
Abstract--This paper  develops simple cost models for  provisioning 
content distr ibution networks that use the simple and highly 
scalable bandwidth skimming protocol for  streaming. New insight 
is obtained into (1) how cost-effective proxy servers are in 
multicast streaming systems, (2) the most effective streaming 
protocol, and (3) the optimal proxy content, as a function of the 
system configuration and workload. A key result is that proxy 
servers are only cost effective if (a) the or igin server  does not have 
a multicast capability, or  (b) the file request rate is low, and thus 
multicast is not highly effective, or  (c) the cost of a proxy server  
stream is a very small fraction (i.e., approximately 1/P) of the cost 
of an or igin server  stream, where P is the number  of proxy servers 
and the cost of either  type of stream includes both the server  and 
network resource costs.  For  cases where proxy servers are cost 
effective, results in the paper  provide the optimal proxy content 
and the most effective streaming protocol, as a function of a wide 
range of system configuration and workload parameters.  In 
contrast to previous work, full file caching outper forms prefix 
caching over  a significant region of this system design space, due 
to more efficient multicast streaming protocols as well as a more 
complete exploration of the practical system configuration space.    

I. INTRODUCTION 

A content distribution network (CDN) for data that is 
distributed via a wide area communication network generally 
consists of the origin server that contains the content and a set 
of “proxy”  servers that each store a subset of the content closer 
to key client populations.  Provisioning the CDN involves 
determining the network interface bandwidth, number of disks, 
and processing capacities that should be purchased or leased at 
the servers, as well as deciding which content should be stored 
at each proxy. 

For conventional content, including stored media files that 
are delivered using simple unicast streams, each delivery from 
content stored at a proxy saves essentially an equal amount of 
work by the origin server, as well as the cost of transmitting the 
data from the origin to the proxy.  Thus, in an abstract sense, a 
proxy should store the media that will be accessed most 
frequently, and should be provisioned with sufficient storage 
and bandwidth to off-load the origin server (and remote 
network) to the desired degree.   

Provisioning a CDN for stored media content is 
significantly more complex if the system delivers the content 
using one of the recently proposed scalable streaming 
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protocols (e.g., [3,6,9,11,13]), for at least two reasons. First, 
these protocols use (IP or application-level) multicast to 
deliver the content.  Thus, for a given frequently accessed file, 
the origin server will perform less work per client request than 
a proxy must perform (because on average more clients will 
share each origin stream). Second, the protocols deliver the 
earlier portions of the stream more frequently (and to fewer 
clients on average per multicast) than the later portions of the 
stream.  Thus, it may be more cost effective to store a prefix 
rather than a suffix of a given media file at the proxy.  
Together, these considerations imply that the subset of the 
content that should be stored at a given proxy depends not 
only on the content access rates, but also on the corresponding 
protocol-specific delivery rate for each portion of the file as 
well as the actual relative cost of a proxy (multicast) stream 
compared to an origin server (multicast) stream. Simple 
quantitative examples that illustrate these points are provided 
in Section III.A. 

Previous work [4,5] has developed a relatively simple 
model for estimating delivery cost, and the proxy content that 
minimizes delivery cost, for variations in the scalable 
streaming protocol and for specified values of the content 
access rates and proxy bandwidth and storage capacity.  Eager 
et al. developed the model for the case that the “partitioned 
dynamic skyscraper”  (PDS) protocol is used by both the origin 
and the proxy servers. The PDS protocol only allows a pre-
specified fraction of the file, or the full file, to be stored at the 
proxy. Ramesh et al. [14] modified the model server bandwidth 
calculations for several variations on the “patching”  protocol 
[3,11] including “selective catching”  [9], and applied the cost 
model to determine the optimal fraction of the file that should 
be stored at the proxy when the proxy has no bandwidth or 
storage constraints.  Wang et al. [15] use a similar cost model 
but with the server bandwidth costs modified for the case that 
the origin uses unicast delivery to the proxy, the proxy caches 
an arbitrary fraction of the file, and the proxy uses one of 
several other variations on the patching protocol to deliver the 
content to the client.  They develop a simpler solution method 
and apply the model for the case of high client arrival rate, 
limited proxy disk storage, but unlimited proxy disk bandwidth.  
Each of these previous studies has assumed that client 
bandwidth is at least two times the streaming rate. A key 
conclusion of each of these previous studies is that if client 
request rate is high and/or proxy storage is limited, storing file 
prefixes rather than (fewer) full files significantly reduces 
delivery cost.  

This paper revises the cost model to provision CDNs that 
use more efficient scalable protocols, and obtains new insight 
into the cost-effectiveness of proxy servers, the most effective 

Jussara M. Almeidaa         Derek L. Eagerb         Michael Ferrisa         Mary K. Vernona 

Provisioning Content Distr ibution Networks for Streaming Media•••• 

aComputer Sciences Department   bDepartment of Computer Science  
     University of Wisconsin Madison, USA     University of Saskatchewan, Canada 

 { jussara,ferris,vernon} @cs.wisc.edu   eager@cs.usask.ca 
 



protocol, and the optimal proxy content, over a significantly 
wider region of the system design space than studied in 
previous work.   

The CDN cost model is developed for the following 
protocols: 
1. BWSkim(b): The origin server as well as the proxy 

servers use the simple scalable bandwidth skimming 
protocol [6], with client bandwidth equal to b.1 

2. BWSkim/U(b): The origin server uses simple unicast 
streams to the proxy servers, but the proxy servers use 
bandwidth skimming to the clients. 

