenges naturally map to three classes of requirements for
supporting COE:

State Access: The processing of each packet requires access to up-to-date
state; thus, the following requirement are necessary to ensure COE under
dynamics:
• (R1) State availability: When an NF instance fails, all state it has built up

internally disappears. For a failover instance to take over packet processing
it needs access to the state that the failed instance maintained just prior to
crashing.
• (R2) Safe cross-instance state transfers: When traffic is reallocated across

NF instances to rebalance load, the state corresponding to the reallocated
traffic (which exists at the old instance where traffic was being processed)
must be made available at the reallocated traffic’s new location.

Consistency: Action taken by a given NF instance may depend on shared-
state updates made by other instances of the same NF, or state actions
at upstream NFs in the chain. Ensuring that said NF instances’ actions
adhere to COE boils down to following requirements:

44

Firewall 1. IRC
2.SSH
3.FTP

Trojan
detector

1.SSH

3. IRC

2. FTP Scrubber

Scrubber

Firewall

Firewall

Figure 3.2: Illustrating violation of chain-wide ordering.

• (R3) Consistent shared state: Depending on the nature of an NF’s state,
it may not be possible to completely avoid sharing a subset of it across
instances, no matter how traffic is partitioned (e.g., port counts at the IDSes
in Figure 3.1a). Such state needs to be kept consistent across the instances
that are sharing; that is, writes/updates made locally to shared state by
different instances should be executed at all other instances sharing the
state in the same global order. Otherwise, instances may end up with
different views of shared state leading to inconsistent and hence incorrect
actions.
• (R4) Chain-wide ordering: Some NFs rely on knowing the order in

which traffic entered the network. Consider Figure 3.2. The off-path Trojan
detector [40] works on a copy of traffic and identifies a Trojan by looking for
this sequence of steps: (1) open an SSH connection; (2) download HTML,
ZIP, and EXE files over an FTP connection; (3) generate IRC activity. When
a Trojan is detected, the network blocks the relevant external host. A
different order does not necessarily indicate a Trojan. It is crucial that the
Trojan detector be able to reason about the true arrival order as seen at
traffic input.

In Figure 3.2, either due to one of the scrubbers being slowed down
due to resource contention or recovering from failure [106], the order of
connections seen at the Trojan detector may differ from that in the traffic
arriving at the input switch. Thus, the Trojan detector can either incorrectly
mark Trojan traffic as benign, or vice versa. When multiple instances of
the Trojan detector are used, the problem is compounded because it might
not be possible to partition traffic such that all three flows are processed

45

at one instance.
• (R5) Duplicate suppression: In order to manage straggler NFs, NFV

frameworks can (a) deploy clones initialized with the state of a slow NF
instance; (b) use packet replay to bring the clone up to speed with the
straggler’s state since state initialization; and (c) replicate packets to the
straggler and clone (§3.4.3). Depending on when the clone’s state was
initialized, replay can lead to duplicate state updates at the straggler. Also,
the original and clone instances will then both generate duplicate output
traffic. Unless such duplicate updates and traffic are suppressed, the
actions of the straggler and of downstream NFs can be impacted (spurious
duplicates may trigger an anomaly). The need for duplicate suppression
also arises during fault recovery (§3.4.4).

Isolation: NFs in a chain should not be impacted by failure recovery of
NFs upstream from them. Specifically:
• (R6) Safe chain-wide recovery: When NF failures occur and recovery

takes place, it is important that the state at each NF in the chain subsequent
to recovery have the same value as in the no-failure case. In other words,
actions taken during recovery should not impact the processing, state, or
decisions of NFs upstream or downstream from the recovering NF — we
will exemplify this shortly when we describe failings of existing systems
in meeting this requirement.

The network today already reorders or drops packets. Our goal is to
ensure that NF replication, chaining, and traffic reallocation together do
not induce artificial ordering or loss on top of network-induced issues.
This is particularly crucial for many important off-path NFs (e.g., DPI
engines and exfiltration checkers) which can be thwarted by artificially
induced reordering or loss.

46

Scopeware
partitioning

Root

Logged packets w/
logical clock (Pkti , Ci)

datastore
manager

Pkti

Pkti

datastore

Buffered pkts

Obj
state
metadata
Ops buffer

Obj
keykey

7

1

2

8

Ci , value

NF1 instance

NF1 instance
NF2 instance3

delete (Ci) 5
4

cached state
metadata
Ops logs6

9

Figure 3.3: CHC architecture

3.1.2 Related work, and Our Contributions

A variety of NFV frameworks exist today [25, 31, 48, 53, 69, 86, 93, 96, 98,
104, 106, 117]. We review their drawbacks below.

Incomplete support for correctness requirements: Most exist-
ing frameworks focus on handling requirements R1 and/or R2.
Split/Merge [98], OpenNF [53] and S6 [117] support cross-instance state
transfers (R2). FTMB [106] and Pico Replication [96] focus on state avail-
ability (R1).

More fundamentally, Split/Merge, Pico Replication and FTMB focus
on availability of the state contained entirely within an NF instance. They
either ignore state shared across instances, or focus on the small class of
NFs where such state is not used. Thus, these frameworks cannot handle
R3.

Among existing frameworks, only OpenNF and S6 can support con-
sistency for shared state (R3), but this comes at high performance cost.
For example, OpenNF imposes a 166µs per packet overhead to ensure
strong consistency! (§4.6). Similarly, S6 cannot support frequent updates
to strongly consistent shared state.

Equally crucially, all of the above frameworks focus on a single NF; they
cannot handle chains. Thus, none of them support chain-wide ordering
(R4).

47

Support for R5 is also missing. StatelessNF [69] and S6 [117] update
shared state in an external store or remote NF, respectively, but they do not
support atomic updates to all state objects an instance can access. Thus,
when a clone is created to mitigate a straggler off-path NF (as outlined
above), the straggler may have updated other state objects that are not
reflected in the clone’s initialized state. Upon replay, the straggler can make
duplicate state updates (likewise, duplicate packets can also arise). For the
same reason, R6 is also violated: when an NF fails over, replaying packets
to bring the recovery NF up to speed can result in duplicate processing in
downstream NFs.

State management performance is poor: FTMB’s periodic checkpoint-
ing significantly inflates NF packet processing latency (§4.6). As men-
tioned above, OpenNF imposes performance overhead for shared state.
The overhead is high even for cross-instance transfers of per-flow state:
this is because such transfers require extracting state from an instance and
installing it in another while ensuring that incoming packets are directed
to the state’s new location.

Our contributions: How do we support requirements R1-R6 while
ensuring good state management performance? Some NFs or operating
scenarios may just need a subset of R1-R6. However, we seek a single frame-
work that meets all requirements/scenarios because, with NFV becoming
mainstream, we believe we can no longer trade-off general correctness
requirements for performance or functionality (specific NFs). Thus, we
identify basic building blocks and study how to synthesize them into one
framework. Building such a framework is especially challenging because
we must carefully deal with shared state and NF chaining.

Our system, CHC, has three building blocks (Figure 3.3): We maintain
NF state in a state store external to NFs (1 ; §3.3). NFs access the store to
read/write relevant state objects. This ensures state availability (R1). The
store’s state object metadata simplifies reasoning about state ownership

48

Root Splitter

Rate Limiter

DPI

Light IDS Splitter

Figure 3.4: Physical chain that CHC runs.

and concurrency control across instances (2 ; §3.3.3). This makes state
transfer safety (R2) and shared state consistency (R3) simple and efficient
(§3.4.1).

We propose NF state-aware algorithms for good state read/write per-
formance which is a key concern with state externalization. These in-
clude (§3.3.3): automatic state scope-aware traffic partitioning to minimize
shared-state coordination (3); asynchronous state updates for state that
is updated often but read infrequently; this allows packet processing to
progress unimpeded (4); NFs sending update operations, as opposed to
updated state, to the store, which simplifies synchronization and serializa-
tion of shared-state updates (5); scope- and access pattern-aware state
caching strategies, which balances caching benefits against making cache
updates immediately visible to other instances (6).

Finally, we maintain a small amount of metadata – clocks and logs.
We insert per packet logical clocks (7 ; §3.4) which directly supports cross-
instance ordering (R4). We couple clocks with logs to support duplicate
suppression (R5; §3.4.3) and COE under failover of NFs and framework
components (R6; §3.4.4). We log every packet that is currently being
processed at some NF in the chain (8). Logged packets are replayed
across the entire chain during failover. At the state store, we store logical
clocks of packets along with the state updates they resulted in, which
aids duplicate suppression. At each NF, we store packet clocks along with
the update operations issued and the most recently read state value (9).

49

Together with state store snapshots, these NF-side logs support COE under
datastore recovery.

Though StatelessNF [69] first advocated for externalizing state, but it
has serious issues. Aside from a lack of support for R4–R6, it lacks atomic
state updates: when a single NF fails after updating some but not all state
objects, a failover NF can boot up with incorrect state! It requires locks
for shared state updates, which degrades performance. Also, it assumes
Infiniband networks for performance.

3.2 Framework: Operator View

In CHC, operators define “logical” NF chains (such as Figure 3.1b) using
a DAG API. We elide low level details of the API, such as how policies are
specified, and focus on aspects related to correctness and performance.
Each “vertex” of the DAG is an NF and consists of operator supplied NF
code, input/output, configuration, and state objects. Edges represent the
flow of data (packets and/or contextual output).

The CHC framework compiles the logical DAG into a physical DAG
with logical vertex mapped to one or more instances (Figure 3.4). For
example, the IDS in Figure 3.1b is mapped to three instances in Figure 3.4.
The operator can provide default parallelism per vertex, or this can be
determined at run time using operator-supplied logic (see below). CHC
deploys the instances across a cluster. Each instance processes a partition
of the traffic input to the logical vertex; CHC automatically determines the
traffic split to ensure even load distribution (§3.3).

The CHC framework supports chain elastic scaling and straggler mit-
igation. Note that the logic, e.g., when to scale is not our focus; we are
interested in high performance state management and COE during such
actions. Nevertheless, we outline the operator-side view for complete-

50

ness: Operators must supply relevant logic for each vertex (i.e., scaling1;
identifying stragglers2). CHC executes the logic with input from a “vertex
manager”, a logical entity is responsible for collecting statistics from each
vertex’s instances, aggregating them, and providing them periodically to
the logic.

Based on user-supplied logic, CHC redirects traffic to (from) scaled
up (down) NF instances or clones of straggler NFs. CHC manages state
under such dynamic actions to ensure COE. CHC also ensures system-
wide fault tolerance. It automatically recovers from failures of NFs or of
CHC framework components while always preserving COE.

3.3 Traffic and State Management

We discuss how CHC processes traffic and manages state. The framework
automatically partitions traffic among NF instances (§3.3.1) and manages
delivery of packets to downstream NFs (§3.3.2). As packets flow, different
NFs process them and update state in an external store; CHC leverages
several algorithms for fast state I/O; the main challenge here is dealing
with shared state (§3.3.3).

3.3.1 Traffic partitioning

CHC performs scope-aware partitioning: traffic from an upstream instance
is partitioned across downstream instances such that: (1) each flow is
processed at a single instance, (2) groups of flows are allocated to instances
such that most state an instance updates for the allocated flows is not
updated by other instances, and (3) load is balanced. #1 and #2 reduce the
need for cross-instance coordination for shared state.

1e.g., “when input traffic volume increased by a certain θ”
2when an instance processing θ% slower than other instances

51

In CHC, state scope is a first-class entity. A function .scope() associ-
ated with a vertex program returns a list of scopes i.e., the set of packet
header fields which are used to key into the objects that store the states
for an NF; i.e., these are the different granularities at which states can be
queried/updated. CHC orders the list from the most to least fine grained
scope. Suppose the DPI vertex in Figure 3.1b has two state objects: one
corresponding to records of whether a connection is successful or not; and
another corresponding to the number of connections per host. The scope
for the former is the 5-tuple (src IP, dst IP, src port, dst port, protocol); the
scope for the latter is src IP.

CHC first attempts to partition traffic at instances immediately up-
stream (which, for the DPI in Figure 3.1b would be the IDSes) based on the
most coarse-grained state scope (for the DPI this is src IP); such splitting
results in no state sharing at the downstream (DPI) instances. However,
being coarse grained, it may result in uneven load across instances. The
framework gathers this information via the (DPI) vertex manager. It then
considers progressively finer grained scopes and repeats the above process
until load is even.

The final scope to partition on is provided in common to the splitters
upstream. The framework inserts a splitter after every NF instance (Fig-
ure 3.4). The splitter partitions the output traffic of the NF instance to
instances downstream.

The root of a physical DAG is a special splitter that receives and splits
input traffic. Roots can use multiple instances to handle traffic; in CHC, we
fix root parallelism to some constant R. Network operators are required to
statically partition traffic among the R roots such that the traffic processed
by a root instance has no overlap in any of the 5-tuple dimensions with
that processed by another instance.

52

Scope Any Per-flow Cross-flow Cross-flow
Access
pattern

Write mostly,
read rarely

Any Write rarely
(read heavy)

Write/read often

Non-blocking
ops. No
caching

Caching \w
periodic non-
blocking flush

Caching \w
callbacks

Depends upon traffic split.
Cache, if split allows; flush
periodically

Table 3.5: Strategies for state management performance

3.3.2 Communication

Inter-NF communication is asynchronous and non-blocking. Each NF’s
outputs are received by the CHC framework which is responsible for rout-
ing the output to downstream instances via the splitter. The framework
stores all the outputs received from upstream instances in a queue per
downstream instance; downstream instances poll the queue for input.
This approach offers three benefits: (a) upstream instances can produce
output independent of the consumption rate of downstream instances,
(b) the framework can operate on queue contents (e.g., delete messages
before they are processed downstream), which is useful for certain cor-
rectness properties, e.g., duplicate suppression (§3.4), (c) user logic can
use persistent queues to identify stragglers/uneven load.

3.3.3 State Maintenance

CHC externalizes NF state and stores it in an external distributed key-value
datastore. Thus, state survives NF crashes, improving availability and
satisfying requirement R1 (§3.1). All state operations are managed by
the datastore (Figure 3.3). As described below, CHC incorporates novel
algorithms and metadata to improve performance (Table 3.5).

State metadata: The datastore’s client-side library appends metadata
to the key of the state that an NF instance stores. This contains vertex_ID
and instance_ID, which are immutable and are assigned by the frame-
work. In CHC, the key for a per-flow (5 tuple) state object is: vertex_ID +

53

Operation Description
Increment/ decrement a value Increment or decrement the value stored at

key by the given value.
Push/pop a value to/from list Push or pop the value in/from the list

stored at the given key.
Compare and update Update the value, if the condition is true.

Table 3.6: Basic operations offloaded to datastore manager

instance_ID + obj_key, where obj_key is a unique ID for the state object. The
instance_ID ensures that only the instance to which the flow is assigned
can update the corresponding state object. Thus, this metadata simplifies
reasoning about ownership and concurrency control. Likewise, the key
for shared objects, e.g., pkt_count, is: vertex_ID + obj_key. All the instances
of a logical vertex can update such objects. When two logical vertices use
the same key to store their state, vertex_ID prevents any conflicts.

Offloading operations: Most NFs today perform simple operations
on state. Table 3.6 shows common examples. In CHC, an instance can
offload operations and instruct the datastore to perform them on state on its
behalf (developed contemporarily with [117]). Developers can also load
custom operations. The benefit of this approach is that NF instances do
not have to contend for shared state. The datastore serializes operations
issued by different instances for the same shared state object and applies
them in the background (§A.3.1 proves that updates will always result in
consistent state.). This offers vastly better performance than the natural
approach of acquiring a lock on state, reading it, updating, writing it back,
and releasing the lock (§4.6).

Non-blocking updates: In many cases, upon receiving a packet, an
NF updates state, but does not use (read) the updated value; e.g., typical
packet counters (e.g., [16, 20, 88]) are updated every input packet, but the
updated value is only read infrequently. For such state that is written
mostly and read rarely, we offer non-blocking updates (Table 3.5): the datas-

54

tore immediately sends the requesting instance an ACK for the operation,
and applies the update in the background. As a further optimization,
NFs do not even wait for the ACK of a non-blocking operation; the frame-
work handles operation retransmission if an ACK is not received before
a timeout. If an instance wishes to read a value, the datastore applies all
previous outstanding updates to the value, in the order NFs issued them,
before serving the read.

Caching: For all the objects which are not amenable to non-blocking
updates, we improve state access performance using novel caching strate-
gies that leverage state objects’ scope and access patterns (ready-heavy vs.
not).

Per-flow state: CHC’s scope-aware partitioning ensures that flows that
update per-flow state objects are processed by a single instance; thus,
these objects do not have cross-instance consistency requirements. The
datastore’s client-side library caches them at the relevant instance, which
improves state update latency and throughput. However, for fault toler-
ance, we require local updates made to cached objects to be flushed to the
store; to improve performance, these flush operations have non-blocking
semantics (Table 3.5).

Cross-flow state: Cross-flow state objects can be updated by multiple
instances simultaneously. Unlike prior works that largely ignore such
state, CHC supports high performance shared state management. Some
shared objects are rarely updated; developers can identify such objects as
read-heavy. CHC (1) caches such an object at the instances needing them;
and (2) the client-side library at each of these instances registers a callback
with the store, which is invoked whenever the store updates the object on
behalf of another instance.

The cached objects only serve read requests. Whenever an (rare) update is
issued by an instance - operation is immediately sent to the store, The store
applies the operation and sends back the updated object to the update

55

initiator. At the same time, the client-side library of other instances receives
callback from the store and updates the locally cached value (Table 3.5).
We prove this approach results in consistent updates to shared state in
§A.3.2.

For other cross-flow objects (not rarely-updated), the datastore allows
them to be cached at an instance only as long as no other instance is
accessing them (Table 3.5); otherwise, the objects are flushed. CHC notifies
the client-side library when to cache or flush the state based on (changes
to) the traffic partitioning at the immediate upstream splitter.

For scale and fault tolerance we use multiple datastore instances, each
handling state for a subset of NF instances. Each datastore instance is
multi-threaded. A thread can handle multiple state objects; however, each
state object is only handled by a single thread to avoid locking overhead.