3. BWSkim[/U]+Batch(b): For each of the above systems, if 
the proxy stores a prefix, clients use extra bandwidth, or 
reduce their bandwidth used for listening to proxy streams, 
in order to batch together to share a new origin stream for 
the suffix.  

We compare these protocols with respect to content delivery 
cost, and determine the optimal proxy content as a function of 
parameters that define a large system design space, including: 
(1) number of proxies varying from 1 – 100, (2) unlimited as 
well as realistically constrained proxy storage capacity and disk 
bandwidth, and (3) client arrival rate at each proxy varying 
from 1 – 10,000 requests, on average, per average playback 
duration. The optimal content is defined as the content that 
minimizes delivery cost, or a simpler rule of thumb that 
achieves near-minimum cost. 

The key results are summarized in Section VI.  One key 
result is that storing content at proxy servers is only cost 
effective if (a) the origin server does not have a multicast 
capability, or (b) the file request rate is low, and thus multicast 
is not highly effective, or (c) the cost of a proxy server stream 
is a very small fraction (i.e., approximately 1/P) of the cost of 
an origin server stream, where P is the number of proxy servers 
and the cost of either type of stream includes both the server 
and network bandwidth costs.  Furthermore, over a large 
fraction of the system design space where proxy servers are 
cost effective, the optimal proxy content consists primarily of 
full files rather than file prefixes.  Although seemingly in 
conflict, this result is shown to be consistent with previous 
results. The results also show that the regions of the design 
space where prefix caching significantly reduces delivery cost 
coincide with the regions where listening to an extra origin 
stream is cost-effective. In all other regions, the simpler 
BWSkim[/U] policies are cost-effective.  

 The remainder of this paper is organized as follows.  
Section II provides background information on the bandwidth 
skimming protocol and the delivery cost model.  Section III 
defines the new CDN protocols more precisely and provides 
the cost model formulas for each protocol.  Section IV and V 
provide results for unconstrained and constrained proxy 
storage and disk bandwidth, respectively.  Section VI 
concludes the paper. 

                                                      
1 The bandwidth skimming protocol is significantly more efficient 
than patching or PDS at high client arrival rates, and significantly 
more efficient than selective catching at low arrival rates, as will be 
shown in Section II.C. 

II. BACKGROUND 

A. CDN Configuration 

The CDNs evaluated in this paper, illustrated in Figure 1, 
consist of an origin server (or simply the origin) and P proxy 
servers.  A client requests the content from a nearby proxy.  
Depending on the delivery protocol (defined in Sections III.C – 
III.E), if the requested data is not stored at the proxy, the origin 
either streams the data to the proxy which then delivers it to the 
client(s), or the origin delivers the stream directly to the clients.  
In the former, the proxy sends a request to the origin and 
delivers the response stream to the client.  In the latter, the 
proxy might forward a request to the origin and then inform the 
client which origin multicast streams to listen to.    

We assume that the proxy server uses the scalable 
(multicast) bandwidth skimming protocol to deliver the content 
to its clients.  In most protocols, we assume that the origin 
server also employs the bandwidth skimming delivery protocol 
(using either IP multicast, which may become more widely 
available as new protocols supporting single-source multicast 
[10] are implemented, or using application-level multicast).  
We also consider the case that the origin can not multicast to 
the proxies, and thus the origin uses simple unicast streaming.  

B. Bandwidth Skimming Protocol 

The reader is referred to previous work [6,8] for a 
complete description of the bandwidth skimming protocol.  
The basic idea is that each client request initiates a new 
multicast stream.  In one variant of the protocol,  the client 
listens to the new stream as well as  the closest (target) stream 
that is still active.  When the new stream has delivered all of 
the data that the client missed in the target stream, the new 
stream is terminated, and all clients listening to the target 
stream (are now “merged”  and) start listening to the next 
closest target stream that is still active.  If a target stream 
terminates before the later stream is ready to terminate, the 
clients listening to the later stream simply start listening to the 
next closest target stream.  Unlike previous scalable streaming 
protocols, if client bandwidth is less than twice the streaming 
rate, clients can listen to an increasing fraction of the target 
stream (and a corresponding decreasing fraction of their main 
stream) in order to merge with the target clients [6].  Thus, 
bandwidth skimming can be used to deliver high quality videos 
that require a significant fraction of the bandwidth to the client.  
Because clients are merged hierarchically, the server 
bandwidth required to provide immediate service to each client 
request grows only logarithmically (with a small constant 
factor) in the client request rate.  
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C. Required Server Bandwidth 

Results in [7] show that the following formula is a good 
estimate of required server bandwidth2, measured in units of 
the streaming rate, when b=2, bandwidth skimming is used to 
deliver the file, client arrivals are Poisson (as measured in [1]), 
each client requests the entire media file, and the entire file is 
stored at the server:   

B(N) = η ln (1 + N/η),                          (1) 

where η=1.62 for b=2, and N is the file request rate.  We have 
also verified that the above formula with η=5.53 (i.e., equation 
(6) in [7] with n=1.2), is an accurate estimate for bandwidth 
skimming if b=1.2 (i.e., results are within 12%).  

Figure 2 plots the required server bandwidth for bandwidth 
skimming with two values of b, and for the patching protocol 
(which requires b=2) under the same assumptions [7].  These 
results show that bandwidth skimming is significantly more 
efficient than patching when client request rate is high. 

An estimate of the required server bandwidth for the above 
assumptions but for deterministic inter-arrival times, obtained 
from a bound provided in [7], is given for b=2 by: 

B(N) = 1.5log2 (1 + N).3                       (2) 

D. Previous CDN Cost Model 

The CDN delivery cost,  applied in [4, 14, 15], for a file 
that has a fraction f and client rate N/P at each proxy, is:   

C(f, N,P,b) = Borigin(f, N,P,b) + P×β ×Bproxy(f, N,P,b)   (3)  

where Borigin and Bproxy  depend on f, N, P, b, and the delivery 
protocol in use, and β ≤ 1 is the average cost per proxy stream 
relative to an origin server stream.  Stream cost is based on 
estimates of the average resources used by the streams from the 
respective server.  Origin stream cost will depend on whether 
the origin delivers content only to the proxy or directly to the 
clients.  Note that multiplying both sides of equation (3) by the 
estimated origin stream cost yields the actual estimated CDN 
delivery cost.  Equation (3) can also be modified in the obvious 
way for the case that each proxy has a different client rate and 
stores a different fraction of the file [5].   

An optimization problem can be formulated in which the 
objective is to minimize, over the fraction of each file that is 

                                                      
2 The “ required server bandwidth”  for a file is defined as the average 
server bandwidth used by the specified protocol to serve each client 
immediately.   
3 Using simulation, we have validated that this expression is a good 
estimate of required server bandwidth for the bandwidth skimming 
policy under the stated assumptions.  

stored at each proxy, the sum of the delivery cost for each file 
(given by equation (3)), subject to bounds on the total proxy 
bandwidth available to deliver all files and on the proxy 
storage capacity. Solving the optimization problem, as in 
[4,5,15], yields both the minimum delivery cost and the proxy 
content that minimizes cost.  Previous work used this approach 
for the CDN protocols reviewed in Section I.   

III. NEW CDN PROTOCOLS & COST MODELS 

Section III.A provides examples that illustrate the need for 
a simple delivery cost model, such as the model in Section 
II.D, to provision scalable streaming media CDNs. Section 
III.B discusses the assumptions that will be made in Sections 
III.C-E, which define the BWSkim(b), BWSkim/U(b), and 
BWSkim[/U]+Batch(b) protocols, and derive formulas for 
Borigin and Bproxy for the delivery cost model for each protocol.  

A. Motivating Examples 

To understand the need for a delivery cost model to 
provision a CDN when scalable streaming protocols are used, 
consider a CDN with ten proxy servers (i.e., P=10) and request 
rate per proxy (N/P) equal to 100 for a given media file.  If the 
file is not stored at any of the proxies, the request rate to the 
origin is equal to 1000.  Figure 2 shows that the required origin 
server bandwidth is approximately twelve (concurrent) streams 
for client request rate 1000 and client receive bandwidth b=2.  
On the other hand, if each proxy stores the entire file, Figure 2 
shows that the required bandwidth at each proxy server (with 
request rate 100) is approximately seven streams.  Whether ten 
proxy servers each transmitting seven streams is more cost 
effective than one origin server transmitting twelve streams 
depends on the average cost ratio of the origin server stream 
and the proxy server stream, which in turn depends on both the 
server and network resource costs.  

Note that similar tradeoffs occur for other scalable 
streaming protocols. For example, periodic broadcast protocols 
(e.g., [12,13,15]) require a fixed server bandwidth (e.g., on the 

Table 1: Client Workload and Cost M odel Parameters 

Symbol Definition 

λ  Average client request arrival rate for a file  

T Media file duration (in minutes) 

N Client arrival rate, in arrivals per T (N=λT) 

b Client bandwidth 

f Fraction of the file stored at the proxy 

Bproxy 
Server bandwidth required to deliver the 
content stored at the proxy, measured in units 
of the file streaming rate 

Borigin 
Server bandwidth required to deliver content 
from the origin, measured in units of the file 
streaming rate 

β 
Ratio of cost of one proxy server stream to 
cost of one origin server stream 

P Number of proxy servers 

C Total delivery cost for the file 
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order of 10 streams) for the origin or for each proxy that stores 
the file, independent of the client arrival rate. 

The capability to store file prefixes at the proxy creates 
further complexity in provisioning the proxy storage.  Consider 
a CDN with a single proxy with client rate equal to 1000 for a 
given file.  As before, twelve origin streams are required to 
deliver the file if it is not stored at the proxy.  If instead the 
proxy stores the first 10% of the file, the client request rate for 
the prefix, normalized to the length of the prefix, is 100.  Thus, 
from Figure 2, the proxy transmits approximately seven 
concurrent streams to deliver the prefix to all clients.  If the 
origin server transmits through the proxy, or informs the proxy 
of its streams for merging, the total required bandwidth is still 
twelve, so the origin transmits five streams to deliver the file 
suffix.  Thus, a small amount of proxy storage (e.g., 10% of the 
file) offloads a large fraction of the origin server bandwidth 
(i.e., seven out of twelve of the origin server streams).  Similar 
examples can be given for other scalable delivery protocols, 
since each delivers a prefix more frequently than later portions 
of a popular file.  These factors are part of the basis for the 
previous conclusions [4,5,14,15] that prefix caching at the 
proxies minimizes delivery cost.  However, modern disks have 
a relatively large amount of storage, so realistic client request 
rates and proxy bandwidth constraints for the assumed proxy 
storage capacity, together with using the more efficient 
bandwidth skimming protocols may lead to new conclusions.   

Which data should be stored at the proxies depends in 
complex ways on the client workload, the number of proxies, 
the storage capacity and bandwidth of the proxies, and the 
relative costs of proxy and origin server streams.  Simple 
models that capture main features of the system behavior are 
needed to obtain initial insights into the most effective delivery 
protocols as well as the proxy storage strategies that minimize 
delivery cost as a function of those parameters.  Such models, 
which can be refined to include more details of the system 
behavior, are discussed next.  