3.4 Correctness

So far, we focused on state management and its performance. We also
showed how CHC supports requirement R1 (state availability) by design.
We now show how it supports the requirements R2–R6. This is made
challenging both by shared state and by chaining. To support R2-R6, CHC
maintains/adds metadata at the datastore, NFs and to packets. We first
describe how the most basic of the metadata – logical packet clocks and
packet logs – are maintained. We describe other metadata along with the
requirements they most pertain to.

Logical clocks, logging: The root (§3.3.1) attaches with every input
packet a unique logical clock that is incremented per packet. The root also
logs in the datastore each packet, the packet clock, and to which immediate
downstream instance the packet was forwarded. When the last NF in a
chain is done processing a packet, updating state and generating relevant
output, it informs the CHC framework. CHC sends a “delete” request

56

with the packet’s clock to the root which then removes the packet from the
log. Thus, at any time, the root logs all packets that are being processed by
one or more chain instances. When any NF in the chain cannot handle the
traffic rate, the root log builds in size; CHC drops packets at the root when
this size crosses a threshold to avoid buffer bloat. When multiple root
instances are in use (§3.3.1), we encode the identifier of the root instance
into the higher order bits of the logical clock inserted by it to help the
framework deliver “delete” requests to the appropriate root instance.

3.4.1 R2, R3: Elastic scaling

In some situations, we may need to reallocate ongoing processing of traffic
across instances. This arises, e.g., in elastic scaling, where a flow may
be processed at an “old” instance and reallocated to a “new” scaled up
instance. We must ensure here that the old and new instances operate on
the correct values of per- and cross-flow state even as traffic is reassigned
(requirements R2 and R3).

Specifically, for cross-flow shared state, we require that: Updates made
to the shared state by every incoming packet are reflected in a globally consistent
order irrespective of which NF instance processed the corresponding packet.

Existing systems achieve this at high overhead: OpenNF [53] copies
shared internal state from/to the instances sharing it, each time it is up-
dated by an incoming packet! In contrast, ensuring this property in CHC
is straightforward due to externalization and operation offloading (§3.3.3):
when multiple instances issue update operations for shared state, the
datastore serializes the operations and applies in the background. All
subsequent accesses to the shared state then read a consistent state value.

Per-flow state’s handling must be correctly reallocated across instances,
too (R2). One approach is to disassociate the old instance from the state
object (by having the instance remove its instance_ID from the object’s
metadata) and associate the new instance (by adding its instance_ID). But,

57

Registers callback

Old
instance

New
instance

Splitter

Datastore
manager

Marks the last pkt

Marks the first pkt
Waits for the pkt marked last

Waits for state handover

Flushes &
releases state

Handover notificationFlushes buffered pkts.

2

1
8

4
6

7

instance

5

3

Figure 3.7: State handover.

this does not ensure correct handover when there are in-transit packets
that update the state: even if the upstream splitter immediately updates
the partitioning rules and the traffic starts reaching the new instance,
there might be packets in-transit to, or buffered within, the old instance.
If the new instance starts processing incoming packets right away then
state updates due to in-flight/buffered packets may be disallowed by the
datastore (as a new instance is now associated with the state object) and
hence the updates will be lost.

Thus, to satisfy R2, we require: Loss-freeness, i.e., the state update due to
every incoming packet must be reflected in the state object. Furthermore, some
NFs may also need order-preservation: updates must happen in the order of
packet arrivals into the network.

These properties are crucial for off-path NFs, e.g., IDS. Such NFs cannot
rely on end-to-end retransmissions to recover from lost updates induced
by traffic reallocation [53]. Similarly, they may have to process packets
in the order in which they are exchanged across two directions of a flow,
and may be thwarted by a reordering induced by reallocation (resulting
in false positives/negatives).

Figure 3.7 shows the sequence of steps CHC takes for R2: 1 The
splitter marks the “last” packet sent to the old instance to inform the old
instance that the flow has been moved. This mark indicates to the old
instance that it should flush any cached state associated with the particular
flow(s) to the datastore and disassociate its ID from the per flow state, once
it has processed the “last” packet. 2 The splitter also marks the “first”

58

packet from the traffic being moved to the new instance. 3 When the new
instance receives the “first” packet, it tries to access the per flow state from
the datastore. If the state is still associated with the old instance_ID, it
registers a callback with the datastore to be notified of metadata updates.
4 The new instance starts buffering all the packets associated with the

flow which is being moved. 5 After processing the packet marked as
“last”, the old instance flushes the cached state and updates the metadata
to disassociate itself from the state. 6 The datastore notifies the new
instance about the state handover. 7 The new instance associates its ID
with the state, and flushes its buffered packets.

The above ensure that updates are not lost and that they happen
in the order in which packets arrived at the upstream splitter. In con-
trast, OpenNF provides separate algorithms for loss-freeness and order-
preservation; an NF author has the arduous task of choosing from them!

Note also that packets may arrive out of order at a downstream instance,
causing it to make out-of-order state updates. To prevent this: 8 The
framework ensures that packets of the moved flow emitted by the new
instance are not enqueued at the downstream instance, but instead are
buffered internally within the framework until the packet marked as “last”
from the old instance is enqueued at the new instance.

3.4.2 R4: Chain-wide ordering

To support R4, we require that: Any NF in a chain should be able to process
packets, potentially spread across flows, in the order in which they entered the NF
chain. CHC’s logical clocks naturally allow NFs to reason about cross-flow
chain-wide ordering and satisfy R4. E.g., the Trojan detector from §3.1.1
can use packets’ logical clocks to determine the arrival order of SSH, FTP
and IRC connections.

59

3.4.3 R5: Straggler mitigation

R5 calls for the following: All duplicate outputs, duplicate state updates, and
duplicate processing are suppressed.

A key scenario in which duplicate suppression is needed is straggler
mitigation. A straggler is a slow NF that causes the entire NF chain’s per-
formance to suffer. We first describe CHC’s mechanism for straggler miti-
gation (which kicks in once user-provided logic identifies stragglers; §3.2),
followed by duplicate suppression.

Clone and replay: To mitigate stragglers CHC deploys clones. A clone
instance processes the same input as the original in parallel. CHC retains
the faster instance, killing the other. CHC initializes the clone with the
straggler’s latest state from the datastore. It then replicates incoming traffic
from the upstream splitter to the straggler and the clone.

This in itself is not enough, because we need to satisfy R2, i.e., ensure
that the state updates due to packets that were in-transit to the straggler at
the time the clone’s state was initialized are reflected in the state that the
clone accesses. To address this, we replay all logged packets from the root.
The root continues to forward new incoming packets alongside replayed
ones. The clone processes replayed traffic first, and the framework buffers
replicated traffic. To indicate end of replay traffic, the root marks the “last”
replayed packet (this is the most recent logged packet at the time the root
started replaying). When replay ends (i.e., the packet marked “last” was
processed by the clone), the framework hands buffered packets to the
clone for processing.

Given the above approach for straggler mitigation, there are three
forms of duplicates that can arise. CHC suppresses them by maintaining
suitable metadata.

1. Duplicate outputs: Replicating input to the clone results in du-
plicate outputs. Here, the framework suppresses duplicate outputs as-
sociated with the same logical clock at message queue(s) of immediate

60

logical clock, pkt_count++

clone
initialized

rtn value

rtn value

pkt_count = 2, con<key> = 1

task
Datastore
manager

pkt_count = 0, con<key> = 0

processing
replayed
packet

pkt_count = 2

con<key> = 1

pkt_count = 1

(a) Naive reprocessing

logical clock, pkt_count++

clone
initialized

rtn value

rtn value

pkt_count = 1, con<key> = 1

task
Datastore
manager

pkt_count = 0, con<key> = 0

processing
replayed

packet
pkt_count = 1

con<key> = 1

pkt_count = 1

emulating
state update

(b) Reprocessing with emulation

Figure 3.8: Duplicate update suppression

downstream instance(s).
2. Duplicate state updates: Some of the replayed packets may have

already updated some of the stragglers’ state objects. For example, an IDS
updates both the total packet count and the number of active connections
per host. A clone IDS may have been initialized after the straggler updated
the former but not the latter. In such cases, processing a replayed packet
can incorrectly update the same state (total packet count) multiple times
at the straggler (Figure 3.8a). To address this, the datastore logs the state
value corresponding to each state update request issued by any instance, as
well as the logical clock of the corresponding packet. This is only done for
packets that are currently being processed by some NF in the chain. During
replay, when the straggler or clone sends an update for a state object, the
datastore checks if an update corresponding to the logical clock of the
replayed packet has already been applied; if so, the datastore emulates
the execution of the update by returning the value corresponding to the
update (Figure 3.8b). In Appendix A.2, we describe how CHC handles
non-deterministic state update operations.

3. Duplicate upstream processing: NFs upstream from the clone/s-
traggler would have already processed some of the in-transit packets. In
such cases, reprocessing replayed packets leads to incorrect actions at

61

upstream NFs (e.g., an IDS may raise false alarms). To address this, each
replayed packet is marked and it carries the ID of the clone where it will
be processed. Such packets need special handling: the intervening in-
stances recognize that they are not suspicious duplicates; if necessary, the
instances read the store for state corresponding to the replayed packet,
make any needed modifications to the packet’s headers, and produce rele-
vant output; the instances can issue updates to state, too, but in such cases
the datastore emulates updates as before. The clone’s ID is cleared once it
processed the packet.

3.4.4 R6: Safe Fault Recovery

Our description of R6 in §3.1 focused on NF failures; however, since CHC
introduces framework components, we generalize R6 to cover other failures
as well. Specifically, we require the following general guarantee:

Safe recovery Guarantee: When an NF instance or a framework component
fails and a recovery occurs, we must ensure that the state at each NF in the chain
has the same value as under no failure.

We assume the standard fail-stop model, that a machine/node can
crash at any time and that the other machines/nodes in the system can
immediately detect the failure.

First, we show how CHC leverages metadata to handle the failure of in-
dividual components. Then, we discuss scenarios involving simultaneous
failure of multiple components.

NF Failover: When an NF fails, a failover instance takes over the failed
instance’s processing. The datastore manager associates the failover in-
stance’s ID with relevant state. Packet replay brings state up-to-speed
(from updates due to in-transit packets). Similar to cloning (§3.4.3), we
suppress duplicate state updates and upstream processing.

Since “delete” requests are generated after the last NF is done process-
ing a packet, failure of such an NF needs special handling: consider such

62

Statestore

Root

NFN

NFM

𝑈𝑁,𝑜𝑏𝑗𝑌
𝑖

𝑑𝑒𝑙(𝑖), 𝑣𝑖

𝑃𝑖 , 𝑣𝑖

𝑣𝑖
′ = 0 𝑣𝑖

′⨁𝑣𝑖≠ 0 ⇒ wait(i)

𝑣𝑖
′⨁𝑣𝑖== 0 ⇒ 𝑑𝑒𝑙 (𝑖)

𝑣𝑖= 0

𝑖, 𝑀 ||𝑜𝑏𝑗𝑍

(𝑏𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟) 𝑣𝑖 = 𝑣𝑖 ⨁ (𝑁 || 𝑜𝑏𝑗𝑌)

𝑈𝑀,𝑜𝑏𝑗𝑍
𝑖

𝑖, 𝑁 || 𝑜𝑏𝑗𝑌

𝑣𝑖
′ = 𝑣𝑖

′ ⨁ (𝑀 || 𝑜𝑏𝑗𝑍) 𝑣𝑖
′ = 𝑣𝑖

′ ⨁ (𝑁 || 𝑜𝑏𝑗𝑌)

𝑣𝑖 = 𝑣𝑖 ⨁ (𝑀 || 𝑜𝑏𝑗𝑍)

time

𝑑𝑜𝑛′𝑡 𝑑𝑒𝑙𝑒𝑡𝑒
4

2

1

3

Figure 3.9: Recovery under non-blocking operations. Consider a packet
Pi which is processed by NFN, followed by NFM, the last NF in the chain.
NFN and NFM update objects objY and objZ, resply.

an instance T failing after generating an output packet for some input
packet P, but before the framework sends a “delete” request for P. When
P is replayed, T’s failover instance produces output again, resulting in
duplicate packets at the receiving end host. To prevent this, for the last
NF in the chain, our framework sends the “delete” request for P before the
NF generates the output packet. If the NF fails before the “delete” request,
then P will be replayed, but this does not result in duplicate downstream
processing since the NF did not generate output. If the NF fails after the
“delete” request but before generating output, then P is not replayed, and
hence the end host will not receive any output packet corresponding to P.
This will appear as a packet loss at the host, causing P to be retransmitted
from the source and resulting in correct overall behavior. In §A.3.4, we
show that using this protocol an NF instance recovers with state similar to
that under no failure.

Non-blocking operations: Non-blocking updates, where NF instances
don’t wait for ACKs, instead relying on the framework to handle reliable
delivery, can introduce the following failure mode: a instance may fail
after issuing state update but before the update is committed and an ACK
was received. In such cases, to ensure R6, we need that the framework must
re-execute the incomplete update operation.

63

Suppose an instance N fails after processing packet Pi (i is the logical
clock) but before the corresponding state update operation UiN,obj (obj is
the state object ID) completes. Pi may have induced such operations at a
subset of NF instances {N} along the chain. A natural idea to ensure the
above property is to replay packets from the root to reproduce UiN,obj at
various N’s. For this, however, Pi must be logged and should not have
been deleted. If Pi is deleted it can’t be replayed.

We need to ensure Pi continues to be logged as long as there is some
N for which UiN,obj is not committed. Our approach for this is shown
in Figure 3.9: 1 Each packet carries a 32-bit vector vi (object ID and
instance ID; 16b each) that is initialized to zero. Each NF instance where
processing the packet resulted in a state update XORs the concatenation
of its ID and the corresponding state objects’ IDs into the bit vector. 2
When committing a given NF’s state update, the state store signals to
the root the clock value of the packet that induced the update as well as
the concatenated IDs. 3 The last instance sends the final vector along
with its “delete” request to the root. 4 When a delete request and the
final vector are received, the root XORs the concatenated IDs with the
concatenated IDs reported by each signal from the state store in step 2. If
the result is zero, this implies that updates induced by the packet at all NF
instances {N} were committed to the store; the root then proceeds to delete
the packet from the log. Otherwise, the packet updated state at some NF,
but the NF has not yet reported that the state was committed; here, the
root does not delete the packet.

Root: To ensure R6 under root failover, we need that a new root must
start with the logical clock value and current flow allocation at the time
of root failure. This is so that the new root processes subsequent packets
correctly. To ensure this, the failover root reads the last updated value of
the logical clock from the datastore, and retrieves how to partition traffic by
querying downstream instances’ flow allocation. The framework buffers

64

incoming packets during root recovery. We prove this approach ensures
recovery with a state similar to that under no failure in §A.3.3.

Datastore instance: Recall that different NFs can store their states in
different storage instances (§3.3.3). This ensures that store failures impact
availability of only a portion of the overall state being tracked. Now, to
ensure R6 under the failure of a datastore instance, we need that the
recovered state in the new store instance must represent the value which
would have resulted if there was no failure. The recovered state must also
be consistent with the NF instances’ view of packet processing thus far
(i.e., until failure).

To support this property we distinguish between per-flow and shared
state. For the former, we leverage the insight that all the NFs already
maintain an updated cached copy of per-flow state. If a datastore instance
fails, we can simply query the last updated value of the cached per-flow
state from all NF instances that were using the store.

Recovering shared state is nuanced. For this, we use checkpointing
with write-ahead logging [84]. The datastore periodically checkpoints
shared state along with the metadata, “TS”, which is the set of logical
clocks of the packets corresponding to the last state operation executed by
the store on behalf of each NF instance. Each instance locally writes shared-
state update operations in a write-ahead log. Say the latest checkpoint was
at time t and failure happens at t+ δ. A failover datastore instance boots
with state from the checkpoint at t. This state now needs to be “rolled
forward” to t + δ and made consistent with the NF instances’ view of
packet processing at t+ δ. Two cases arise:

(Case 1) If NF instances that were using the store instance don’t read
shared state in the δ time interval, then to recover shared state, the frame-
work re-executes state update operations from the local write-ahead log on
behalf of each NF, starting from the logical clocks included in the metadata
TS in the checkpoint. Recall that in our design the store applies updates in

65

I
1

I
2

I
3

I
4

State operations and TSupdate logs at the instance

Order of state update at the datastore Datastore crashed

𝑈9 𝑈8 𝑈13 𝑈20 𝑈11 𝑅19 𝑈22 𝑈17 𝑈25 𝑈15 𝑅27 𝑈30 𝑈31 𝑅18 𝑈23 𝑈32 𝑈35

𝑈9 𝑈20 𝑈15 𝑈35

𝑈11 𝑈22 𝑈25 𝑅27 𝑈30

𝑈8 𝑈17 𝑅18 𝑈23

𝑈13 𝑅19 𝑈31 𝑈32

𝑇𝑆
𝑢𝑝𝑑𝑎𝑡𝑒

19 {20, 11, 8, 13} 𝑇𝑆
𝑢𝑝𝑑𝑎𝑡𝑒

27 {15, 25, 17, 13} 𝑇𝑆
𝑢𝑝𝑑𝑎𝑡𝑒

18 {15, 30, 17, 31}

time: t time: t + δ

Figure 3.10: Recovering shared state at the datastore. Ik are instances.
Ulogical_clock and Rlogical_clock represent “update” and “read”.

the background, and this update order is unknown to NF instances. Thus,
our approach ensures that the state updates upon re-execution match
that produced by a plausible sequence of updates that the store may have
enforced prior to failure. This consistency property suffices because, in
Case 1, NFs are not reading shared state in the δ interval.

(Case 2) Say an NF instance issues a read between t and t+ δ; e.g., I3

in Figure 3.10 issues R18. Following the above approach may lead to an
order of re-execution such that the actual state I3 read in R18 is different
from the state in the store after recovery. To ensure that the store’s state
is consistent with all Ik’s current view, the framework must re-execute
operations in such an order that the datastore would have produced the
same value for each read in [t, t+ δ].