B. Model Assumptions 

In this paper, we use the model of delivery cost, as a 
function of client arrival rate and fraction stored at the proxy, 
given in equation (3). The workload and cost model parameters 
are shown in Table 1. We assume that the proxy client 
workloads are statistically homogeneous (which implies that all 
proxies store the same fraction f of each file). Equation (3) also 
assumes that the average cost of an origin stream as compared 
with a proxy stream is expressed as a constant, β, which will be 

varied in the experiments in Sections IV and V to determine its 
impact on the optimal proxy cache content. 

In Sections C-E below, we define, and derive formulas for 
the CDN server bandwidths, for three ways of employing the 
bandwidth skimming protocol:  BWSkim, BWSkim/U, and 
BWSkim[/U]+Batch.  The derived bandwidths were validated 
against simulation over a wide range of client arrival rates (i.e., 
N/P = 1−10,000), file fraction stored at the proxies (f = 0.01–
0.99), and for 1−10 proxy servers.  The formulas are within 
15% of the simulation values for all of these parameter ranges.   

In deriving the bandwidths, it is assumed that client 
arrivals are Poisson (as measured in [1]) and that each client 
retrieves the entire requested file. For the systems in Sections C 
and E, it is further assumed that the origin can stream the 
content directly to the client, by using, for example, the 
mechanism mentioned in Section II.A. 

The bandwidth calculations are easily modified for various 
types of heterogeneities of the client workloads  (as was done 
in [5]) or for various models of interactive client requests.   

C. BWSkim(b) Protocols 

In the BWSkim(b) protocol, the proxies can store an 
arbitrary fraction of a given file. Both the proxy and the origin 
use the simple closest target bandwidth skimming protocol (for 
client bandwidth b) to deliver their streams, as illustrated in 
Figure 3a for a file with fraction f stored at the proxy. A new 
client stream from the proxy is merged hierarchically with 
other streams from the same proxy. If the full stream or a suffix 
is delivered by the origin, origin streams are also merged. The 
origin may stream the media data directly to the clients rather 
than through the proxies, which only impacts the value of β. 

With a small increase in implementation complexity (i.e., 
messages from the origin to the proxies informing them of each 
new origin stream for any file that has a prefix stored at the 
proxies), a proxy can direct the clients of the oldest of the 
active prefix streams for a file to listen to and begin merging 
with a closest active target origin stream. To simplify the 
calculation of required origin server bandwidth for the 
BWSkim protocol, we assume that the proxy implementation 
does not have this optimization. However, we have verified 
that the calculated origin server bandwidth is very close to the  
bandwidth for the optimized protocol (typically within 10%) 
over the parameter space of our validation experiments. Part of 
the explanation is that at moderate to high client arrival rate, 
new clients continually merge with the oldest proxy stream, 
which delays the time when it can start a successful merge with 
the closest target origin stream. At lower arrival rates, there is 

a) BWSkim(2) b) BWSkim/U(2) c) BWSkim+Batch(3) 
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less overall opportunity for merging, and hence, variations in 
the merging protocol do not have a large impact. 

The BWSkim proxy uses bandwidth skimming to deliver a 
file of length fT which has normalized client request rate equal 
to λ/P × fT=fN/P.  Letting Nproxy=N/P, 

 Bproxy (f, N,P,b) = η ln (1 + f Nproxy/η),            (4) 

where η depends on b, as given in Section II.C. 
To derive Borigin, we first estimate the average arrival rate 

of (suffix) requests at the origin. The request rate from each 
proxy is equal to the rate at which proxy streams reach the end 
of the prefix without being merged into some earlier stream, 
which can be derived as:  
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Given the normalized request rate to the origin server suffix, 
we can compute the required origin server bandwidth using 
either equation (1) or (2).  Comparison against simulation 
revealed that the Poisson arrival assumption is accurate over 
the parameter space of our validations.  Thus, noting that the 
normalized suffix request rate, Norigin =  λorigin×(1−f)T,   

Borigin(f,N,P,b) = η ln(1+Norigin/η),                 (5) 
where: 

η
η

+
−=
PfN

Nf
Norigin /

)1( .                         (6) 

D. BWSkim/U(b) Protocols 

In the BWSkim/U protocol, the origin uses simple unicast 
streams to deliver content that is not stored at the proxies.  In 
this case, the origin streams the content to the proxy and the 
proxy multicasts it to the clients, so that clients listening to 
streams from the proxy can be directed to merge using the 
bandwidth skimming protocol.  Note that each unicast stream 
will terminate when the clients listening to the multicast from 
the proxy merge with a target stream.  Thus, the system 
operates as in Figure 3b, which is similar to Figure 3a except 
that each origin suffix stream (unicast to the proxy) can only 
merge with other suffix streams requested by the same proxy.  

The proxy bandwidth needed to deliver the content stored 
at the proxy is computed as in the BWSkim protocol, using 
equation (4). The origin bandwidth needed to deliver the rest of 
the content requested by one of the proxy client populations 
can be computed by setting P=1 in equations (5) and (6).  The 
total origin bandwidth is then P times this bandwidth: 

Borigin(f,N,P,b) = P η ln[1 + (1−f) N / (f N+η) ] .         (7)         

We let the cost of the origin server stream include the cost 
of streaming through the proxy server (which requires network 
bandwidth but not disk I/O bandwidth at the proxy).  Thus, for 
two CDNs that differ only in whether the BWSkim or the 
BWSkim/U protocol is used, the value of β will be smaller in 
the latter case.  In Section V we quantify the network i/o 

bandwidth needed per proxy for origin server content in 
BWSkim/U CDNs. 