To ensure this, on every read operation, the datastore returns TS along
with the latest value of the shared state (e.g., TS19 is returned with I4’s
R19). The instance then logs the value of the shared state along with
the corresponding TS. Re-execution upon failure then needs to select,
among all TS’s at different instances, the one corresponding to the most
recent read from the store prior to the crash (i.e., TS18, since R18 in the
most recent read; most recent clock does not correspond to most recent
read). How selection is done is explained shortly; but note that when the

66

framework re-executes updates starting from the clock values indicated
by this selected TS that would bring the store in sync with all NFs. In
our example, TS18 is the selected TS; we initialize the store state with the
value in the corresponding read (R18). From the write-ahead log of each
NF, the framework re-executes update operations that come after their
corresponding logical clocks in TS18. At instance I1, this is the update after
U15, i.e., U35. At I3 and I4 these are U23 and U32, respectively. Shared state
is now in sync with all NFs.
TS selection works as follows: first we form a set of all the TS’s at each

instance, i.e., Set = {TS18, TS19, TS27}. Since the log of operations at an
instance follows a strict clock order we traverse it in the reverse order to
find the latest update operation whose corresponding logical clock value
is in Set. For example, if we traverse the log of I1, we find that the logical
clock of U15 exists in Set. After identifying such a logical clock value, we
remove all the entries from Setwhich do not contain the particular logical
clock value (such TSs cannot have the most recent read); e.g., we remove
TS19 as it does not contain logical clock 15. Similarly, we remove TS27, after
traversing I2’s log. Upon doing this for all instances we end up selecting
TS18 for recovery. In §A.3.5, we prove that using this protocol the store
recovers with state similar to that under no failure.

Correlated failures: Using the above approaches, CHC can also han-
dle correlated failures (Table 3.11) of multiple NF instances, root, and
storage instances. However, CHC cannot withstand correlated failure of a
store instance with any other component that has stored its state in that
particular instance. Replication of store instances can help recover from
such correlated failures, but that comes at the cost of increasing the per
packet processing latency.

67

NF instance Root
Store instance 3∗ 3∗

NF instance 3 3

Table 3.11: Handling of correlated failures (∗Cannot recover if component
and the store instance storing its state fail together).

3.5 Implementation

Our prototype consists of an execution framework and a datastore, im-
plemented in C++. NFs runs in LXC containers [10] as multithreaded
processes. NFs are implemented using our CHC library that provides
support for input message queues, client side datastore handling, retrans-
missions of un-ACK’d state updates (§3.3.3), statistics monitoring and
state handling. Packet reception, transmission, processing and datastore
connection are handled by different threads.

For low latency, we leverage Mellanox messaging accelerator
(VMA) [114] which enables user-space networking with kernel bypass sim-
ilar to DPDK [46]. In addition to this, VMA also supports TCP/UDP/IP
networking protocols and does not require any application modification.
Even though we use VMA, we expect similar performance with other
standard kernel bypass techniques. Protobuf-c [18] is used to encode
and decode messages between a NF instance and the datastore. Each NF
instance is configured to connect to a “framework manager” to receive
information about it’s downstream instances (to which it connects via
tunnels), datastore instances and other control information.

The framework manager can dynamically change the NF chain by
instantiating new types of NFs or NF instances and updating partition-
ing information in upstream splitters3. Our datastore implements an
in-memory key-value store and supports the operations in Table 3.6. We

3based on statistics from vertex managers

68

NF Description of state object Scope; access pattern
Available ports Cross-flow; write/read often

NAT Total TCP packets Cross-flow; write mostly, read rarely
Total packets Cross-flow; write mostly, read rarely
Per conn. port mapping Per-flow; write rarely, read mostly

Trojan
detector

Arrival time of IRC, FTP and
SSH flows for each host

Cross-flow; write/read often

Portscan
detector

Likelihood of being mali-
cious (per host)

Cross-flow; write/read often

Pending conn. initiation req.
along with its timestamp

Per-flow; write/read often

Load Per server active # of conn. Cross-flow; write/read often
balancer Per server byte counter Cross-flow; write mostly, read rarely

Conn. to server mapping Per-flow; write rarely, read mostly

Table 3.12: NFs and description of their state objects

reimplemented four NFs atop CHC. Table 3.12 shows their state objects,
along with the state’s scope and access patterns.

NAT: maintains the dynamic list of available ports in the datastore.
When a new connection arrives, it obtains an available port from the
datastore (The datastore pops an entry from the list of available ports on
behalf of the NF). It then updates: 1) per-connection port mapping (only
once) and, 2) (every packet) L3/L4 packet counters.

Portscan detector [102]: detects infected port scanner hosts. It tracks
new connection initiation for each host and whether it was successful or
not. On each connection attempt, it updates the likelihood of a host being
malicious, and blocks a host when the likelihood crosses a threshold.

Trojan detector: implementation here follows [40].
Load balancer: maintains the load on each backend server. Upon

a new connection, it obtains the IP of the least loaded server from the
datastore and increments load. It then updates: 1) connection-to-server
mapping 2) per server #connections and, 3) (every packet) per server byte

69

counter .

3.6 Evaluation

We use two packet traces (Trace{1,2}) collected on the link between our
institution and AWS EC2 for trace-driven evaluation of our prototype.
Trace1 has 3.8M packets with 1.7K connections and Trace2 has 6.4M pack-
ets with 199K connections. The median packet sizes are 368B and 1434B.
We conducted all experiments with both traces and found the results to be
similar; for brevity, we only show results from Trace2. We use six Cloud-
Lab [2] servers each with 8-core Intel Xeon-D1548 CPUs and a dual-port
10G NIC. One port is used to forward traffic, and the other for datastore
communication and control messages. To process at 10Gbps, each NF
instance runs multiple processing threads. CHC performs scope-aware
partitioning of input traffic between these threads. Our datastore runs on
a dedicated server.

3.6.1 State Management Performance

Externalization: We study three models which reflect the state access
optimizations discussed in (§3.3.3): #1) All state is externalized and non-
blocking operations are used. #2) Further, NFs cache relevant state objects.
#3) Further, NFs do not wait for ACKs of non-blocking operations to state
objects; the framework is responsible for retransmission (§3.3.3). The state
objects per NF that benefit from #2 and #3 can be inferred from Table 3.5
and Table 3.12; e.g., for NAT, available ports and per-connection port
mapping are cached in #2, and the two packet counters benefit from non-
blocking updates in #3. We compare these models with a “traditional” NF
where all state is NF-local. We study each NF type in isolation first.

Figure 3.13 shows the per packet processing times. The median times
for traditional NAT and load balancer are 2.07µs and 2.25µs, resply. In

70

NAT Portscan
detector

Trojan
detector

Load
balancer

100

101

102

p
kt

 p
ro

c.
 t

im
e
 (

u
se

c)

T EO+C+NA EO+C EO

Figure 3.13: 5%ile, 25%ile, median, 75%ile and 95%ile pkt processing times.
(T = Traditional NF, EO = Externalized state operations, C = with caching, NA = without
waiting for the ACK)

model #1, this increases by 190.67µs and 109.87µs, resply., with network
RTT contributing to most of this (e.g., NAT needs three RTTs on average
per packet: one for reading the port mapping and other two for updating
the two counters). We don’t see a noticeable impact for scan and Trojan
detectors (they don’t update state on every packet).

Relative to #1, caching (#2) further lowers median processing times
by 111.98µs and 55.94µs for NAT4 and load balancer. For portscan and
Trojan detector, reduces it by 0.54µs and 0.1µs (overhead becomes +0.1µs
as compared to traditional NFs) as CHC caches the cross-flow state. Later,
we evaluate the benefits of cross-flow caching in detail. Finally, #3 results
in median packet processing times of 2.61µs for NAT (which now needs
0 RTTs on average) and 2.27µs for load balancer. These represent small
overheads compared to traditional NFs: +0.54µs for NAT, and +0.02µs
for the load balancer (at the median). Note that for portscan and Trojan
detector the performance of #3 is comparable to #2 as they don’t have any
blocking operations.

We constructed a simple chain consisting of one instance each of NAT,
portscan detector and load balancer in sequence, and the Trojan detector
operating off-path attached to the NAT. With model #3, the median end-

4NAT needs 2 RTTs to update counters as port mapping is cached.

71

to-end overhead was 11.3µsec compared to using traditional NFs.
Operation offloading: We compare CHC’s operation offloading

against a naive approach where an NF first reads state from the datastore,
updates it, and then writes it back. We turn off caching optimizations. We
now use two NAT instances updating shared state (available ports and
counters). We find that the median packet processing latency of the naive
approach is 2.17X worse (64.6µs vs 29.7µs), because it not only requires 2
RTTs to update state (one for reading the state and the other for writing it
back), but it may also have NFs wait to acquire locks. CHC’s aggregate
throughput across the two instances is >2X better.

Cross-flow state caching: To show the performance of our cross-flow
state caching schemes (Table 3.5; Col 5), we run the following experiment:
we start with a single portscan detector. After it has processed around
212K packets, we add a second instance and split traffic such that for par-
ticular hosts, captured by the set H, processing happens at both instances.
At around 213K packets, we revert to using a single instance for all pro-
cessing. Figure 3.14 shows the benefits of caching the shared state. At
212K packets, when the second instance is added, the upstream splitter
signals the original instance to flush shared state corresponding to hosts
∈ H (Table 3.12). From this point on, both instances make blocking state
update operations to update the likelihood of hosts ∈ H being malicious
on every successful/unsuccessful connection initiation. Thus, we see an
increase in per packet processing latency for every SYN-ACK/RST packet.
At packet number 213K, all processing for H happens at a single instance
which can start caching state again. Thus, the processing latency for SYN-
ACK/RST packets drops again, because now state update operations are
applied locally and updates are flushed in a non-blocking fashion to the
store.

Throughput: We measure degradation in per NF throughput for mod-
els #1 and #3 above compared to traditional NFs. Figure 3.15 shows that

72

211000 211500 212000 212500 213000 213500

pkt

0

20

40

P
kt

 p
ro

c.

 t
im

e
(u

se
c)

syn-ack/rst stopped caching started caching

Figure 3.14: Per packet processing latency with cross-flow state caching

NAT Portscan
detector

Trojan
detector

Load
balancer

0

5

10

G
b
p
s

T EO + C + NA EO

Figure 3.15: Per instance throughput. (T = Traditional NF, EO = Exter-
nalized state operations, C = with caching, NA = without waiting for the
ACK)

the max. per NF throughput for traditional NFs is around 9.5Gbps. Under
model #1, load balancer and NAT throughput drops to 0.5Gbps. The for-
mer needs to update a byte counter (which takes 1 RTT) on every packet;
likewise, the NAT needs three RTTs per packet. The port scan and Trojan
detectors do not experience throughput degradation because they don’t
update state on every packet. Model #3 increases throughput to 9.43Gbps,
matching traditional load balancer and NAT. We repeated our experiment
with the aforementioned single-instance NF chain and observed similar
maximal performance (9.25Gbps with both CHC and traditional NFs) in
Model #3.

Datastore performance We benchmarked the datastore using the work-
load imposed by our state operations. We found that a single instance
of our datastore supports ∼5.1M ops/s (increment at 5.1M ops/s, get at
5.2M ops/s, set at 5.1M ops/s; Table 3.6). The datastore can be easily
scaled to support a greater rate of operations by simply adding multiple

73

instances; each state object is stored at exactly one store node and hence
no cross-store node coordination is needed.

3.6.2 Metadata Overhead

Clocks: The root writes packet clocks to the datastore for fault tolerance.
This adds a 29µs latency per packet (dominated by RTT). We optimize
further by writing the clock to the store after every nth packet.5 The
average overhead per packet reduces to 3.5µs and 0.4µs for n = 10, 100.

Packet logging: We evaluated two models of logging: 1) locally at the
root, 2) in the datastore. The former offers better performance, adding
1µs latency per packet, whereas the latter adds 34.2µs but is more fault
tolerant (for simultaneous root and NF failures). We also studied the
overhead imposed by the framework logging clocks and operations at
NFs, the datastore logging clocks and state, and the XOR-ing of identifiers
(§3.4.4); the performance impact for our chain (latency and throughput
overhead) was negligible (< 1%).

XOR check and delete request: (§3.4.4) XOR checks of bit vectors are
performed asynchronously in the background and do not introduce any
latency overhead. However, ensuring the successful delivery of “delete”
request to root before forwarding the packet introduces a median latency
overhead of 7.9µsec. Asynchronous “delete” request operation eliminates
this overhead but failure of the last NF in a chain may result in duplicate
packets at the receiver end host.

3.6.3 Correctness Requirements: R1–R6

R1: State availability: Using our NAT, we compare FTMB’s [106] check-
pointing approach with CHC writing all state to a store. We could not

5After a crash, this may lead the root to assign to a packet an already assigned clock
value. To overcome this issue, the root starts with n + last update so that clock values
assigned to packets represent their arrival order.

74

obtain access to FTMB’s code; thus, we emulate its checkpointing over-
head using a queuing delay of 5000µs after every 200ms (from Figure 6 in
[106]). Figure 3.17 (with 50% load level) shows that checkpointing in FTMB
has a significant impact: the 75th%-ile latency is 25.5µsec – which is 6X
worse than that under CHC (median is 2.7X worse). FTMB’s checkpoint-
ing causes incoming packets to be buffered. Because of externalization
in CHC, there is no need for such checkpointing. Also, FTMB does not
support recovery of the packet logger [106]. CHC intrinsically supports
this (§3.4.4), and we evaluate it in §3.6.3.

R2: Cross-instance state transfers: We elastically scale up NAT as fol-
lows: We replay our trace for 30s through a single instance; midway
through replay, we reallocate 4000 flows to a new instance, forcing a
move of the state corresponding to these flows. We compare CHC with
OpenNF’s loss-free move; recall that CHC provides both loss-freeness
and order preservation. CHC’s move operation takes 97% or 35X less
time (0.071ms vs 2.5ms), because, unlike OpenNF, CHC does not need
to transfer state. It notifies the datastore manager to update the relevant
instance_IDs. However, when instances are caching state, they are required
to flush cached state operations before updating instance_IDs. Even then,
CHC is 89% better because it flushes only operations.

R3: Cross-instance state sharing: We compare CHC against OpenNF
w.r.t. the performance of strongly consistent shared state updates across
NAT instances, i.e., updates are serialized according to some global order.
Figure 3.16 (with 50% load level) shows that CHC’s median per-packet
latency is 99% lower than OpenNF’s (1.8µs vs 0.166ms). The OpenNF con-
troller receives all packets from NFs; each is forwarded to every instance;
the next packet is released only after all instances ACK. CHC’s store simply
serializes all instances’ offloaded operations.

R4: Chain-wide ordering: We revisit the chain in Figure 3.2. Each
scrubber instance processes either FTP, SSH, or IRC flows. To measure

75

100 101 102 103

Pkt processing time (usec)

0.0

0.5

1.0
C

D
F

o
f

p
kt

s

OpenNF

CHC

Figure 3.16: State sharing.

100 101 102 103

Pkt processing time (usec)

0.0

0.5

1.0

C
D

F
o
f

p
kt

s

FTMB

CHC

Figure 3.17: Fault recovery.

30%load 50%load
Duplicate packets 13768 34351
Duplicate state updates 233 545

Table 3.18: Duplicate packet and state update at the downstream portscan
detector without duplicate suppression.

the accuracy of the Trojan detector, we added the signature of a Trojan
at 11 different points in our trace. We use three different workloads with
varying upstream NF processing speed: W1) One of the upstream NFs
adds a random delay between 50-100µs to each packet. W2) Two of the
upstreams add the random delay. W3) All three add random delays. We
observed that CHC’s use of chain-wide logical clocks helps the Trojan
detector identify all 11 signatures. We compare against OpenNF which
does not offer any chain-wide guarantees; we find that OpenNF misses 7,
10, and 11 signatures across W1–W3.

R5: Duplicate suppression: Here, we emulated a straggler NAT by
adding a random per packet delay between between 3-10µs. A portscan
detector is immediately downstream from the NAT. CHC launches a clone
NAT instance according to §3.4.3. We vary the input traffic load. Table 3.18
shows the number of duplicate packets generated by the NAT instances
under different loads, as well as the number of duplicate state updates
at the portscan detector – which happen whenever a duplicate packet

76

0 2000 4000 6000

Time (usec)

0
1000
2000
3000
4000
5000
6000

P
kt

 p
ro

c.

 t
im

e
(u

se
c) 30% load

50% load

Figure 3.19: Packet proc time.

triggers the scan detector to spuriously log a connection setup/teardown
attempt. Duplicate updates create both false positives/negatives and their
incidence worsens with load. No existing framework can detect such
duplicate updates; CHC simply suppresses them.

R6: Fault Tolerance: We study CHC failure recovery.
NF Failure: We fail a single NAT instance and measure the recovery and

per packet processing times. Our NAT performs non-blocking updates
without waiting for the framework ACK; here, we use the 32bit vector
(§3.4.4) to enable recovery of packets whose non-blocked operations are
not yet committed to the store. To focus on CHC’s state recovery, we
assume the failover container is launched immediately. Figure 3.19 shows
the average processing time of packets that arrive at the new instance
at two different loads. The average is calculated over 500µs windows.
Latency during recovery spikes to over 4ms, but it only takes 4.5ms and
5.6ms at 30% and 50% loads, resply., for it to return to normal.

Root failure: Recovering a root requires just reading the last updated
logical clock from the datastore and flow mapping from downstream NFs.
This takes < 41.2µs.

Datastore instance failure: Recovering a datastore instance failure re-
quires reading per-flow state from NFs using it, and replaying update
operations to rebuild shared state. Reading the latest values of per-flow

77

5 instances 10 instances
0

200

400

600

m
se

c

30 msec

75 msec

150 msec

Figure 3.20: Store recovery.

state is fast. Recovering shared state however is more time-consuming.
Figure 3.20 shows the time to rebuild shared state with 5 and 10 NAT
instances updating the same state objects at a single store instance. We
replayed the state update operation logs generated by these instances.
The instances were processing 9.4Gbps of traffic; periodic checkpoints
occurred at intervals of 30ms, 75ms, and 150ms. The recovery time is 6
388.2ms for 10 NATs with checkpoints at 150ms intervals. In other words,
a storage instance can be quickly recovered.

3.7 Conclusion

We presented a ground-up NFV framework called CHC to support COE
and high performance for NFV chains. CHC relies on managing state
external to NFs, but couples that with several caching and state update
algorithms to ensure low latency and high throughput. In addition, it
leverage simple metadata to ensure various correctness properties are
maintained even under traffic reallocation, NF failures, as well as failures
of key CHC framework components.

78

4
StateAlyzr

In chapter 2, we designed a scheme to ensure strong CPU isolation in
containerized environments, and in chapter 3, we designed a ground
up framework to support chain output equivalence (COE) and high
performance for NFV chains. In this chapter, we present Statealyzr,
a system we designed to simplify the process of modifying middle-
boxes or network functions to work with new frameworks such as
[25, 31, 48, 53, 69, 86, 93, 96, 98, 104, 106, 117]. Middleboxes are com-
plex softwares with multiple state objects which require explicit handling
to ensure fault tolerance and provide elastic scaling.

To reduce manual effort and ease adoption, we develop StateAlyzr, a
system that relies on data and control-flow analysis to automate identification
of state objects that need explicit handling. Using StateAlyzr’s output,
developers can easily make framework-compliant changes to arbitrary
middleboxes, e.g., identify which state to allocate using custom libraries
for [69, 96, 98], determine where to track updates to state [53, 98, 106],
(de)serialize relevant state objects for transfer/cloning [53], and merge
externally provided state with internal structures [53, 96]. In practice we
find StateAlyzr to be highly effective. For example, leveraging StateAlyzr
to make PRADS OpenNF-compliant took under 6 man-hours of work.

Importantly, transferring/cloning state objects identified with State-
Alyzr is provably sound and precise. The former means that the aggregate
output of a collection of instances following redistribution is equivalent to
the output that would have been produced had redistribution not occurred.

79

The latter means that StateAlyzr identifies minimal state to transfer so
as to ensure that redistribution offers good performance and incurs low
overhead.

However, achieving high precision without compromising soundness
is challenging. Key attributes of middlebox code contribute to this: e.g.,
numerous data structures and procedures, large callgraphs, heavy use of
(multi-level) pointers, and indirect calls to packet processing routines that
modify state (See Table 4.3).

To overcome these challenges, StateAlyzr cleverly adapts program
analysis techniques, such as slicing [63, 116] and pointer analysis [24, 108],
to typical middlebox code structure and design patterns, contributing new
algorithms for detailed classification of middlebox state. These algorithms
can automatically identify: (i) variables corresponding to state objects
that pertain to individual or groups of flows, (ii) the subset of these that
correspond to state objects that can be updated by an arbitrary incoming
packet at runtime, (iii) the flow space corresponding to a state object,
(iv) middlebox I/O actions that are impacted by each state object, and (v)
objects updated at runtime by an incoming packet.

To evaluate StateAlyzr, we both prove that our algorithms are sound
(Appendix A.1) and use experiments to demonstrate precision and the
resultant impact on the efficiency of state transfer/cloning. We run State-
Alyzr on four open source middleboxes—Passive Real-time Asset Detec-
tion System (PRADS) [16], HAProxy load balancer [5], Snort Intrusion
Detection System [19], and OpenVPN gateway [15]—and find:

• StateAlyzr’s algorithms improve precision significantly: whereas the
middleboxes have 1500-18k variables, only 29-131 correspond to state
that needs explicit handling, and 10-148 are updateable at run time.
By automatically identifying updateable state, StateAlyzr allows de-
velopers to focus on the necessary subset of variables among the
many present. StateAlyzr can be imprecise: 18% of the updateable

80

variables are mis-labeled (they are in fact read-only), but the infor-
mation StateAlyzr provides allows developers to ignore processing
these variables.

• Using StateAlyzr output, we modified PRADS and Snort to support
fault tolerance using OpenNF [53]. We find that StateAlyzr reduces
the manual effort needed. We could modify Snort (our most complex
middlebox) and PRADS in 90 and 6 man-hours, respectively. Further,
by helping track which flowspace an incoming packet belongs to,
and which state objects it had updated, StateAlyzr reduces unneeded
runtime state transfers between the primary and backup instances
of PRADS and Snort by 600× and 8000× respectively compared to
naive approaches.

• StateAlyzr can process middlebox code in a reasonable amount of
time. Finally, it helped us identify important variables that we missed
in our earlier modifications to PRADS, underscoring its usefulness.

4.1 Motivation

A central goal of NFV is to create more scalable and fault tolerant mid-
dlebox deployments, where middleboxes automatically scale themselves in
accordance with network load and automatically heal themselves when soft-
ware, hardware, or link failures occur [11]. Scaling, and possibly fault tol-
erance, requires launching middlebox instances on demand. Both require
redistributing network traffic among instances, as shown in Figure 4.1.

4.1.1 Need for Handling State

Middlebox scaling and failure recovery should be transparent to end-users
and applications. Key to ensuring this is maintaining output equivalence:
for any input traffic stream, the aggregate output of a dynamic set of

81

1
Launch
instance

Start buffering traffic

SDN
Controller

2

3

Transfer
state

4
Release buffered

traffic

Redistribute
traffic 5

(a) Scaling with Split/Merge [98]

Launch VM

Failure!

Snapshot VM

Log state accesses
and packets

2

1
Persistent
storage

4

Reprocess
packets

5

3

6
Redistribute
traffic

(b) Failure recovery with FTMB [106]

Figure 4.1: Scaling and failure recovery process with recently state man-
agement frameworks

middlebox instances should be equivalent to the output produced by
a single, monolithic, always-available instance that processes the entire
input [98]. The output may include network traffic and middlebox logs.

As shown in prior works [53, 98, 106], achieving output equivalence
is hard because middleboxes are stateful. Every packet the middlebox
receives may trigger updates to multiple pieces of internal state, and mid-
dlebox output is highly dependent on the current state. Thus, malfunctions
can occur when traffic is rerouted to a middlebox instance without the rele-
vant internal state being made available at the instance. Approaches like naively
rerouting newly arriving flows or forcibly rerouting flows with pertinent
state can violate output equivalence. The reader is referred to [53, 96] for
a more formal treatment of the need to handle internal state.

4.1.2 Approaches for Handling State

Traditional approaches for replicating and sharing application state are
resource intensive and slow [53, 96, 98]. Thus, researchers have introduced
fast and efficient frameworks that transfer, clone, or share live internal
middlebox state across instances. Examples include: Split/Merge [98] and
StatelessNF [69] that focus on elasticity; Pico replication [96] and FTMB [106]
that focus on fault tolerance; and OpenNF [53] that applies to both. Unfor-

82

Required Modifications
State State Serial- Merge

Framework Provides Alloc. Access ization State
Split/Merge [98] Elasticity X X X
Pico Rep. [96] Fault tol. X X
OpenNF [53] Both X X
FTMB [106] Fault tol. X
StatelessNF [69] Both X X

Table 4.2: Middlebox modifications in different frameworks

tunately, these frameworks require detailed modifications to middlebox
code to handle state (see Table 4.2):

• Split/Merge [98] and Pico Replication [96] require middleboxes to
allocate and access all per- and cross-flow state—i.e., state that sup-
ports the processing of multiple packets within and across flows,
respectively—through a specialized shared library, instead of using
system-provided functions (e.g., malloc). This allows the frame-
works to transfer and replicate middlebox state without serializing
or updating middlebox-internal structures.

• OpenNF [53] requires middleboxes to identify and serialize per- and
cross-flow state objects pertaining to a particular flowspace, as well
as deserialize and integrate objects received from other middlebox
instances. This allows OpenNF to transfer and copy flow-related
state between middlebox instances.

• FTMB [106] requires middleboxes to log: (i) accesses to cross-flow
state, and (ii) invocations of non-deterministic functions (e.g., gettime-
ofday). The logs allow FTMB to deterministically reprocess packets
on a different middlebox instance in case the current instance fails
before an up-to-date snapshot of its state can be captured.

• StatelessNF [69] requires middleboxes to create, read, and update all
state values from a central, RDMA (remote direct memory access)

83

LOC Classes/ Event Level of Number of Size of
Middlebox (C/C++) Structs based? pointers procedures callgraph
Snort IDS [19] 275K 898 No 10 4617 3391
HAProxy load balancer [5] 63K 191∗ No 8∗ 2560 1018
OpenVPN [15] 62K 194∗ No 2∗ 2023 1184
PRADS asset detector [16] 10K 40 No 4 297 115
Bro IDS [88] 97K 1798 No - 3034 -
Squid caching proxy [20] 166K 875 Yes - 2133 -

*Shows the lower bound. It does not include the number of structs used by the libraries
and kernel.

Table 4.3: Code complexity for popular middleboxes. Those above the line
are analyzed in greater detail later.

based key/value store. This enables any middlebox instance to have
access to any state, and hence any instance can safely process any
packet.

Making the above modifications to middleboxes is difficult because
middlebox code is complex. As shown in Table 4.3, several popular middle-
boxes have between 60K and 275K lines of code (LOC), dozens of different
structures and classes, and, in some cases, complex event-based control
flow. If a developer misses a change to some structure, class, or function,
then output equivalence may be violated under certain input patterns,
and a middlebox may fail in unexpected ways at run time. FTMB is the
only system that aims to avoid such problems. It automatically modifies
middleboxes using LLVM [9]. However, there are two problems: (i) devel-
opers must still manually specify which variables may contain/point-to
cross-flow state; (ii) the tool is limited to Click-based middleboxes [75].

4.1.3 Simplifying Modification and its Requirements

Making the aforementioned changes to even simple middleboxes can take
numerous man-hours as our own experience with OpenNF suggests. This
is a serious barrier to adopting any of the previously mentioned systems.

84

A system that can automatically identify what state a middlebox creates,
where the state is created, and how the state is used could be immensely
helpful in reducing the man-hours. It can provide developers guidance
on writing custom state allocation routines, and on adding appropriate
state filtering, serialization, and merging functions. Thus, it would greatly
lower the barriers to adopting the above frameworks.

Building such a system is challenging because of soundness and preci-
sion requirements. Soundness means that the system must not miss any
types, storage locations, allocations, or uses of state required for output
equivalence. A precise system identifies the minimal set of state that re-
quires special handling to ensure state handling at runtime is fast and
low-overhead.

4.1.4 Options

Well-known program analysis approaches can be applied to identify mid-
dlebox state and its characteristics.
Dynamic analysis. We could use dynamic taint analysis [103] to monitor
which pieces of state are used and modified while a middlebox processes
some sample input. Unfortunately, the sample inputs may not exercise all
code paths, causing the analysis to miss some state. We also find that such
monitoring can significantly slow middleboxes down (e.g., PRADS [16]
and Snort IDS [19] are slowed down > 10×).
Static analysis. Alternatively, we could use symbolic execution [34] or
data-/control-flow analysis [49, 63].1

Symbolic execution can be employed to explore all possible code paths
by representing input and runtime state as a series of symbols rather than
concrete values. We can then track the state used in each path. While

1Abstract interpretation [39] is another candidate, but it suffers from the well known
problem of incompleteness, i.e., it over-approximates the middlebox’s processing and
may not identify all relevant state.

85

this is sound, the complexity of most middleboxes (Table 4.3) makes it
impossible to explore all execution paths in a tractable amount of time. For
example, we symbolically executed PRADS—which has just 10K LOC—for
8 hours using S2E [34], and only 13% of PRAD’s code was covered. The
complexity worsens exponentially for middleboxes with larger codebases.
Recent advances in symbolic execution of middleboxes [44] do not help as
they over come state space explosion by abstracting away middlebox state,
which is precisely what we aim to analyze.

We make clever use of data-/control-flow analysis to automatically eval-
uate how to handle middlebox state. Naively applying standard data-
/control-flow analysis identifies all variables as pertaining to ‘state that
needs handling’ (e.g., variables pertaining to per-packet state, read-only
state, and state that falls outside the scope of a flowspace of interest); if
developers modify a middlebox to specially handle all these variables, it
can result in arbitrarily poor runtime performance during redistribution.
We show how middlebox code structure and design patterns can be used to
design novel algorithms that employ static program analysis techniques in a
way that significantly improves precision without compromising soundness.
Our approach is general and does not assume use of any particular state
management framework.

4.2 Overview of StateAlyzr

Most middleboxes’ code can be logically divided into three basic parts
(Figure 4.4): initialization, packet receive loop, and packet processing.
The initialization code runs when the middlebox starts. It reads and
parses configuration input, loads supplementary modules or files, and
opens log files. All of this can be done in the main() procedure, or in
separate procedures called by main. The packet receive loop is responsible
for reading a packet (or byte stream) from the kernel (via a socket) and

86

while (!done)

packet = receive()

send(packet) write(log)

Packet processing loop

while (event = dequeue())

Event thread

Packet processing procedures

foo()

processIndirect(event)

processIndirect(event)

process(packet)

process(packet)

Main

loopProcedure() init()

raiseEvent()

Figure 4.4: Logical structure of middlebox code

passing it to the packet processing procedure(s). The latter analyzes, and
potentially modifies, the packet. This procedure(s) reads/writes internal
middlebox state to inform the processing of the current (and future) packet.

Our approach consists of three primary stages that leverage this struc-
ture. In each stage we further refine our characterization of a middlebox’s
state. The stages and their main challenges are described next:
1) Identify Per-/Cross-Flow State. In the first stage, we identify the storage
location for all per- and cross-flow state created by the middlebox. The
final output of this stage is a list of what we call top-level variables that
contain or indirectly refer to such state.

Unlike state that is only used for processing the current packet, per-
/cross-flow state influences other packets’ processing. Consequently, the
lifetime of this state extends beyond the processing a single packet. We
leverage this property, along with knowledge of the relation between
variable and value lifetimes, to first identify variables that may contain or
refer to per-/cross-flow state.

We improve precision by considering which variables are actually used
in packet processing code, thereby eliminating variables that contain or
refer to state that is only used for middlebox initialization. We call the
remaining variables “top-level”. The main challenge here is dealing with
indirect calls to packet processing in event-based middleboxes (Figure 4.4),
which complicate the task of identifying all packet processing code. We

87

develop an algorithm that adapts forward program slicing [63] to address
this challenge (§4.3.1).
2) Identify Updateable State. The second stage further categorizes state
based on whether it may be updated while a packet is processed. If
state is read-only, we can avoid repeated cloning (in Pico Replication and
OpenNF), avoid unnecessary logging of accesses (FTMB), and allow si-
multaneous access from multiple instances (StatelessNF); all of these will
reduce the frameworks’ overhead. We can trivially identify updateable
state by looking for assignment statements in packet processing proce-
dures. However, this strawman is complicated by heavy use of pointers in
middlebox code which can be used to indirect state update. To address this
challenge we show how to employ flow-, context-, and field-insensitive
pointer analysis [24, 108] (§4.3.2).
3) Identify States’ Flowspace Dimensions. Finally, the third stage deter-
mines a state’s flowspace: a set of packet header fields (e.g. src_ip, dest_ip,
src_port, dest_port & proto) that delineate the subset of traffic that relates
to the state. Flowspace must be considered when modifying a middlebox
to use custom allocation functions [96, 98] or filter state in preparation
for export [53]. It is important to avoid the inclusion of irrelevant header
fields and the exclusion of relevant fields in a state’s flowspace, because it
impacts runtime correctness and performance, respectively. To solve this
problem we developed an algorithm that leverages common state access
patterns in middleboxes to identify program points where we can apply
program chopping [99] to determine relevant header fields (§4.3.3).
Soundness. In order for StateAlyzr to be sound it is necessary for these
three stages to be sound. In Appendix A.1, we prove the soundness of our
algorithms.
Assumptions about middlebox code. Our proofs are based on the as-
sumption that middleboxes use standard API or system calls to read/write
packets and hashtables or link-lists to store state. These assumption are

88

not limitations of our analysis algorithms. Instead, they are made to ease
the implementation of StateAlyzr. Our implementation can be extended
to add additional packet read/write methods or other data structures to
store the state.

4.3 StateAlyzr Foundations

We now describe our novel algorithms for detailed state classification. To
describe the algorithms, we use the example of a simple middlebox that
blocks external hosts creating too many new connections (Figure 4.3).

1 s t r u c t host {
2 uint ip ;
3 i n t count ;
4 s t r u c t host ∗next ;
5 }
6
7 pcap_t ∗ intPcap , ∗extPcap ;
8 i n t threshold ;
9 char ∗ queue [1 0 0] ;

10 i n t head = 0 , t a i l = 0 ;
11 s t r u c t host ∗hosts = NULL;
12
13 i n t main (i n t argc , char ∗∗argv) {
14 pthread_t thread ;
15 intPcap = pcap_create (argv [0]) ;
16 extPcap = pcap_create (argv [1]) ;
17 threshold = a t o i (argv [2]) ;
18 pthread_create (&thread , (void∗)& processPacket) ;
19 }
20
21 i n t loopProcedure () {
22 while (1) {
23 s t r u c t pcap_pkthdr pcapHdr ;
24 char ∗pkt = pcap_next (extPcap , &pcapHdr) ;
25 i f F u l l _ W a i t () ;
26 enqueue (pkt) ;
27 i f (entry−>count < threshold)
28 p c a p _ i n j e c t (intPcap , pkt , pcapHdr−>caplen) ;
29 } }

89

30
31 void enqueue (char∗ pkt) {
32 head = (head + 1)%100;
33 queue [head] = pkt ;
34 }
35
36 char∗ dequeue () {
37 i n t ∗ index = &t a i l ;
38 ∗ index = (∗ index + 1)%100;
39 return queue [∗ index] ;
40 }
41
42 void processPacket () {
43 while (1) {
44 ifEmpty_Wait () ;
45 char∗ pkt = dequeue () ;
46 s t r u c t ethhdr ∗ethHdr = (s t r u c t ethhdr) pkt ;
47 s t r u c t iphdr ∗ ipHdr = (s t r u c t iphdr ∗) (ethHdr + 1) ;
48 s t r u c t tcphdr ∗ tcpHdr = (s t r u c t tcphdr ∗) (ipHdr + 1) ;
49 s t r u c t host ∗ entry = lookup (ipHdr−>saddr , hosts) ;
50 i f (NULL == host) {
51 s t r u c t host ∗new = malloc (s i z e o f (s t r u c t host)) ;
52 new−>ip = ipHdr−>saddr ;
53 new−>next = hosts ;
54 hosts = new ;
55 }
56 i f (tcpHdr−>syn && ! tcpHdr−>ack)
57 entry−>count ++;
58 } }
59
60 s t r u c t host ∗ lookup (uint ip) {
61 s t r u c t host ∗ curr = hosts ;
62 while (curr != NULL) {
63 i f (curr−>ip == ip)
64 return curr ;
65 curr = curr−>next ;
66 } }

Figure 4.5: Code for our running example.