E. BWSkim[ /U] +Batch(b) Protocols 

The BWSkim+Batch protocol operates the same as 
BWSkim(2), with the same CDN server bandwidths as derived 
in Section III.C, for each file that is fully stored or is not stored 
at the proxy.  For a file that has a prefix stored at the proxies, 
BWSkim+Batch requires client bandwidth, b>2, and as 
illustrated in Figure 3c, each client that requests the file uses 
one unit of bandwidth to listen to the first origin suffix stream 
that starts after the client request.  The proxy delivers the prefix 
to the clients using  BWSkim(b-1).  During the first fT of the 
suffix stream, no merging of suffix streams is performed 
(because client bandwidth is often entirely used for listening to 
the one suffix stream and the prefix stream(s)).  If the suffix is 
longer than fT, the remainder of the suffix streams are merged 
by the origin using BWSkim(2).  

The required proxy server bandwidth is computed using 
equation (4) but using η for b−1. The batching of clients in 
each origin suffix stream decreases the rate of suffix requests 
compared to the BWSkim protocol, yielding an average time 
between two suffix requests equal to fT+1/N.  Note that this 
interval is approximately deterministic (unless f, T or N is 
small).  Hence, the arrival rate at the origin server is given by 

      

NfT
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origin 1
1

)(
+

=λ .                          (8) 

If f ≥ 0.25, there is no merging at the origin server, and  

 f  ≥ 0.25:   Borigin(f, N,P,b) = λorigin×(1-f)T.                 (9)  

This is because merging only starts after 2fT (the prefix of 
length fT and fT of the suffix) and the minimum inter-arrival 
time at the origin is fT. Thus, if f=0.25, merging could start at 
T/2, but the closest target stream must be at or beyond position 
3T/4, so merging cannot occur before the target stream ends.  

If f < 0.25, merging occurs in the last 1–2f of the file.    
Since no merging of suffix streams occurs before this last 
segment, the “requests”  for this last segment arrive 
approximately deterministically at rate given by equation (8). 
In total, the origin bandwidth needed to deliver that last portion 
of the file can be derived using an approach similar to the 
derivation of equation (2) in [7], as follows: 
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Thus,  

      f<0.25:  Borigin(f,N,P,b) = λorigin×fT+Borigin,last-seg(f).        (10) 

The origin bandwidth calculations above can be modified 
for the BWSkim/U+Batch(b) protocol, as described in Section 
III.D for the BWSkim(b) protocol. 

For the BWSkim+Batch protocol, we consider systems 
with client bandwidth (b) equal to 3 and 2.2, which implies 



client bandwidth of 2 or 1.2, respectively, for merging proxy 
streams.  The client bandwidth for receiving the extra origin 
suffix stream when the proxy stores a prefix might be provided 
by a system closer to the client than the proxy, which would  
buffer the data and send it to the client when needed, in the 
case that the “ last mile”  bandwidth to the client is limited. In 
fact, in the BWSkim or BWSkim+Batch protocols, the “client”  
might be a system very near the real client that implements all 
of the necessary buffering and then feeds a simple single 
stream to the actual client. In any case, the implementation of 
BWSkim+Batch is more complex than the BWSkim 
implementation, so it is preferable to use BWSkim unless the 
cost savings for BWSkim+Batch are significant. One 
interesting question to be explored is how BWSkim+Batch(b), 
with b=3 and b=2.2, compare to ordinary BWSkim(2), and in 
turn how much the cost increases for BWSkim(1.2), which may 
be important for streaming high quality content. 

IV. RESULTS FOR UNCONSTRAINED PROXY SERVERS 

In this section the models are used to provision CDNs with 
a delivery protocol and storage policy in the case that the proxy 
can be configured with enough bandwidth and storage for the 
fraction of each file that minimizes the file delivery cost.  For 
each policy and given values of N/P, P, β, and b, we 
numerically solve for the fraction f of the file stored at the 
proxy that minimizes the delivery cost given in equation (3), 
using the CDN server bandwidth costs derived in Section III. 

 Figure 4 provides the percent increase in cost for 
BWSkim(2) as compared with BWSkim+Batch(3) for N/P 
varying from 1 – 10,000, β varying from 0 – 0.8, and P equal 
to 1, 10, and 100.  Note that the results for P = 1 also provide 
the cost increase for BWSkim/U(2) vs. BWSkim+Batch/U(3).  
The results show that the simple BWSkim(2) protocol has 
delivery cost within 5% of the BWSkim+Batch(3) protocol 
over nearly the entire design space.  

Figure 5 shows, for the wide design space explored, that 
the optimal value of f for the BWSkim(2) protocol is 1 or 0, 
depending primarily on P and on β, and to a lesser degree on 
N/P.  Note that the results in Figures 5b,c show that a file is 
only stored at the proxy servers if it is much less expensive to 
deliver it from the proxy (i.e., β is small), in which case the 
assumption the proxies have sufficient disk resources for the 
content may be reasonable.  

The optimal all-or-nothing storage results for CDNs that 
use BWSkim(2) contrast sharply with results in previous work 
on unconstrained proxy storage strategies [4,14] for CDNs that 
use the scalable PDS protocol, selective catching protocol, or 
variations on the patching protocol.  For these less efficient 
streaming protocols, prefix caching and batching for origin 
suffix streams greatly reduce delivery cost. In the BWSkim(2) 
system, batching clients for origin streams is not more effective 
than the very efficient bandwidth skimming merges that occur 
in the streams delivered by the proxies or the origin. 