90

4.3.1 Per-/Cross-Flow State

Our analysis begins by identifying the storage location for all relevant
per- and cross-flow state created by the middlebox. This has two parts: (i)
exhaustively identifying persistent variables to ensure soundness, and (ii)
carefully limiting to top-level variables that contain or refer to per-/cross-
flow values to ensure precision.

Identifying Persistent Variables

Because per-/cross-flow state necessarily influences two or more packets
within/across flows, values corresponding to such state must be created
during or prior to the processing of one packet, and be destroyed during
or after the processing of a subsequent packet. Hence, the corresponding
variables must be persistent, i.e., their values persist beyond a single iter-
ation of the packet processing loop. In Figure 4.3, variables declared on
lines 7 to 11 are persistent, whereas curr on line 61 is not. Our algorithm
first identifies such variables.

Input: prog
Output: persistVars

1 persistVars = {}
2 persistVars = persistVars ∪ GlobalVarDecls(prog)
3 foreach proc in Procedures(prog) do
4 persistVars = persistVars ∪ StaticVarDecls(proc)
5 persistVars = persistVars ∪ LocalVarDecls(loopProc)
6 persistVars = persistVars ∪ FormalParams(loopProc)

Figure 4.6: Identifying persistent variables

Analysis Algorithm. We traverse a middlebox’s code, as shown in Fig-
ure 4.6. The values of all global and static variables exist for the entire
duration of the middlebox’s execution, so these variables are always persis-

91

tent. Variables local to the loop-procedure2—i.e., the procedure containing
the packet processing loop—exist for the duration of this procedure, and
hence the duration of the packet processing loop, so they are also persis-
tent.

Local variables of procedures that precede the loop-procedure on the
call stack are also persistent, because the procedures’ stack frames last
longer than the packet processing loop. However, these variables cannot
be used within the packet processing loop, or a procedure called therein,
because the variables are out of scope. Thus we exclude these from our
list of persistent variables, improving precision.

The above analysis implicitly considers heap-allocated values by con-
sidering the values of global, static, and local variables, which can point to
values on the heap. Values on the heap exist until they are explicitly freed
(or the middlebox terminates), but their usable lifetime is limited to the time
frame in which they are reachable from a variable’s value.3 Therefore, we
can conclude that a heap-allocated value’s persistence is predicated on
the persistence of a variable identified by our algorithm.

Limiting to Top-level Variables

The above algorithm identifies a superset of variables that may be bound,
or point, to per-/cross-flow state. It includes variables bound to state
used in initialization for loading/processing configuration/signature files:
e.g., variables intPcap and extPcap in Figure 4.3. Such variables don’t need
handling during traffic redistribution; they can simply be copied when an
instance is launched. To eliminate such variables and improve precision,
the key insight we leverage is that, by definition, per-/cross-flow state is
used in some way during packet processing. However, identifying all such
variables is non-trivial, and missing variables impact analysis soundness.

2To automatically detect packet processing loops, we use the fact that middleboxes

92

Input: prog, persistVars
Output: pktProcs, percrossflowVars

1 pktProcs = {}
2 sdg = SystemDependenceGraph(prog)
3 foreach stmt in Statements(loopProc) do //Statements() returns all

statements in a procedure
4 if stmt calls PKT_RECV_FUNC then
5 slice = ForwardSlice(sdg, stmt, stmt.LHS)
6 pktProcs = pktProcs ∪ Procedures(slice) //Procedures() returns all

procedures in a slice
7 percrossflowVars = {}
8 foreach proc in pktProcs do
9 foreach stmt in Statements(proc) do

10 foreach var in Vars(stmt) do
//Vars() returns all variables used in a statement

11 if var in persistVars then
12 percrossflowVars = percrossflowVars ∪ {var}

Figure 4.7: Identifying per-/cross-flow variables

Identifying Packet Processing Procedures. Figure 4.7 shows our algo-
rithm for identifying top-level variables that contain or refer to per-/cross-
flow values. The first half of the algorithm (lines 1–6) focuses on iden-
tifying packet processing code. Obviously any code contained in the
packet processing loop is used for processing packets, but, crucially, the
code of procedures (indirectly) called from within the loop is also packet
processing code.

We considered a strawman approach of using call graphs to identify
packet processing procedure. A call graph is constructed by starting at
each procedure call within the packet processing loop, and classifying
each appearing procedure as a packet processing procedure. However,
this analysis does not capture packet processing procedures that are called
indirectly. The Squid proxy, e.g., does initial processing of the received

read packets using standard library/system functions.
3A heap value whose lifetime is longer than its usable lifetime is a memory leak.

93

packet, then enqueues an event to trigger further processing through
later calls to additional procedures. Hence the analysis may incorrectly
eliminate some legitimate per-/cross-flow state which is used in such
procedures.

Thus, we need an approach that exhaustively considers the dependen-
cies between the receipt of a packet and both direct and indirect invocations
of packet processing procedures. Below, we show how system dependence
graphs [49] and program slicing [63] can be used for this.

A system dependence graph (SDG) consists of multiple program depen-
dence graphs (PDGs) — one for each procedure. Each PDG contains
vertices for each statement along with their data and control dependency
edges. A data dependence edge is created between statements p and q if
there is an execution path between them, and pmay update the value of
some variable that q reads. A control dependence edge is created if p is a
conditional statement, and whether or not q executes depends on p. A
snippet of the control and data edges for our example in Figure 4.3 is in
Figure 4.8.

Whereas control edges capture direct invocations of packet processing,
we can rely on data edges to capture indirect procedure calls. For example,
the dashed yellow lines in Figure 4.8 fail to capture invocation of the
processPacket procedure on bottom right (because there is no control edge
from the while loop or any of its subsequent procedures to processPacket).
In contrast, we can follow the data edges, the dashed red line, to track
such calls.

Given a middlebox’s SDG, we compute a forward program slice from
a packet receive function call for the variable which stores the received
packet. A forward slice contains the set of statements that are affected by the
value of a variable starting from a specific point in the program [63]. Most
middleboxes use standard library/system functions to receive packets—
e.g., pcap_next, or recv—so we can easily identify these calls and the vari-

94

entry
loopProcedure

pcapHdr

PDG – loopProcedure()

while 1

call ifFull_wait
call pcap_next

call enqueue

pkt = ret

pktin = pkt

entry
pcap_next

entry
processPacket

entry
enqueue

entry
dequeue

pkt = pktinhead =
(head+1)%100

queue[head]
= pkt

pkt =
queue[*index] *index =

(*index+1)%100

ret = pkt

queue

head

tail

while 1

call dequeue

pkt = ret

*index = &tail

hosts = NULL

PDG – pcap_next()

PDG –
enqueue()

PDG – processPacket()

PDG – dequeue()

PDG –
#System()

legend
data edge

control edge

Figure 4.8: Snippet of System dependence graph (SDG) for the code in
Figure 4.3; green edges indicate data dependencies and blue edges indicate
control dependencies; light yellow nodes represent formal and actual
parameters, while dark yellow nodes represent return values.

able pointing to the received packet. We consider any procedure ap-
pearing in the computed slice to be a packet processing procedure. For
middleboxes which invoke packet receive functions at multiple points,
we compute forward slices from every call site and take the union of the
procedures appearing in all such slices.
Values Used in Packet Processing Procedures. The second half of our
algorithm (Figure 4.7, lines 7–12) focuses on identifying persistent values
that are used within some packet processing procedure. We analyze each
statement in the packet processing procedures. If the statement contains
a persistent variable, then we mark that persistent variable as a top-level

95

variable.

4.3.2 Updateable State

Next, we delineate updateable top-level variables from read only variables to
further improve precision. In Figure 4.3, variable head, tail, hosts and queue
are updateable, whereas threshold is not. Because state is updated through
assignment statements, one strawman choice here is to statically identify
top-level variables on the left-hand-side (LHS) of assignment statements.
In Figure 4.3, this identifies head, hosts and queue.

However, this falls short due to aliasing, where multiple variables are
bound to the same storage location due to the use of pointers [35]. Aliasing
allows a value reachable from a top-level variable to be updated through
the use of a different variable. Thus our strawman can mis-label top-level
variables as read-only, compromising soundness. For example, tail is mis-
labeled in Figure 4.3, because it never appears on the LHS of assignment
statements. But on line 38 index is updated which points to tail.

Input: pktProcs, percrossflowVars
Output: updateableVars

1 percrossflowVars = {}
2 foreach proc in pktProcs do
3 foreach stmt in AssignmentStmts(proc) do //AssignmentStmts() returns all

assignment statements in a procedure
4 foreach var in percrossflowVars do
5 if stmt.LHS == var

or var in PointsTo(stmt.LHS)
or PointsTo(var) ∩ PointsTo(stmt.LHS) 6= ∅ then

6 updateableVars = updateableVars ∪ {var }

Figure 4.9: Identifying updateable variables

Analysis Algorithm. We develop an algorithm to identify updateable top-
level variable (Figure 4.9). Since we are concerned with variables whose

96

(referenced) values are updated during packet processing, we analyze
each assignment statement contained in the packet processing procedures
identified in the first stage of our analysis (§12). If the assignment state-
ment’s LHS contains a top-level variable, then we mark the variable as
updateable (similar to our strawman). Otherwise, we compute the points-to
set for the variable on the LHS and compare this with the set of update-
able top-level variables and their points-to sets. A variable’s points-to set
contains all variables whose associated storage locations are reachable
from the variable. To compute this set, we employ flow-, context-, and
field-insensitive pointer analysis [24]. If the points-to set of the variable
on the LHS contains a top-level variable, or has a non-null intersection
with the points-to set of a top-level variable, then we mark the top-level
variable as updateable.

Due to limitations of pointer analysis, our algorithm may still mark
read-only top-level variables as updateable. E.g., field insensitive pointer
analysis can mark a top-level struct variable as updateable even if just one
of its sub-fields is updateable.

4.3.3 State Flowspaces

Finally, we identify the packet header fields that define the flowspace
associated with the values of each top-level variable. Identifying too fine-
grained of a flowspace for a value—i.e., more header fields than those
that actually define the flowspace—is unsound; such an error will cause
a middlebox to incorrectly filter out the value when it is requested by
a middlebox state management framework [53, 69, 96, 98]. Contrarily,
assuming an overly permissive flowspace (e.g., the entire flowspace) for a
value hurts precision.

To identify flowspaces, we leverage common middlebox design pat-
terns in updating or accessing state. Middleboxes typically use simple
data structures (e.g., a hash table or linked list) to organize state of the

97

same type for different network entities (connections, applications, sub-
nets, URLs, etc.). When processing a packet, a middlebox uses header
fields4 to lookup the entry in the data structure that contains a reference
to the values that should be read/updated for this packet. In the case of
a hash table, the middlebox computes an index from the packet header
fields to identify the entry pointing to the relevant values. For a linked
list, the middlebox iterates over entries in the data structure and compares
packet header fields against the values pointed to by the entry.

Input: pktProcs, percrossflowVars
Output: chop, flowspace

1 keyedVars = {}
2 foreach var in percrossflowVars do
3 if Type(var) == pointer

or Type(var) == struct then
4 keyedVars = keyedVars ∪ {keyedVars}
5 foreach proc in pktProcs do
6 foreach loopStmt in LoopStmts(proc) do
7 condVars = {}
8 foreach var in Vars(loopStmt.condition) do
9 if var in keyedVars

or PointsTo(var) ∩ keyedVars 6= ∅ then
10 for condStmt in ConditionalStmts(loopStmt.body) do
11 for condVar in Vars(condStmt) do
12 if condVar 6= var then
13 condVars = condVars ∪ {condVar}
14 chop = Chop(sdg,pktVar,condVars)
15 flowspace = ExtractFlowspace(chop)

Figure 4.10: Identifying packet header fields that define a
per-/cross-flow variable’s associated flowspace

Algorithm. We leverage the above design patterns in our algorithm shown
in Figure 4.10. In the first step (lines 2-4), if the top-level variable is a struct

4In cases where keys are not based on the packet header fields e.g. URL, a middlebox
usually keeps another data structure to maintain the mapping between such keys and
packet header fields

98

or a pointer, we mark it as a possible candidate for having a flowspace
associated with it. This filters out all the top-level variables which cannot
represent more than one entry; e.g., variables head and tail in Figure 4.3.

We assume that middleboxes use hash tables or linked lists to organize
their values,5 and that these data structures are accessed using:
square brackets, e.g.

entry = table[index];
pointer arithmetic, e.g.

entry = head + offset;
or iteration6, e.g.

while(entry->next!=null){entry=entry->next;}
for(i=0; i<list.length; i++) {...}

The second step is thus to identify all statements like these where a top-
level variable marked above is on the right-hand-side (RHS) of the state-
ment (square brackets or pointer arithmetic scenario) or in the conditional
expression (iteration scenario).

When square brackets or pointer arithmetic are used, we compute a chop
between the variables in the access statement and the variable containing
the packet returned by the packet receive procedure. A chop between a
set of variables U at program point p and a set of variables V at program
point q is the set of statements that (i) may be affected by the value of
variables in U at point p, and (ii) may affect the values of variables in V at
point q. Thus, the chop we compute above is a snippet of executable code
which takes a packet as input and outputs the index or offset required to
extract the value from the hashtable.

In a similar fashion, when iteration is used, we identify all conditional
statements in the body of the loop. We compute a chop between the
packet returned by the packet receive procedure and the set of all the

5Our approach can easily be extended to other data structures.
6Middleboxes may also use recursion, but we have not found this access pattern in

the middleboxes we study, so we do not consider it in our algorithm.

99

variables in the conditional expression which do not point to any of the
top-level variables; in our example (Figure 4.3), the chop starts at line 24
and terminates at line 63. We output the resulting chops, which collectively
contain all conditional statements that are required to lookup a value in
a linked list data structure based on a flow space definition. Assuming
that the middlebox accesses packet fields using standard system-provided
structs (e.g., struct ip as defined in netinet/ip.h), we conduct simple string
matching on the code snippets to produce a list of packet header fields
that define a state’s flowspace.

4.4 Enhancements

Data and control flow analysis can help improve precision, but they have
some limitations in that they cannot guarantee that exactly the relevant
state and nothing else has been identified. In particular, static analysis
cannot differentiate between multiple memory regions that are allocated
through separate invocations of malloc from the same call site. Therefore,
we cannot statically determine if only a subset of these memory regions
have been updated after processing a set of packets. To overcome potential
efficiency loss due to such limitations, we can employ custom algorithms
that boost precision in specific settings. We present two candidates below.

4.4.1 Output-Impacting State

In addition to the three main code blocks (Figure 4.4), middleboxes may
optionally have packet and log output functions. These pass a packet to
the kernel for forwarding and record the middlebox’s observations and
actions in a log file, respectively. These functions are usually called from
within the packet processing procedure(s).

In some cases, operators may desire output equivalence only for specific
types of output. For example, an operator may want to ensure client

100

connections are not broken when a NAT fails—i.e., packet output should
be equivalent—but may not care if the log of NAT’d connections is accurate.
In such cases, internal state that only impacts non-essential forms of output
does not need special handling during redistribution and can be ignored.

To aid such optimizations, we develop an algorithm to identify the
type of output that updateable state affects. We use two key insights. First,
middleboxes typically use standard libraries and system calls to produce
packet and log output: either PCAP (e.g. pcap_dump) or socket (e.g. send)
functions for the former, and regular I/O functions (e.g. write) for the lat-
ter.7 Second, the output produced by these functions can only be impacted
by a handful of parameters passed to these functions. Thus, we focus on the
call sites of these functions, and their parameters.

Input: sdg, updateableVars
Output: pktoutputVars, logoutputVars

1 pktoutputVars = {}
2 logoutputVars = {}
3 foreach proc in pktProcs do
4 foreach stmt in Statements(proc) do
5 if stmt calls PKT_OUTPUT_FUNC

or stmt calls LOG_OUTPUT_FUNC then
6 slice = BackwardSlice(sdg, stmt,

Vars(stmt.RHS))
7 foreach sliceStmt in Statements(slice) do
8 foreach var in Vars(sliceStmt) do
9 if var in updateableVars then

10 if stmt calls PKT_OUTPUT_FUNC then
11 pktoutputVars = pktoutputVars ∪ {var}
12 else
13 logoutputVars = logoutputVars ∪ {var}

Figure 4.11: Identifying output-impacting variables

Algorithm. We use program slicing [63] to identify the dependencies be-
7Our approach can be easily extended to consider non-standard output functions.

101

tween a specific type of output and updateable variables. Our algorithm
is shown in Figure 4.11. We first identify the call sites of packet or log
output functions by checking each statement in each packet processing
procedure (§12). Then we use the SDG produced in the first stage of our
analysis (Figure 4.7) to compute a backward slice from each call site. Such a
slice contains the set of statements that affect (i) whether the procedure
call is executed, and (ii) the value of the variables used in the procedure
call, such as the parameters passed to the output function. We examine
each statement in a backward slice to determine whether it contains an up-
dateable per-/cross-flow variable. Such variables are marked as impacting
packet (or log) output.

4.4.2 Tracking Runtime Updates

Developers aiming to design fault-tolerant middleboxes can use the algo-
rithms in §4.3 and §4.4.1 to efficiently clone state to backup instances. For
example, if traffic will be distributed among multiple instances in the case
of failure, then only state whose flowspace overlaps with that assigned
to a specific instance needs to be cloned to that instance. However, the
potential performance gains from these optimizations may be limited due
to constraints imposed by data/control-flow analysis. For example, our
analysis can only identify whether a persistent variable’s value may be
updated during the middlebox’s execution. If we can determine at runtime
exactly which values are updated, and when, then we can further improve
the efficiency of state cloning and speed up failover.

To achieve higher precision, we must use (simple) run time monitoring.
For example, we can track, at run time, whether part of an object is updated
during packet processing. To implement this monitoring, we must modify
the middlebox to set an “updated bit” whenever a value reachable from a
top-level variable is updated during packet processing. Figure 4.12a shows
such modifications, in red, for a simple middlebox. We create a unique

102

1 s t r u c t conn t b l [1 0 0 0] ; // Assigned id 0
2 i n t count ; // Assigned id 1
3 i n t t cpcn t ; // Assigned id 2
4 char updated[3];
5 void main () {
6 while (1) {
7 char ∗pkt = recv () ;
8 updated[1] = 1;
9 count = count + 1 ;

10 s t r u c t ∗ iphdr i = getIpHdr (pkt) ;
11 i f (i−>protoco l == TCP) {
12 hdl(& tcpcnt , &t b l [hash (pkt)] , getTcpHdr (pkt)) ;
13 } } }
14 void hdl (i n t ∗c , s t r u c t conn ∗s , s t r u c t tcphdr ∗ t) {
15 updated[2] = 1;
16 c = c + 1 ;
17 updated[0] = 1;
18 s−>f l a g s = s−>f l a g s | t−>f l a g s ;
19 i f (t−>f l a g s & ACK)
20 updated[0] = 1; // Pruned
21 s−>acknum = t−>acknum ;
22 } }

(a) Example middlebox code instrumented for update tracking at run time;
statements in red are inserted based on our analysis

entry updated[2] = 1

updated[0] = 1

updated[0] = 1

C = c + 1

S->flags = s->flags | t->flags

if (t->flags & ACK)

S->acknum = t->ackum

{ } { 2}

{ 2,0}

{ 2}

{ 2,0} { 2,0}

exit

{ 2,0}

{ 2,0} { 2,0}

(b) Annotated control flow graph used for pruning redundant
updated-bit-setting (shaded) statements

Figure 4.12: Implementing update tracking at run time

103

updated bit for each top-level variable—there are three such variables in
the example—and we set the appropriate bit before any statement that
updates a value that may be reachable from the corresponding variable.

We use the same analysis discussed in §4.3.2 to determine where to
insert statements to set updated bits. For any statement where a top-level
variable is updated, we insert a statement—just prior to the assignment
statement—that sets the appropriate updated bit.

However, this approach can add a lot more code than needed: if one
assignment statement always executes before another, and they always
update the same value, then we only need to set the updated bit before the
first assignment statement. For example, line 21 in Figure 4.12a updates
the same compound value as line 18, so the code on line 20 is redundant.

We use a straightforward control flow analysis to prune unneeded
updated-bit-setting statements. First, we construct a control flow graph
(CFG) for each modified packet processing procedure. Next, we perform
a depth-first traversal of each CFG, tracking the set of updated bits that
have been set along the path; as we traverse each edge, we label it with the
current set of updated bits. Figure 4.12b shows this annotated CFG for the
handleTcp procedure shown in lines 14-22 of Figure 4.12a. Lastly, for each
updated-bit-setting statement in a procedure’s CFG, we check whether
the bit being set is included in the label for every incoming edge. If this is
true, then we prune the statement; e.g., we prune line 20 in Figure 4.12a.

4.5 Implementation

We implement StateAlyzr using CodeSurfer [3] which has built-in support
for constructing CFGs, performing flow- and context-insensitive pointer
analysis, constructing PDGs/SDGs, and computing forward/backward
slices and chops for C/C++ code. CodeSufer uses proven sound algo-
rithms to implement these static analysis techniques. We use CodeSurfer’s

104

Scheme API to access output from these analyses in our algorithms. We
applied StateAlyzr to four middleboxes: PRADS asset monitoring [16] and
Snort Intrusion Detection System [19], HAproxy load balancer [5], and
OpenVPN gateway [15].
Fault Tolerance. We use the output from StateAlyzr to add fault tolerance
to PRADS and Snort, both off-path middleboxes. We added code to both
to export/import internal state (to a standby). We used the output of
our first two analysis phases (§4.3.1 and §4.3.2) to know which top level
variables’ values we need to export, and where in a hot-standby we should
store them. We used the output of our third analysis phase (§4.3.3) as
the basis for code that looks up per-/cross-flow state values. This code
takes a flowspace as input and returns an array of serialized values. We
use OpenNF [53] to transfer serialized values to a hot-standby. Similarly,
import code deserializes the state and stores it in the appropriate location.
We also implemented both enhancements discussed in §4.4.

4.6 Evaluation

We report on the outcomes of applying StateAlyzr to four middleboxes.
We address the following questions:

• Effectiveness: Does StateAlyzr help with making modifications to
today’s middleboxes? How many top-level variables do these mid-
dleboxes maintain, relative to all variables? What relative fractions
of these pertain to state that may need to be handled during redistri-
bution? How precise is StateAlyzr?

• Runtime efficiency and manual effort: To what extent do StateAlyzr’s
mechanisms help improve the runtime efficiency of state redistribu-
tion? How much manual effort does it save?

105

Mbox All Persistent Top Update pkt/log output require
-level -able impacting serialization

PRADS 1529 61 29 10 N.A. / 6 14
Snort 18393 507 333 148 N.A. /148 176
HAproxy 7876 272 176 115 101 / 109 59
OpenVPN 8704 156 131 106 97 / 102 8

Table 4.13: Variables and their properties

• Practical considerations: Does StateAlyzr take prohibitively long to
run (like symbolic execution; §4.1.4)? Is it sound in practice?

4.6.1 Effectiveness

In Table 4.13, we present a variety of key statistics derived for the four
middleboxes using StateAlyzr. We use this to highlight StateAlyzr’s ability
to improve precision, thereby underscoring its usefulness for developers.

The complexity of middlebox code is underscored by the overall num-
ber of variables in Table 4.13, which can vary between 1500 and 18k, and
other relevant code complexity metrics shown in Table 4.3. Thus, manu-
ally identifying state that needs handling, and optimizing its transfer, is
extremely difficult.

We also note from Table 4.13 that StateAlyzr identifies 61-507 variables
as persistent across the four middleboxes. A subset of these, 29-333, are top-
level variables. Finally, 6-148 top-level variables are updateable; operators
only have to deal with handling the values pertaining to these variables
at run time. Snort is the most complex middlebox we analyze (≈275K
lines of code) and has the largest number of top-level variables (333); the
opposite is true for PRADS (10K LOC and 29 top-level variables).

The drastic reduction to the final number of updateable variables shows
that naive approaches that attempt to transfer/clone values corresponding
to all variables can be very inefficient at runtime. (We show this empirically
in §4.6.2.) Even so, the number of updateable variables can be as high as
148, and attempting to manually identify them and argument code suit-

106

1 2 3 4 5 6
Number of packet header fields

0

1

2

#
 o

f u
ni

qu
e

fie
ld

 c
om

bo
s

Snort
PRADS

1 2 3 4 5 6
Number of packet header fields

0

1

2

3

#
 o

f v
ar

ia
bl

es

Snort
PRADS

Figure 4.14: Flowspace dims. of keyed per-/cross-flow vars

ably can be very difficult. By automatically identifying them, StateAlyzr
simplifies modifications; we provide further details in §4.6.2.

Finally, the reductions we observe in going from persistent variables
to top-level variables (16-53% reduction) and further to updateable ones
(19-65% reduction) show that our techniques in §4.3.1 and §4.3.2 offer
useful improvements in precision.

In Figure 4.14, we characterize the flowspaces for the variables found
in Snort and PRADS. From the left figure, we see that Snort maintains
state objects that could be keyed by as many as 5 or 6 header fields; the
maximum number of such fields for PRADS is 3. The figure on the right
shows the number of variables that use a particular number of header
fields as flowspace keys; for instance, in the case of Snort, 3 variables each
are keyed on 1 and 6 fields. The total number of variables keyed on at least
one key is 2 and 10 for Snort and PRADS, respectively (sum of the heights
of the respective bars).

These numbers are significantly lower than the updateable variables
we discovered for these middleboxes (6 and 148, respectively). Digging
deeper into Snort (for example) we find that:

• 111 updateable variables pertain to all flows (i.e., a flowspace key of
“*”). Of these, 59 variables are related to configurations and signa-
tures, while 30 are function pointers (that point to different detection
and processing plugins). These 89 variables can be updated from the

107

command line at middlebox run time (when an operator provides
new configurations and signatures, or new analysis plugins).

• 27 updateable variables—or 18%—are only used for processing a
single packet; hence they don’t correspond to per-/cross-flow state.
This points to StateAlyzr’s imperfect precision. These variables are
global in scope and are used by different functions for processing
a single incoming packet, which is why our analysis labels them as
updateable. A developer can easily identify these variables and can
either remove them from the list of updateable variables or modify
code to make them local in scope.

4.6.2 Runtime efficiency and manual effort

Fault Tolerant Middleboxes

Using fault tolerant PRADS/Snort versions (§4.4), we show that StateAlyzr
helps significantly cut unneeded state transfers, improving state operation
time/overhead.
Man-hours needed. Modifying PRADS based on StateAlyzr analysis took
roughly 6 man-hours, down from over 120 man-hours when we originally
modified PRADS for OpenNF (Two different persons made these modi-
fications.). Modifying Snort, a much more complex middlebox, took 90
man-hours. In both cases, most of the time (> 90%) was spent in writing
serialization code for the data structures identified by StateAlyzr (14 for
PRADS and 176 for Snort; Table 4.13). Providing support for exporting/im-
porting state objects according to OpenNF APIs took just 1 and 2 hours,
respectively.
Runtime benefits. We consider a primary/hot standby setup, where the
primary sends a copy of the state to the hot standby after processing
each packet. We use a university-to-cloud packet trace [59] with around
700k packets for our trace-based evaluation of this setup. The primary

108

instance processes the first half of the trace file until a random point,
and the hot standby takes over after that. We consider three models for
operating the hot standby which reflect progressive application of the
different optimizations in §4.3 and §4.4: (i) the primary instance sends
a copy of all the updateable states to the hot standby, (ii) the primary
instance only sends the state which applies to the flowspace of the last
processed packet, and (iii) in addition to considering the flowspace, we
also consider which top level variables are marked as updated for the last
processed packet.

Figure 4.15a shows the average case results for the amount of per
packet data transferred between the primary and secondary instances for
all three models for PRADS. Transferring state which only applies to the
flowspace of the last processed packet, i.e., the second model, reduces
the data transferred by 305× compared to transferring all per-/cross-flow
state. Furthermore, we find that the third model, i.e., run time marking of
updated state variables, further reduces the amount of data transferred by
2×, on average. This is because not all values are updated for every packet:
the values pertaining to a specific connection are updated for every packet
of that connection, but the values pertaining to a particular host and its
services are only updated when processing certain packets. This behavior
is illustrated in Figure 4.15b, which shows the size of the state transfer
after processing each of the first 200 packets in a randomly selected flow.

We measured the increase in per packet processing time purely due
to the code instrumentation needed to identify state updates for highly
available PRADS. We observed an average increase of 0.04µsec, which is
around 0.14% of the average per packet processing time for unmodified
PRADS.

Figure 4.16 shows the corresponding results for Snort. Transferring
just the updateable state results in a 8800× reduction in the amount of
state transferred compared to transferring all per-/cross-flow state. This

109

0 5k 10k 15k 20k 25k 30k 35k
packet number

100

101

102

103

pe
r p

kt
 s

ta
te

 tr
an

sf
er

 (K
B)

Flowspace
Flowspace + marking
All updateable state
All persistent state

(a)

0 50 100 150
packet number

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

pe
r p

kt
 s

ta
te

 tr
an

sf
er

 (K
B)

Flowspace + marking
Flowspace

(b)

Figure 4.15: (a) Per packet state transfer (b) Per packet state transfer for a
single connection

is because, a significant portion of the persistent state in Snort consists
of configuration and signatures which are never updated during packet
processing. Transferring state which only applies to a particular flowspace
further reduces the data transfer by 2.75×. Unlike PRADS, the amount
of state transfer in the second model remains constant for a particular
flow because most of the state is created on the first few packets of a flow.
Finally, runtime marking further reduces the amount of state transferred
by 3.6×.

Packet/Log Output

Table 4.13 includes the number of variables that impact packet or log
output. For on-path HAproxy (OpenVPN), 87% (91%) of updateable
variables affect packet output; a slightly higher fraction impact log output.
95 (93) variables impact both outputs. A much smaller number impacts
packet output but not log (6 and 4, respectively). Another handful impact
logs but not packets (14 and 9); operators who are interested in just packet
output consistency can ignore transferring the state pertaining to these
variables, but the benefit will likely not be significant for these middleboxes
given the low counts.

110

300k

310k

320k

330k

Av
g.

 p
er

 p
kt

 s
ta

te
 tr

an
sf

er
 (K

B)

All persistent
 state

All updateable
 state

Flowspace Flowspace +
marking

0

20

40

60

Figure 4.16: Per packet state transfer in Snort

Being off-path, PRADS and Snort have no variables that impact packet
output. For PRADS, 6 out of 10 updateable variables impact log output.
StateAlyzr did find 4 other updateable variables—tos, tstamp, in_pkt, and
mtu—but did not mark them as affecting packet output or log output.
Upon manual code inspection we found that these values are updated as
packets are processed, but they are never used; thus, these variables can
be removed from PRADS without any impact on its output, pointing to
another benefit of StateAlyzr—code clean-up.

4.6.3 Practicality

Table 4.17 shows the time and resources required to run our analysis.
CodeSurfer computes data and control dependencies and points-to sets
at compile time, so the middleboxes take longer than normal to compile.
This phase is also memory intensive, as illustrated by peak memory usage.
Snort, being complex, takes the longest to compile and analyze (≈20.5h).
This is not a concern since StateAlyzr only needs to be run once, and it
runs offline.

111

Mbox Compile time Analysis time Memory
PRADS 0.2 0.25 0.3
Snort 1.5 19 6
HAproxy 0.25 6 6
OpenVPN 0.5 5 7.3

Table 4.17: Time (h) and memory usage (GB)

Empirically Verifying Soundness

Empirically showing soundness in practice is hard. Nevertheless, for the
sake of completeness, we use two approaches to verify soundness of the
modifications we make on the basis of StateAlyzr’s outputs.

First, we use the experimental harness from §4.6.2. We compare logs at
PRADS/Snort in the scenario where a single instance processes the com-
plete trace file against concatenated logs of the primary and hot standby,
using the trace and the three models as above. In all cases, there was no
difference in the two sets of logs.

Next, we compare with manually making all changes. Recall that we
had manually modified PRADS to make it OpenNF-compliant. We com-
pared StateAlyzr’s output for PRADS against the variables contained in
the state transfer code we added during our prior modifications to PRADS.
StateAlyzr found all variables we had considered in our prior modifica-
tions, and more. Specifically, we found that our prior modifications had
missed an important compound value that contains a few counters along
with configuration settings.

4.7 Other Related Work

Aside from the works discussed in §4.1 and §4.3 [24, 53, 63, 87, 96–98, 101,
108, 116] StateAlyzr is related to a few other efforts. Some prior studies
have focused on transforming non-distributed applications into distributed

112

applications [64, 110]. However, these works aim to run different parts of
an application at different locations. We want all analysis steps performed
by a middlebox instance to run at one location, but we want different
instances to run on a different set of inputs without changing the collective
output from all instances.

Dobrescu and Argyarki use symbolic execution to verify middlebox
code satisfies crash-freedom, bounded-execution, and other safety proper-
ties [44]. They employ small, Click-based middleboxes [75] and abstract
away accesses to middlebox state. In contrast, our analysis focuses on
identifying state needed for correct middlebox operation and works with
regular, popular middleboxes.

Lorenzo et al. [40] use similar static program analysis techniques to
identify flowspace, but their identification is limited to just hashtables.

4.8 Summary

Our goal was to aid middlebox developers by identifying state objects
that need explicit handling during redistribution operations. In compar-
ison with today’s manual and necessarily error-prone techniques, our
program analysis based system, StateAlyzr, vastly simplifies this process,
and ensures soundness and high precision. Key to StateAlyzr is novel state
characterization algorithms that marry standard program analysis tools
with middlebox structure and design patterns. StateAlyzr results in nearly
20× reduction in manual effort, and can automatically eliminate nearly
80% of variables in middlebox code for consideration during framework-
specific modifications, resulting in dramatic performance and overhead
improvements in state reallocation. Ultimately, we would like to fully au-
tomate the process of making middlebox code framework-compliant, thus
fulfilling the promise of using NFV effectively for middlebox elasticity
and fault tolerance. Our work addresses basic challenges in code analysis,

113

a difficult problem on its own which is necessary to solve first.

114

5
Conclusion and Future Work

In this dissertation, we designed and evaluated three systems which can
enable faster adoption of NFV. In this closing chapter, we summarize our
key contributions and present directions for future research that can help
further in paving the way towards the adoption of NFV.

5.1 Iron

In Chapter 2, we showed that computational overhead associated with the
network stack of Linux can break isolation in containerized environments
which can result in a slowdown as high as 6×. We designed Iron [74] to
enforce stronger isolation by accurately measuring the time spent in ser-
vicing softirq and integrating it with the OS scheduler. We also proposed
a novel hardware based packet dropping mechanism.