According to Figures 4-6 and additional results omitted 
due to space constraints: 

• For a multicast origin, large P, low N/P, and intermediate 
values of β  (i.e., P >10, N/P≈1, and β =  0.1 as in Figure 4c), 
BWSkim+Batch(3) outperforms BWSkim(2), and the 
optimal proxy content is a file prefix, as shown in Figure 6b.   

• In all other cases, delivery cost is nearly minimized by using 
the simple BWSkim protocol and a simple all-or-nothing 
storage strategy. 

• A bandwidth skimming CDN stores a given file (or prefix) at 
the proxies only if (1) β  = 0, (2) β ≤ 0.1 and P ≤ 10, (3) β ≤ 
0.3, P > 10 and N/P is small, or (4) the origin uses unicast 
(or P = 1).   

Figure 7 shows the delivery cost as a function of the number of 
proxies that store the file, illustrating again that when the origin 
server uses multicast, storing the content at multiple proxies is 
only cost effective if N/P is small or β is a very small fraction 
(i.e., approximately 1/P).  For small P, N/P, and/or β, the 
limited opportunity for sharing of origin streams or the low 
relative cost of proxy streams leads to storing content at the 
proxies. For P > 1, as either β or N/P increases, it is more cost-
effective to share the file delivery from the origin among all 
clients, and storing content at the proxies is not cost effective.4  
Thus, the experiments in Section V for proxies with storage 

                                                      
4 Note however, that even if the content is not stored at the proxy, a 
very small prefix might be stored to reduce start-up latency or for 
smoothing VBR streams. 
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Figure 5: Optimal Proxy Content for  BWSkim(2) 
(unconstrained proxy servers, one file) 
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Figure 4:  Cost Increase of  BWSkim[/U](2) versus 
BWSkim[/U]+Batch(3)  
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Figure 6: Optimal Proxy Content for  BWSkim+Batch(3)  
(unconstrained proxy servers, one file) 
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and bandwidth constraints will consider only β ≤ 0.1 if the 
origin server is multicast enabled. 

BWSkim+Batch is less cost effective if b=2.2 than if b=3 
and thus for unconstrained proxy server storage and bandwidth, 
BWSkim(2) is preferred over BWSkim+Batch(2.2).  

Figure 8 shows the cost ratio for BWSkim(2)  to 
BWSkim(1.2). Both systems cache the same content at nearly 
every point in the design space, and thus the differences in cost 
are due to the decrease in merging efficiency as b decreases. As 
N/P increases for any given values of P and β, the cost ratio 
appears to converge to 0.3, which implies that delivery cost 
increases by at most about a factor of three if client bandwidth 
is limited to 1.2 streams (i.e., for higher quality content). 

V.  CACHE CONTENT FOR CONSTRAINED PROXIES 

In this section, the cost models are used to provision 
CDNs with a delivery protocol and proxy storage policy, 
assuming proxy storage and bandwidth is bounded.  The goal is 
to obtain insight, for a given system and set of files for which 
storing the data at the proxy is cost-effective (e.g., origin server 
uses unicast streaming or β ≤ 0.1, as identified in Section IV, 
Figures 5 - 6), into which (fractions of) files should be stored at 
the proxy and which delivery protocol has higher performance.       

We consider a set of n origin server media files of equal 
duration T that have total client request rate M (arrivals per 
time T) and a skewed Zipf-like distribution5 of access 
frequency.  The proxy storage, Ps, is expressed as a fraction of 
the total amount of data at the origin. The proxy bandwidth, Pb, 
is expressed as the ratio of the available bandwidth to the total 
bandwidth that would be needed if the proxy fully stored all 
files, calculated by summing the required server bandwidth for 
delivering each file6 (equation (1)) over all files.  

A CDN that uses a given delivery protocol is provisioned 
for a given set of system and workload configuration 
parameters (defined in Tables 1 and 2),  by solving the 
constrained optimization outlined in Section II.D.  This 
optimization  involves minimizing the sum of the delivery cost 
for each file over all possible fractions of each file that might 
be stored at the proxies. To make the model tractable, we 
optimize over discrete values of f, ranging from 0 to 1 in steps 
of 0.01.  The optimization problem is solved with constraints 
on proxy storage (Ps) and bandwidth (Pb), typically in under 1 
minute, using the CPLEX solver within GAMS [2].  

Simple storage strategies that achieve nearly the minimum 
delivery cost are of greater interest than complex strategies that 
achieve the true minimum.  Thus, if the solution to the 
optimization model is a set of files and/or prefixes that must be 
enumerated rather than specified by simple ranges of file 
access rank and prefix size, we further constrain the model to 
obtain a simpler solution that has nearly the same delivery cost 
as the optimal solution, as discussed in Section V.A.  

To obtain realistic relative values of Pb and Ps, for given 
values of M/P, T, and n, we compute Pb and Ps for an integral 
number of current generation Ultrastar 72zX disk and the 
MPEG-2 streaming rate of 4 Mb/s.  A single such disk can 
store 44 hours of MPEG-2 content, and has i/o bandwidth 
(ideally) for 42 concurrent streams.  Shorter duration files will 
need a smaller number of disks for a given value of Ps; thus, 
for a given M/P, n, and Ps, the value of Pb will be smaller for 
smaller file duration T.  Similarly, a larger number of files (n) 
implies a larger number of disks for given values of T and Ps; 
thus, for a given M/P, T, and Ps, the value of Pb will be larger 
for larger n.  Thus, the impact of varying n or T is to change the 
relative size of Ps and Pb, as would occur when changing the 
disk technology.  By choosing n as either 128 or 1024, T as 
either 30 or 120 minutes, varying the number of disks so that Ps 
varies from 0.08 to 0.68, and varying M/P from 10 to 10,000, a 
wide range of absolute and relative values of Ps and Pb are 
included in the experiments below.   

Sections V.A and V.B provide the results for the CDNs in 
which the origin server uses unicast or multicast, respectively, 
to deliver content.  Based on the results for unconstrained 
proxy servers in Section IV, Section V.B only considers small 
values of β  (i.e., β ≤ 0.3).  In most cases the optimal proxy 
content uses all of the proxy storage capacity or all of the 
proxy bandwidth, or both; these results are marked with the 
keywords “cap” , “bw” , or “both” , respectively, in the figures. 

                                                      
5 The access frequency for file i is equal to C/i, where C is a constant 
that ensures that the sum of the file access frequencies is equal to 1. 
6 Note that the average request rate at a given proxy server for a given 
file is given by the product of M/P and the file access frequency.  

Figure 8: Cost Ratio of  BWSkim(2) to BWSkim(1.2) 
(unconstrained proxy servers, one  file) 
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Symbol Definition 
n Number of media files, each of duration T 
M Total client arrival rate, in arrivals per T (all files) 
Ps Proxy storage capacity as a fraction of n×file size 

Pb Ratio of available proxy bandwidth to bandwidth 
needed if the proxy fully stores all n files 

 

  Table 2 :  Additional Parameters  for  Constrained Proxies 
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A. Origin Server uses Unicast Streams 

 When the origin uses unicast streaming, the proxy content 
that minimizes delivery cost, i.e., the content that maximally 
off-loads the origin, is the same for all P and β. 

Over the wide range of system configuration parameters 
defined above, results illustrated in Figures 9-12 and further 
results omitted to conserve space show the following: 

• The optimal proxy server content for BWSkim/U(b) consists 
primarily of full files, but for many configurations the 
optimal content is a chaotic set of files and prefixes, as 
illustrated in Figure 9a for a configuration with Ps = 0.34 and 
Pb = 0.32.  In all such cases, the optimal solution when the 
proxy servers are constrained to store any contiguous (with 
respect to their access frequency rank) set of full files, as 
illustrated in Figure 9b, yielded delivery cost within 0.05% 
of the minimum. These near-optimal solutions are presented 
in the remainder of this section. 

• The delivery cost savings for BWSkim+Batch/U(3) 
compared to BWSkim/U(2) are very small (i.e., no greater 
than 8%).  Figure 10 shows that BWSkim+Batch/U(3) stores 
primarily file prefixes at the proxies (which increases the 
opportunities for batching clients for origin streams), but the 
benefit of batching is again not substantial enough to 
outperform the efficient bandwidth skimming merges in the 
simpler BWSkim policy.   

• CDNs that use BWSkim+Batch/U(2.2) do not cache many 
prefixes and do not improve on BWSkim/U(2). 

• The trends in Figures 11a−c, e–f were observed for all of the 
CDN configurations studied. In particular, for BWSkim/U(2) 
and values of Pb greater than 1, the proxy fully stores as 
many of the most popular files as its storage permits. For 
smaller Pb, the proxy (fully) stores fewer and less popular 
files.  Figure 10, and Figure 11d compared with 11a and 11b, 
further illustrate that for a given value of Ps the optimal 
proxy content appears to depend heavily on the value of Pb. 

• Figure 9c shows the optimal content (not constrained to be a 
contiguous set of full files) for the same BWSkim/U(2) 
system configuration as in Figure 9a, except that the proxy 
bandwidth (Pb) is arbitrarily increased by a factor of three. In 
this hypothetical configuration, the optimal proxy content 
contains only prefixes, which agrees with results in [15] for a 
similar CDN configuration that uses the patching protocol.  
However, this configuration is not feasible for expected disk 
technology trends.  Furthermore, for feasible configurations 
with the same Ps and Pb as in Figure 9c (e.g., Figure 11a), 
prefix storage is not optimal. 

• Figure 12 shows that, as in the case of unconstrained proxy 
storage and bandwidth, if client bandwidth is limited (as may 
be the case when streaming high quality videos), using 
BWSkim/U(1.2) increases the delivery cost by up to a factor 
of three. The trends in the optimal proxy content for 
BWSkim(1.2), as a function of Pb and Ps, are similar to the 
BWSkim(2) CDN. 

In BWSkim/U CDNs, the origin uses unicast streaming to 
the proxies, which then multicast the content to their clients.  
Over all of the system configurations examined in this work in 
which the proxy is not severely under-provisioned (in terms of 
storage capacity and disk bandwidth) for the client load, the 
network i/o bandwidth needed per proxy for origin content, 
which is included in the relative cost of the origin streams, is 
less than the per-proxy disk i/o bandwidth.  
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  Figure 11: Near-Optimal Proxy Content  for  BWSkim/U(2) 



B. Origin Server Uses Multicast Streams 

The results above show that the near-optimal BWSkim/U 
protocol and proxy content for CDNs with unicast streaming 
from the origin does not include prefixes for any realistic 
configurations considered. A key question for CDNs in which 
the origin delivers streams using multicast is whether (and in 
which regions of the design space) prefix caching and batching 
clients from different regions together for suffix streams, 
reduces the cost significantly.  The results in Figures 13–17, 
and further results omitted due to space constraints show that: 

• BWSkim+Batch(3) significantly reduces delivery cost (e.g., 
by more than 20%) primarily when β  ≤ 1/P, P > 10, M/P ≥ 
100,  and Pb > 0.1, as shown in Figure 13.  If M/P is small, 
multicast is not highly effective and the optimal proxy 
content for both policies is similar (i.e., long prefixes or full 
file caching of the most popular files, as illustrated in Figures 

14a and 15a).  For very large M/P, Pb is small (as shown at 
the top of Figure 13), and both policies store less popular 
and fewer files. 