Following are some avenues for future work for extending Iron:
Applications with kernel bypass: Kernel bypass based techniques do
not have the problem of network based processing not properly charged.
However, these approaches can still leverage the accounting aspect of Iron
to share recourses appropriately in the userspace. Such approaches make
it difficult for admins to insert policies and functionalities at the host (e.g.
traffic shaping). Admins are left with either admin-controlled software or
leveraging smart-NICs to enforce policies. Though it is not clear which
policy aspects can be handled in the software and which aspects can be
offloaded to the NIC.

115

Other softirqs: While Iron just focuses on network-based softirq process-
ing, however, same high level principles can be extended and applied to
other softirqs. Future work might deal with developing low-overhead
mechanisms for other interrupts

5.2 CHC

In Chapter 3, we presented a ground-up design of an NFV framework
to support COE and high performance for NFV chains. CHC [72] relies
on externalizing the internal state of NFs along with several novel state
caching and update algorithms to ensure low packet processing latency
and high throughput. In addition to this, it provides support for elastic
scaling and fault tolerance.
FaaS: As a future direction, CHC can be extended to support the model of
function as a service(FaaS). In such a model, NF instances are spun up only
when there is traffic to process and are charged on pay-for-what-you-use
basis. Such frameworks will be responsible for ensuring highly flexible
scaling, fault tolerance and near negligible startup time.

5.3 StateAlyzr

In Chapter 4, we introduced StateAlyzr [73] that simplifies the process
of modifying NF code by identifying and categorizing NF states, which
requires special handling, to ensure consistent NF action, during redis-
tribution of traffic. StateAlyzr embodies novel algorithms adopted from
program analysis and NF code structure to provably and automatically
identify such states. StateAlyzr has made an important headway towards
automating the process of modifying NFs, there are several more chal-
lenges which need to be addressed to fully automate this process.

116

Serialization of state objects: While StateAlyzr significantly reduces the
manual effort required to modify an NF code. It does not fully automate
that process, in particular requires the developer to write code for serial-
ization and deserialization of state objects. One possible future research
direction is to automate this process of generating code for serialization
and deserialization.
Simplifying state objects: Our analysis of NF code shows that there is
a heavy use of multi-level pointers for structuring and storing NF states.
Making such state objects complient with NFV framework which offloads
state update operations to remote storage [72, 117] is not only hard but
can also degrade the performance. A possible research direction is to split
these complex state objects with multi-level pointers into simple objects
such that each object can be addressed by a key.

117

A
Appendix

A.1 Proofs of soundness

We now prove the soundness of our StateAlyzr’s algorithms.

Identifying Per-/Cross-Flow State

Slicing [63] and pointer analysis [24] have already been proven sound.

Theorem A.1. If a middlebox uses standard packet receive functions, then our
analysis identifies all packet processing procedures.

Proof. For a procedure to perform packet processing: (i) there must be a
packet to process, and (ii) the procedure must have access to the packet,
or access to values derived from the packet. The former is true only after
a packet receive function returns. The latter is true only if some variable
in a procedure has a data dependency on the received packet. Therefore,
a forward slice computed from a packet receive function over the variable
containing (a pointer to) the packet will identify all packet processing
procedures.

Theorem A.2. If a value is per-/cross-flow state, then our analysis outputs a
top-level variable containing this value, or containing a reference from which the
value can be reached (through arbitrarily many dereferences).

Proof. Assume no top-level variable is identified for a particular per-/cross-
flow value. By the definition, a per-/cross-flow must (i) have a lifetime

118

longer than the lifetime of any packet processing procedure, and (ii) be
used within some packet processing procedure. For a value to be used
within a packet processing procedure, it must be the value of, or be a value
reachable from the value of, a variable that is in scope in that procedure.
Only global variables and the procedure’s local variables will be in scope.

Since we identify statements in packet processing procedures that use
global variables, and points-to analysis is sound [24], our analysis must
identify a global variable used to access/update the value; this contradicts
our assumption.

This leaves the case where a local variable is used to access/update the
value. When the procedure returns the variable’s value will be destroyed.
If the variable’s value was the per-/cross-flow value, then the value will
be destroyed and cannot have a lifetime beyond the packet processing
procedure; this is a contradiction. If the variable’s value was a reference
through which the per-/cross-flow value could be reached, then this
reference will be destroyed when the procedure returns. Assuming a
value’s lifetime ends when there are no longer any references to it, the only
way for the per-/cross-flow value to have a lifetime beyond any packet
processing procedure is for it be reached through another reference. The
only such reference that can exist is through a top-level variable. Since
points-to analysis is sound [24] this variable would have been identified,
which contradicts our assumption.

Identifying Updateable State

Theorem A.3. If a top-level variable’s value, or a value reachable through arbi-
trarily many dereferences starting from this value, may be updated during the
lifetime of some packet processing procedure, then our analysis marks this top-level
variable as updateable.

Proof. According to the language semantics, scalar and compound values

119

can only be updated via assignment statements. According to Theorem A.1,
we identify all packet processing procedures. Therefore, identifying all
assignment statements in these procedures is sufficient to identify all
possible value updates that may occur during the lifetime of some packet
processing procedure.

The language semantics also state that the variable on the left-hand-
side of an assignment is the variable whose value is updated. Thus, when a
top-level variable appears on the left-hand-side of an assignment, we know
its value, or a reachable value, is updated. Furthermore, flow-insensitive
context-insensitive pointer alias is provably guaranteed to identify all pos-
sible points-to relationships [24]. Therefore, any assignment to a variable
that may point to a value also pointed to (indirectly) by a top-level variable
is identified, and the top-level variable marked updateable.

Identifying Flowspaces

Theorem A.4. If a middlebox uses standard patterns for fetching values from data
structures, and the flowspace for a top-level variable’s value (or a value reachable
through arbitrarily many dereferences starting from this value) is not constrained
by a particular header field, then our analysis does not include this header field in
the flowspace fields for this top-level variable.

Proof. A header field can only be part of a value’s flowspace definition
if there is a data or control dependency between that header field in the
current packet and the fetching of an entry from a data structure. It
follows from the proven soundness and precision of flow-sensitive context-
insensitive pointer analysis [35] that the SDG will not include false data
or control dependency edges. It also follows from the proven soundness
of program slicing [63] that only data and control dependencies between
source variables (i.e., the packet variable) and target variables (i.e., the

120

index variable, increment variable, or variable in a conditional inside a
loop) will be included in the chop.

Identifying Output-Impacting State

Theorem A.5. If a top-level variable’s value, or a value reachable through arbi-
trarily many dereferences starting from this value, may affect a call to a packet
output function or the output produced by the function, then our analysis marks
this top-level variable as impacting packet output.

Proof. Follows from SDG construction soundness [49, 63]. If/when a
packet output function is called is determined by a sequence of condi-
tional statements. The path taken at each conditional depends on the
values used in the condition. Control and data dependency edges in a
system dependence graph capture these features. Since SDG construction
is sound [49, 63], we will identify all such dependencies, and thus all
values that may affect a call to a packet output function.

Only parameter values, or values reachable through arbitrarily many
dereferences starting from these values, can affect the output produced by
a packet output function. Thus, knowing what values a parameter value
depends on is sufficient to know what values affect the output produced
by an output function. Again, since SDG construction is sound, we will
identify all such dependencies.

A.2 Handling non-deterministic values

Non-deterministic values: Non-deterministic values, e.g., “gettimeofday”
or “random” require special handling during fault tolerance and straggler
mitigation to ensure COE. Specifically, we require NF instances to write
every locally computed non-deterministic value into the datastore to pro-

121

vide determinism during fault tolerance. These values are used during
the input replay phase to avoid divergence of internal state.

Non-deterministic values in straggler mitigation: When straggler
mitigation is used, to ensure that the state of an NF instance and its clone
do not diverge during straggler mitigation, CHC replaces local compu-
tation of non-deterministic values with datastore based computations. That
is, NFs request the datastore, which computes, replies with, and stores
each non-deterministic value. If a second request for a non-deterministic
value comes with the same packet logical clock (from the straggler), the
datastore emulates the computation and returns the same value again.

A.3 Proofs of Correctness and Chain Output
Equivalence

The collective action taken by all the NF instances in the chain must be
equivalent of the action taken by a chain of ideal NFs. The ideal NF chain
consist of NFs with infinite resources where only one instance of each type
is required to handle any network load. The ideal NF processes packets
in the order of their arrival. Although the ideal NF chain has infinite
resources, we still assume a standard network. The network can drop or
reorder packets between two end hosts.

A.3.1 Consistency Guarantees of Cross-flow State Update

Theorem A.3.1.1. Suppose we are given a cross-flow state S and instances α and
β of the same NF, processing packets Pα and Pβ, respectively. α and β cannot
generate a state S ′′ which is unreachable if both Pα and Pβ were to be processed
by a single NF instance.

Proof: The state update corresponding to the packets Pα and Pβ can
be applied by the store in any arbitrary order o. For S ′′ to be unreachable

122

by the ideal NF, o should not exist in the set of all possible orders {O} in
which packets can arrive at the ideal NF. As the network does not provide
any ordering guarantees, {O} contains all possible orders. Hence, o always
exists in {O}. In other words, S is always reachable by an ideal NF under
some particular order of updates from the input packets.

A.3.2 Consistency Guarantees of Cached Cross-flow
State Update

Theorem A.3.2.1. Supposed we are given a cross-flow state S copies of which
are cached at NF instances α and β of the same NF, processing packets Pα and
Pβ, respectively. α and β cannot generate a state S ′′ which is unreachable if both
packets are processed by a single NF instance with infinite resources.

Proof: Cross-flow cached state is only used for read requests. All update
operations are performed by the store. This ensures that update operations
are applied on the most recent version of the state. According to Theo-
rem A.3.1.1, state update always results in a consistent value, regardless of
the order of the cross-flow state updates operations. Hence NF instances
α and β cannot generate the state S ′′.

A.3.3 Safe Recovery of a Root Instance

Theorem A.3.3.1. If a root with Pi, ...,Pn logged packets (n > i > 0) crashes
after successfully sending Pi, ...,Pk packets (i < k < n) to downstream NF
instances, then recovery of the root results in state S ′ such that S ′ is reachable by a
chain of ideal NFs under some network drop scenario imposed on the input traffic.

Proof: If the root crashes after transmitting packet Pk, all the remaining
logged packets Pk+1, ...,Pn are lost. The new root can only start from packet
Pn+1. In such a case the resultant output/state is equivalent to the case of
a chain of ideal NFs with Pk+1, ...,Pn dropped by the network.

123

A.3.4 Safe Recovery of an NF Instance

Theorem A.3.4.1. If an NF instance crashes after successfully processing packet
Pi, forwarding it and pushing the corresponding state to the store, then the re-
covered NF instance reaches the same state as if no failure has occurred in the
chain.

Proof: The NF crashes after successfully forwarding the state corre-
sponding to the packet Pi to the store; thus only in-transit packets are not
processed (Pi+1 and onward). Since all the unprocessed in-transit packets
are logged at the root, they are replayed to the new NF instance to result
in the same state as if no failure has occurred.

Theorem A.3.4.2. If an NF instance crashes after successfully processing the
packet Pi and forwarding it but before the successful pushing the corresponding
state update, then the recovered NF instance reaches the same state as if no failure
has occurred in the chain.

Proof: The recovery process starts from packet Pi instead of packet
Pi+1 because the bit vector (§3.4.4) value corresponding to Pi at the root
is non-zero which indicates that either the state has not been updated
or the packet is lost. This results in replay starting from packet Pi. This
replay regenerates the missing state update and results in the same state
as if there is no failure. The duplicate suppression mechanism drops the
packet Pi at the message queue of the immediate downstream NF instance,
preventing any duplicate packets.

Theorem A.3.4.3. If an NF instance crashes after successfully processing the
packet Pi and transmitting its respective state but before the successful delivery of
the packet to a downstream NF, then the recovered NF instance reaches the same
state as if no failure has occurred in the chain.

Proof: The recovery process starts from packet Pi instead of packet Pi+1

because (as above) the bit vector value corresponding to Pi at the root

124

is non-zero which indicates that either the state has not been updated
or the packet is lost. As the replay starts from Pi, the downstream NF
does not experience any missing packets. The packet Pi may result in a
duplicate state update which is suppressed by the store. According to the
Theorem A.3.4.1, replay of logged packets (Pi+1 and onward) recovers the
state.

Theorem A.3.4.4. If the last NF instance in the chain crashes before successfully
transmitting the “delete” request for packet Pi to the root, then the recovered NF
instance reaches the same state as if no failure has occurred in the chain and the
end host (receiver) does not receive a duplicate packet.

Proof: The packet Pi cannot leave the last NF without the successful
transmission of “delete” request; thus, the packet Pi is not forwarded
to the receiver. After recovery (according to Theorem A.3.4.2 and Theo-
rem A.3.4.3), the NF instance reaches the same state as if no failure has
occurred in the chain.

A.3.5 Safe Recovery of a Store Instance

Theorem A.3.5.1. If an instance of the store crashes, then each recovered per-flow
state SP of each NF is equivalent to the state that would have resulted if there was
no failure.

Proof: As SP is updated by a single NF at any given time, so the cached
value of the state at the given NF is always the most recent state. Therefore,
the new store instance reading all the cached SPs correctly recover the
per-flow states.

Theorem A.3.5.2. If an instance of the store crashes before any successful cross-
flow state read operation, then the recovered cross-flow state SC must be reachable
by an ideal NF under some input traffic arrival/update order.

125

Proof: Write-ahead log is replayed (§3.4.4) to reconstruct the lost cross
flow state SC. As none of the NFs have read the value, the log can be
replay in any order (according to Theorem A.3.1.1, state will always be
consistent.) to regenerate valid state.

Theorem A.3.5.3. If an instance of the store crashes after a successful cross-flow
state read operation, then the recovered cross-flow state SC must be reachable by
an ideal NF under some particular scenario.

Proof: As the recovery process (§3.4.4) of cross-flow state starts from
the last read value, replay of remaining log operations will always result
in a consistent state (according to Theorem A.3.5.2.).

126

Bibliography

[1] Cisco Network Service Header: draft-quinn-sfc-nsh-03.txt. https:
//tools.ietf.org/html/draft-quinn-sfc-nsh-03.

[2] Cloud lab. http://cloudlab.us/.

[3] Codesurfer. http://grammatech.com/research/technologies/codesurfer.

[4] Docker swarm. https://github.com/docker/swarm. Accessed: 2017-09-
25.

[5] HAProxy: The reliable, high performance TCP/HTTP load balancer.
http://haproxy.1wt.eu/.

[6] Introducing mcrouter: A memcached protocol router for scaling
memcached deployments. https://code.fb.com/web/introducing-
mcrouter-a-memcached-protocol-router-for-scaling-memcached-
deployments/. Accessed: 2018-06-21.

[7] Kubernetes. http://kubernetes.io.

[8] Linux advanced routing and traffic control howto. http://lartc.org/
lartc.html. Accessed: 2017-09-25.

[9] The LLVM compiler infrastructure. http://llvm.org.

[10] LXC - Linux containers . https://linuxcontainers.org/lxc/introduction/.

[11] Network functions virtualisation – update white paper. https://portal.
etsi.org/nfv/nfv_white_paper2.pdf .

https://tools.ietf.org/html/draft-quinn-sfc-nsh-03
https://tools.ietf.org/html/draft-quinn-sfc-nsh-03
http://cloudlab.us/
http://grammatech.com/research/technologies/codesurfer
https://github.com/docker/swarm
http://haproxy.1wt.eu/
http://kubernetes.io
http://lartc.org/lartc.html
http://lartc.org/lartc.html
http://llvm.org
https://linuxcontainers.org/lxc/introduction/
https://portal.etsi.org/nfv/nfv_white_paper2.pdf
https://portal.etsi.org/nfv/nfv_white_paper2.pdf

127

[12] Network functions virtualisation – update white paper. https://portal.
etsi.org/nfv/nfv_white_paper2.pdf .

[13] Networking napi. https://wiki.linuxfoundation.org/networking/napi.
Accessed: 2017-09-25.

[14] NFV Management and Orchestration: An Overview. https://www.
ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf .

[15] OpenVPN. http://openvpn.net.

[16] Passive Real-time Asset Detection System. http://prads.projects.linpro.
no.

[17] perf: Linux profiling with performance counters. https://perf.wiki.
kernel.org/index.php/Main_Page. Accessed: 2017-09-21.

[18] Protobuf-c. https://github.com/protobuf-c/protobuf-c.

[19] Snort. http://snort.org.

[20] Squid. http://squid-cache.org.

[21] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ra-
manan Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Ma-
tus, Rong Pan, Navindra Yadav, George Varghese, et al. CONGA:
Distributed Congestion-aware Load Balancing for Datacenters. In
SIGCOMM, 2014.

[22] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and
Murari Sridharan. Data Center TCP (DCTCP). In SIGCOMM, 2010.

[23] Ashok Anand, Vyas Sekar, and Aditya Akella. Smartre: an archi-
tecture for coordinated network-wide redundancy elimination. In
ACM SIGCOMM Computer Communication Review, volume 39, pages
87–98. ACM, 2009.

[24] Lars Ole Andersen. Program analysis and specialization for the C pro-
gramming language. PhD thesis, University of Cophenhagen, 1994.

https://portal.etsi.org/nfv/nfv_white_paper2.pdf
https://portal.etsi.org/nfv/nfv_white_paper2.pdf
https://wiki.linuxfoundation.org/networking/napi
https://www.ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf
https://www.ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf
http://prads.projects.linpro.no
http://prads.projects.linpro.no
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/protobuf-c/protobuf-c
http://snort.org
http://squid-cache.org

128

[25] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and
Amin Vahdat. xOMB: Extensible open middleboxes with commod-
ity servers. In Proceedings of the Eighth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ANCS ’12,
pages 49–60, 2012.

[26] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.
Towards predictable datacenter networks. In ACM SIGCOMM Com-
puter Communication Review, volume 41, pages 242–253. ACM, 2011.

[27] Gaurav Banga, Peter Druschel, and Jeffrey C Mogul. Resource con-
tainers: A new facility for resource management in server systems.
In OSDI, volume 99, pages 45–58, 1999.