•  Figures 14 and 15 show how the optimal proxy content for 
BWSkim+Batch(3) and BWSkim(2) varies, respectively, 
over design regions in which each is the best policy.  These 
figures illustrate the variations in the content as Pb, β, or P 
increases.   If more disks are added to the proxies, BWSkim 
proxies store more files (e.g., Figures 15d,e) while 
BWSkim+Batch proxies store longer prefixes (e.g., Figures 
14e,f or 14b,c).  Less popular content is stored at the proxies 
as β increases (Figures 15a,b), P increases (Figures 14a,d or 
15a,c), or Pb decreases (Figures 14a,b or 15f,e). 

• As illustrated in Figure 16, BWSkim+Batch(2.2) reduces 
delivery cost over BWSkim(2) for the same configurations 
as BWSkim+Batch(3). Furthermore, perhaps surprisingly, 
the reduction in cost for BWSkim+Batch(b) compared to 
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Figure 13: Cost ratio of  BWSkim+Batch(3) to BWSkim(2) 
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(β=0,T=2h) 
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Figure 16:  Ratio of the delivery cost for   

BWSkim +Batch(2.2) to BWSkim(2) 
 (Ps=34%, n=128, T=2h) 
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Figure 17:  Cost Ratio for  Best   

Policy when b≥≥≥≥2 to BWSkim(1.2)                           
(Ps=34%, n=1024, T=2h) 

Figure 18:  Cost Ratio 
for  Or igin M ulticast to 

Or igin  Unicast   
(β=0, n=128, T=2h) 
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Figure 15: Optimal Cache Content for  BWSkim(2) 
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BWSkim(2) is nearly as large for b=2.2 as for b=3, in spite 
of the reduced merging of prefix streams when b=2.2.  In 
nearly all configurations, the optimal proxy content for 
BWSkim+Batch(b) is the same for b=2.2 and b=3. 

• Figure 17 illustrates that, compared to the best policy for 
b≥2, using BWSkim(1.2) (e.g., for higher quality content) 
increases the delivery cost significantly (up to a factor of 
nine) for P > 10 and M/P > 100 or M/P > 1000. 

 Finally, we compute how much cost savings are achieved 
when the origin server uses multicast, as compared to unicast. 
Results in Figure 18 are representative of savings achieved in 
other regions of the design space in which the proxy is 
provisioned to handle a reasonable fraction of the origin load. 
The results show that, except when the proxy client request rate 
for all origin content (M/P) is small or P=1, the cost benefit of 
origin multicast is significant, with savings up to 98% for the 
configurations examined.  

VI. CONCLUSIONS 

This paper developed simple cost models for provisioning 
CDNs that use highly scalable streaming protocols. The main 
findings, over a large CDN configuration space, are: 

• Storing content at the proxy servers is only cost effective if 
(a) the origin is not multicast enabled, or (b) the file request 
rate is low (thus multicast is not highly effective), or (c) the 
cost of a proxy stream is a very small fraction of the cost of 
an origin stream (i.e., β ≤1/P).   

• For the configurations where proxies are cost effective, 
BWSkim+Batch[/U](3) outperforms BWSkim[/U](2) (i.e., 
by more than 20%) only if the origin server uses multicast 
and (a) β = 0.1, proxy disk resources are unlimited, P > 10, 
and file request rate, N/P ≈ 1, or (b) β ≤ 1/P, proxy disk 
space and bandwidth are limited (in spite of the low relative 
cost of a proxy stream), P > 10, Pb > 0.1, and total client 
request rate per proxy (M/P) is greater than 100. 

• The (near) optimal proxy content for the BWSkim(b) policy 
includes essentially no prefix storage, whereas the optimal 
cache content for BWSkim+Batch(b) includes primarily file 
prefixes when it significantly outperforms the simpler 
BWSkim policy. 

• BWSkim+Batch(2.2) reduces cost compared to BWSkim(2) 
for the same CDN configurations as BWSkim+Batch(3), by 
nearly the same amount and with the same optimal content. 

• BWSkim(1.2) increases delivery cost compared to the best 
policy with b≥2, by a up to a factor of three if proxy disk 
resources are sufficient, or up to a factor of nine when proxy 
disk storage and bandwidth are limited.  

• The impact of varying the system configuration parameters 
on the optimal proxy content is as follows:  

1. If β = 0 and the arrival rate (M/P) is small, the optimal 
proxy content contains as many of the most popular full 
files as can be stored. 

2. As M/P increases, for constrained proxy disk resources, 
the proxies store less popular data. 

3. If the origin-proxy path is multicast-enabled, as either β or 
P increases, it becomes more cost-effective to stream more 

popular files from the origin. If the origin-proxy path is not 
multicast-enabled, neither β nor P has impact on the 
optimal cache content. 

• If the proxies are not severely under-provisioned, unicast of 
origin data through the proxy can be performed with proxy 
network bandwidth less than twice the proxy disk bandwidth. 

• Multicast instead of unicast delivery by the origin greatly 
reduces delivery cost unless M/P is small or P=1.  

The models developed in this paper use a very simple 
approximation for the relative cost of proxy and origin server 
streams.  Future research includes developing models for 
provisioning scalable streaming CDNs that include more 
precise network bandwidth costs. 
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