[28] Davide B. Bartolini, Filippo Sironi, Donatella Sciuto, and Marco D.
Santambrogio. Automated fine-grained cpu provisioning for virtual
machines. ACM Trans. Archit. Code Optim., 11(3):27:1–27:25, July
2014.

[29] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. IX: A protected dataplane
operating system for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 49–65, CO, 2014. USENIX Association.

[30] M. Boucadair, C. Jacquenet, R. Parker, D. Lopez, P. Yegani,
J. Guichard, and P. Quinn. Differentiated Network-Located Func-
tion Chaining Framework. Internet-Draft draft-boucadair-network-
function-chaining-02, IETF Secretariat, July 2013.

[31] Anat Bremler-Barr, Yotam Harchol, and David Hay. Openbox: A
software-defined framework for developing, deploying, and manag-
ing network functions. In Proceedings of the 2016 conference on ACM
SIGCOMM 2016 Conference, pages 511–524. ACM, 2016.

[32] J. Brutlag. Speed Matters for Google Web Search. Technical report,
2009. https://services.google.com/fh/files/blogs/google_delayexp.pdf .

[33] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Compari-
son of the three cpu schedulers in xen. SIGMETRICS Perform. Eval.
Rev., 35(2):42–51, September 2007.

https://services.google.com/fh/files/blogs/google_delayexp.pdf

129

[34] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E:
A platform for in-vivo multi-path analysis of software systems. In
ASPLOS, 2011.

[35] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-
sensitive interprocedural computation of pointer-induced aliases
and side effects. In POPL, 1993.

[36] Jonathan Corbet. Jls2009: Generic receive offload. Linux Weekly
News (LWN), October 2009. https://lwn.net/Articles/358910/.

[37] Jonathan Corbet. Software interrupts and realtime. Linux Weekly
News (LWN), October 2012. https://lwn.net/Articles/520076/.

[38] Jonathan Corbet. Bulk network packet transmission. Linux Weekly
News (LWN), October 2014. https://lwn.net/Articles/615238/.

[39] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In ACM SIGPLAN-SIGACT, 1977.

[40] Lorenzo De Carli, Robin Sommer, and Somesh Jha. Beyond pattern
matching: A concurrency model for stateful deep packet inspection.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1378–1390. ACM, 2014.

[41] Jeffrey Dean and Luiz Andre Barroso. The tail at scale. Communica-
tions of the ACM, 56:74–80, 2013.

[42] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proceedings of the Eigh-
teenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages 77–88, New
York, NY, USA, 2013. ACM.

[43] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
efficient and qos-aware cluster management. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 127–144, New
York, NY, USA, 2014. ACM.

https://lwn.net/Articles/358910/
https://lwn.net/Articles/520076/
https://lwn.net/Articles/615238/

130

[44] Mihai Dobrescu and Katerina Argyarki. Software dataplane verifi-
cation. In NSDI, 2014.

[45] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward
predictable performance in software packet-processing platforms.
In NSDI, 2012.

[46] Intel. Data Plane Development Kit. http://dpdk.org/.

[47] Peter Druschel and Gaurav Banga. Lazy receiver processing (lrp):
A network subsystem architecture for server systems. In OSDI,
volume 96, pages 261–275, 1996.

[48] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and
Jeffrey C Mogul. Enforcing network-wide policies in the presence
of dynamic middlebox actions using flowtags. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14), pages 543–546, 2014.

[49] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., 9(3):319–349, July 1987.

[50] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. Gin-
seng: Market-driven llc allocation. In 2016 USENIX Annual Techni-
cal Conference (USENIX ATC 16), pages 295–308, Denver, CO, 2016.
USENIX Association.

[51] Gregory R. Ganger, Dawson R. Engler, M. Frans Kaashoek, Hector M.
Briceño, Russell Hunt, and Thomas Pinckney. Fast and flexible
application-level networking on exokernel systems. ACM Trans.
Comput. Syst., 20(1):49–83, February 2002.

[52] Aaron Gember, Anand Krishnamurthy, Saul St John, Robert Grandl,
Xiaoyang Gao, Ashok Anand, Theophilus Benson, Aditya Akella,
and Vyas Sekar. Stratos: A network-aware orchestration layer for
middleboxes in the cloud. Technical report, Technical Report, 2013.

[53] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella.
OpenNF: Enabling innovation in network function control. In SIG-
COMM, 2014.

http://dpdk.org/

131

[54] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-
resource fair queueing for packet processing. In Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, SIGCOMM ’12,
pages 1–12, New York, NY, USA, 2012. ACM.

[55] Thomas Gleixner. [announce] 3.6.1-rt1. Linux Weekly News (LWN),
October 2012. https://lwn.net/Articles/518993/.

[56] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao
Kong, Peng Sun, Wenfei Wu, and Yongguang Zhang. Secondnet:
a data center network virtualization architecture with bandwidth
guarantees. In Proceedings of the 6th International Conference, page 15.
ACM, 2010.

[57] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vah-
dat. Enforcing performance isolation across virtual machines in xen.
In ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing, pages 342–362. Springer,
2006.

[58] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Rat-
nasamy. Megapipe: A new programming interface for scalable
network i/o. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages
135–148, Hollywood, CA, 2012. USENIX.

[59] Keqiang He, Alexis Fisher, Liang Wang, Aaron Gember, Aditya
Akella, and Thomas Ristenpart. Next stop, the cloud: Understand-
ing modern web service deployment in ec2 and azure. In Proceedings
of the 2013 conference on Internet measurement conference, pages 177–190.
ACM, 2013.

[60] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter,
and Aditya Akella. Presto: Edge-based load balancing for fast data-
center networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’15, pages 465–478,
New York, NY, USA, 2015. ACM.

https://lwn.net/Articles/518993/

132

[61] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkatesh-
waran Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Serverless computation with openlambda. In
Proceedings of HotCloud, June 2016.

[62] Tom Herbert and Willem de Bruijn. Scaling in the linux networking
stack, 2011. https://www.kernel.org/doc/Documentation/networking/
scaling.txt.

[63] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Program. Lang. Syst.,
12(1):26–60, January 1990.

[64] Galen C. Hunt and Michael L. Scott. The coign automatic distributed
partitioning system. In OSDI, 1999.

[65] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don
Newell, Yan Solihin, Lisa Hsu, and Steve Reinhardt. Qos policies and
architecture for cache/memory in cmp platforms. In Proceedings of
the 2007 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’07, pages 25–36,
New York, NY, USA, 2007. ACM.

[66] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon
Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. mtcp: a
highly scalable user-level tcp stack for multicore systems. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 489–502, Seattle, WA, 2014. USENIX Association.

[67] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazieres,
Balaji Prabhakar, Changhoon Kim, and Windows Azure. Eyeq:
Practical network performance isolation for the multi-tenant cloud.
In HotCloud, 2012.

[68] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières,
Balaji Prabhakar, Changhoon Kim, and Albert Greenberg. EyeQ:
Practical Network Performance Isolation at the Edge. In NSDI, 2013.

[69] Murad Kablan, Blake Caldwell, Richard Han, Hani Jamjoom, and
Eric Keller. Stateless network functions. In HotMiddlebox, 2015.

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt

133

[70] Harshad Kasture and Daniel Sanchez. Ubik: Efficient cache sharing
with strict qos for latency-critical workloads. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 729–742, New
York, NY, USA, 2014. ACM.

[71] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas An-
derson, and Arvind Krishnamurthy. High performance packet pro-
cessing with flexnic. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pages 67–81, New York, NY, USA,
2016. ACM.

[72] Junaid Khalid and Aditya Akella. Correctness and performance
for stateful chained network functions. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). USENIX
Association, 2019.

[73] Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anub-
havnidhi Abhashkumar, and Aditya Akella. Paving the way for
nfv: simplifying middlebox modifications using statealyzr. In 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 239–253, 2016.

[74] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu, Karthick Ra-
jamani, Alexandre Ferreira, and Aditya Akella. Iron: Isolating
network-based CPU in container environments. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), pages 313–328, Renton, WA, 2018. USENIX Association.

[75] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. ACM Transactions on
Computer Systems (TOCS), 18:263–297, 2000.

[76] Alexey Kopytov. Sysbench manual. MySQL AB, 2012.

134

[77] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan,
K. K. Ramakrishnan, Timothy Wood, Mayutan Arumaithurai, and
Xiaoming Fu. Nfvnice: Dynamic backpressure and scheduling for
nfv service chains. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, pages 71–84,
New York, NY, USA, 2017. ACM.

[78] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The design and implementation of an
operating system to support distributed multimedia applications.
IEEE J.Sel. A. Commun., 14(7):1280–1297, September 2006.

[79] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. Improving resource efficiency at
scale with heracles. ACM Trans. Comput. Syst., 34(2):6:1–6:33, May
2016.

[80] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musu-
vathi. Retro: Targeted resource management in multi-tenant dis-
tributed systems. In NSDI, pages 589–603, 2015.

[81] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. Clickos and the
art of network function virtualization. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), pages
459–473, Seattle, WA, 2014. USENIX Association.

[82] Jeanna Neefe Matthews, Wenjin Hu, Madhujith Hapuarachchi, Todd
Deshane, Demetrios Dimatos, Gary Hamilton, Michael McCabe, and
James Owens. Quantifying the performance isolation properties
of virtualization systems. In Proceedings of the 2007 Workshop on
Experimental Computer Science, ExpCS ’07, New York, NY, USA, 2007.
ACM.

[83] John C McCullough, John Dunagan, Alec Wolman, and Alex C
Snoeren. Stout: An adaptive interface to scalable cloud storage. In
Proc. of the USENIX Annual Technical Conference–ATC, pages 47–60,
2010.

135

[84] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. Aries: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging.
ACM Trans. Database Syst., 17(1):94–162, March 1992.

[85] Yogesh Mundada, Anirudh Ramachandran, and Nick Feamster. Sil-
verline: Data and network isolation for cloud services. In HotCloud,
2011.

[86] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: a framework
for nfv applications. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 121–136. ACM, 2015.

[87] Young Gil Park and Benjamin Goldberg. Escape analysis on lists. In
PLDI, 1992.

[88] Vern Paxson. Bro: a system for detecting network intruders in real-
time. In USENIX Security (SSYM), 1998.

[89] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe.
Arrakis: The operating system is the control plane. ACM Trans.
Comput. Syst., 33(4):11:1–11:30, November 2015.

[90] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krish-
namurthy, Sylvia Ratnasamy, and Ion Stoica. FairCloud: Sharing
the Network in Cloud Computing. In SIGCOMM, 2012.

[91] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C Mogul,
Yoshio Turner, and Jose Renato Santos. Elasticswitch: Practical
work-conserving bandwidth guarantees for cloud computing. ACM
SIGCOMM Computer Communication Review, 43(4):351–362, 2013.

[92] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen Hunt. Rethinking the library os from the top down.
Association for Computing Machinery, Inc., March 2011.

136

[93] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang,
Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet
Sharma, and Ying Zhang. Pga: Using graphs to express and au-
tomatically reconcile network policies. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, SIG-
COMM ’15, pages 29–42. ACM, 2015.

[94] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas
Sekar, and Minlan Yu. SIMPLE-fying middlebox policy enforcement
using sdn. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, pages 27–38. ACM, 2013.

[95] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar,
Abdul Kabbani, George Porter, and Amin Vahdat. SENIC: Scalable
NIC for End-host Rate Limiting. In NSDI, 2014.

[96] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. Pico Repli-
cation: A high availability framework for middleboxes. In SoCC,
2013.

[97] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. Escape capsule: Explicit state is robust and scalable. In
HotOS, 2013.

[98] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. Split/Merge: System support for elastic execution in
virtual middleboxes. In NSDI, 2013.

[99] Thomas Reps and Genevieve Rosay. Precise interprocedural chop-
ping. In ACM SIGSOFT, 1995.

[100] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo
Soares, and Dorgival O Guedes. Gatekeeper: Supporting band-
width guarantees for multi-tenant datacenter networks. In WIOV,
2011.

[101] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically
allocated objects. In POPL, 1988.

[102] Stuart Schechter, Jaeyeon Jung, and Arthur Berger. Fast detection of
scanning worm infections. In Recent Advances in Intrusion Detection,
pages 59–81. Springer, 2004.

137

[103] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In IEEE
Symposium on Security and Privacy, 2010.

[104] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and
Guangyu Shi. Design and implementation of a consolidated mid-
dlebox architecture. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, pages 24–24,
2012.

[105] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C.
Tay. Containers and virtual machines at scale: A comparative study.
In Proceedings of the 17th International Middleware Conference, Middle-
ware ’16, pages 1:1–1:13, New York, NY, USA, 2016. ACM.

[106] Justine Sherry, Peter Gao, Soumya Basu, Aurojit Panda, Arvind
Krishnamurthy, Christian Macciocco, Maziar Manesh, Joao Martins,
Sylvia Ratnasamy, and Luigi Rizzoand Scott Shenker. Rollback
recovery for middleboxes. In SIGCOMM, 2015.

[107] Alan Shieh, Srikanth Kandula, Albert G Greenberg, and Changhoon
Kim. Seawall: Performance isolation for cloud datacenter networks.
In HotCloud, 2010.

[108] Bjarne Steensgaard. Points-to analysis in almost linear time. In
POPL, 1996.

[109] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, Richard Black, and Timothy Zhu.
Ioflow: A software-defined storage architecture. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 182–196, New York, NY, USA, 2013. ACM.

[110] Eli Tilevich and Yannis Smaragdakis. J-orchestra: Enhancing java
programs with distribution capabilities. ACM Trans. Softw. Eng.
Methodol., 19(1):1:1–1:40, August 2009.

[111] Paul Turner, Bharata B Rao, and Nikhil Rao. Cpu bandwidth control
for cfs. In Proceedings of the Linux Symposium, pages 245–254, 2010.

138

[112] Laura Vasilescu, Vladimir Olteanu, and Costin Raiciu. Sharing cpus
via endpoint congestion control. In Proceedings of the Workshop on
Kernel-Bypass Networks, KBNets ’17, pages 31–36, New York, NY,
USA, 2017. ACM.

[113] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. Large-scale cluster manage-
ment at Google with Borg. In Proceedings of the European Conference
on Computer Systems (EuroSys), Bordeaux, France, 2015.

[114] Mellanox. Messaging Accelerator (VMA). http://www.mellanox.com/
page/software_vma.

[115] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gre-
gory R. Ganger. Argon: Performance insulation for shared storage
servers. In Proceedings of the 5th USENIX Conference on File and Storage
Technologies, FAST ’07, pages 5–5, Berkeley, CA, USA, 2007. USENIX
Association.

[116] Mark Weiser. Program slicing. IEEE Trans. on Software Engineering,
SE-10(4):352–357, July 1984.

[117] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Rat-
nasamy, and Scott Shenker. Elastic scaling of stateful network func-
tions. In 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI’18, 2018.

[118] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-
flux: Precise online qos management for increased utilization in
warehouse scale computers. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’13, pages 607–618,
New York, NY, USA, 2013. ACM.

[119] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya,
Anand Krishnamurthy, Samer Al-Kiswany, Rini T Kaushik, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Split-level
i/o scheduling. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 474–489. ACM, 2015.

http://www.mellanox.com/page/software_vma
http://www.mellanox.com/page/software_vma

139

[120] Wei Zhang, Sundaresan Rajasekaran, Shaohua Duan, Timothy
Wood, and Mingfa Zhuy. Minimizing interference and maximizing
progress for hadoop virtual machines. SIGMETRICS Perform. Eval.
Rev., 42(4):62–71, June 2015.

[121] Yuting Zhang and Richard West. Process-aware interrupt schedul-
ing and accounting. In Proceedings of the 27th IEEE International
Real-Time Systems Symposium, RTSS ’06, pages 191–201, Washington,
DC, USA, 2006. IEEE Computer Society.

[122] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. Wcmp: Weighted cost
multipathing for improved fairness in data centers. In Proceedings
of the Ninth European Conference on Computer Systems, page 5. ACM,
2014.

[123] Noa Zilberman, Yury Audzevich, G Adam Covington, and An-
drew W Moore. Netfpga sume: Toward 100 gbps as research com-
modity. IEEE Micro, 34(5):32–41, 2014.

	Abstract
	Acknowledgments
	Contents
	List of Figures and Tables
	Introduction
	Challenges with NFV adoption
	Isolating network based CPU
	Ensuring correctness and performance for stateful chained NFs
	Simplifying NF modification

	Contributions
	Iron iron
	CHC chc
	StateAlyzr statealyzr

	Iron
	Background and Motivation
	Network traffic breaks isolation
	Putting Iron in context
	Impact of network traffic

	Design
	Accounting
	Enforcement

	Evaluation
	Macrobenchmarks
	Microbenchmarks

	Related Work
	Conclusion

	CHC
	Motivation
	Key Requirements for COE
	Related work, and Our Contributions

	Framework: Operator View
	Traffic and State Management
	Traffic partitioning
	Communication
	State Maintenance

	Correctness
	R2, R3: Elastic scaling
	R4: Chain-wide ordering
	R5: Straggler mitigation
	R6: Safe Fault Recovery

	Implementation
	Evaluation
	State Management Performance
	Metadata Overhead
	Correctness Requirements: R1–R6

	Conclusion

	StateAlyzr
	Motivation
	Need for Handling State
	Approaches for Handling State
	Simplifying Modification and its Requirements
	Options

	Overview of StateAlyzr
	StateAlyzr Foundations
	Per-/Cross-Flow State
	Updateable State
	State Flowspaces

	Enhancements
	Output-Impacting State
	Tracking Runtime Updates

	Implementation
	Evaluation
	Effectiveness
	Runtime efficiency and manual effort
	Practicality

	Other Related Work
	Summary

	Conclusion and Future Work
	Iron
	CHC
	StateAlyzr

	Appendix
	Proofs of soundness
	Handling non-deterministic values
	Proofs of Correctness and Chain Output Equivalence
	Consistency Guarantees of Cross-flow State Update
	Consistency Guarantees of Cached Cross-flow State Update
	Safe Recovery of a Root Instance
	Safe Recovery of an NF Instance
	Safe Recovery of a Store Instance

	Bibliography

