
PERFORMANCE ANALYSIS OF A WWW SERVER

Virgílio A. F. Almeida* Jussara M. de Almeida Cristina S. Murta

* On sabbatical at the Computer Science Department, Boston University. E-mail: virgilio@cs.bu.edu. This
work was partially supported by a grant from CNPq/Brazil.

{virgilio, jussara, cristina}@dcc.ufmg.br
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
30161-970 Belo Horizonte

Brazil

The Web has experienced a phenomenal growth and has become the
most popular Internet application. As a consequence of its large
popularity, the Internet has suffered from various performance problems,
such as network congestion and overloaded servers. With regard to the
WWW, performance is critical, because users want fast and easy
access to all objects (i.e., documents, graphics, audio, and video)
available on the net. When a server is overloaded, it performs poorly,
with long response times and many connections refused. Thus, it is
important to understand WWW performance issues. This paper focuses
on the performance analysis of Web servers. In the first part of the
paper, we discuss the main steps to carry out a WWW performance
analysis effort. Then, we show some experimental results. Using a
synthetic benchmark (WebStone) and performance monitor tools, we
analyze performance of three different Web server software running on
top of a Windows NT platform.

1. INTRODUCTION

The World Wide Web (WWW or Web) is a client-
server architecture that integrates various types of
information on the global Internet and on corporate IP
(Internet Protocol) networks. The WWW allows users
to retrieve text and multimedia objects from servers
located throughout the world, with objects connected
by hypermedia links. In the past two years, the Web
has experienced a phenomenal growth and has
become the most popular Internet application.

In addition to that, many corporations and information
systems (IS) departments found the internal Internet,
also called Intranet, as an effective means of
distributing information within the organization. As a
consequence of its large popularity, the Internet has
suffered from various performance problems, such as
network congestion and overloaded servers.
Nowadays, it is common to find servers refusing
connections because they are overloaded [10].

Performance has always been a key issue in the
design and operation

of on-line systems. With regard to WWW,
performance is a critical issue, because users want
fast and easy access to all objects (i.e., documents,
pictures, audio, and video) available on the net. From
the information provider viewpoint, performance is
also important, because the importance of a Web
server is associated with the number of people that
visit the site in a given period of time, i.e., the number
of hits recorded on the server. A long delay to service
a request is a factor that discourages people to visit a
site. In the past, the importance of server
performance used to be viewed as secondary,
because performance of most of Web sites was
limited by low-bandwidth connections. However, that
view is changing because of the following reasons.
The performance of the Internet infrastructure itself
has been constantly improved and Web sites installed
on intranets are attached to high-speed networks (10-
100 Mbps). Thus, it is crucial to understand WWW
performance issues.

There are a number of factors which are of interest in
the analysis and evaluation of a Web server
functionality and design. They include issues such as
management tools, security, ease of use, authoring
features and performance. Rather than attempting to
analyze all aspects of a WWW server, this paper
concentrates on issues that are relevant to server
performance. Our goal here is to analyze different
Web server software on the same PC platform,
performing typical WWW tasks. Our tests do not
intend to rank server software in terms of its
performance. The relative behavior of the servers on
identical tasks is more important to us than the
absolute best performance that could be achieved by
any specific server. Because we do not have access
to source code of the servers, our analysis is based
on the “black box approach”. We usually attempt to
explain curious results through external testing, rather
than examining of the code.

There are few references on performance analysis of
WWW servers. An overview of the WW technology
from a server perspective is presented in [14].
References [5,9,11,12,13] study workload
characterization for WWW servers and clients.
Basically, they show the types of objects available at
WWW servers and analyze relevant aspects such as
file size distribution, inter-reference time distribution
and file popularity. Reference [12] examines
characteristics of a large number of HTML documents,
collected by some Web crawlers (e.g., Alta Vista,
Inktomi, Lycos, etc.). Techniques to characterize and
model performance of client/server systems in general
are presented in details in [1]. This paper focuses on
performance analysis of WWW servers and is
organized as follows. Section two discusses the
WWW architecture and its main components, such as
the HTTP protocol, the server software structure and

some relevant performance measures. In section
three, we describe a simple methodology for analyzing
performance of Web servers. Section four describes
the hardware, operating system (i.e., Windows NT),
server software (i.e., Emwac, Purveyor, and Website)
and workload (i.e., WebStone) used in our
experimental environment. The results obtained are
analyzed and interpreted in section five. Finally,
concluding remarks appear in section six.

2. WORLD WIDE WEB PERFORMANCE

The World-Wide Web is a client-server framework that
integrates various types of information on the global
Internet [4]. It is a combination of Web Browsers and
Web Servers that communicate using the HyperText
Transfer Protocol (HTTP), which is layered on top of
TCP/IP protocol. Browsers, such as Netscape,
Mosaic, and Microsoft Explorer, provide an easy-to-
use graphical interface for viewing pages and
documents in the Internet. A Web server (also called
HTTP Server) sends information (pages, images, etc.)
back to clients in response to their HTPP requests. It
also allows the integration of various sources of
information through Common Gateway Interface (CGI)
programs that perform general computation in
response to client requests. HTTP is a lightweight,
stateless protocol.

Figure 1: client-server interaction

Figure 1 depicts a typical client-server interaction for
the HTTP protocol. The client establishes the
connection to the server and interacts with it using
different methods (e.g., GET, HEAD, POST, etc.)
defined in the protocol [4]. Basically, it sends a request
for an object (e.g., document, image, database
search, etc.). The server takes a while to process the
request and returns the object or results of the
request. Objects are addressed by their Uniform
Resource Locator (URL).

 Web server program generally has several client
requests in progress at the same time, like a
multiprogrammed operating system. Some servers
implement that kind of multiprogrammed execution by
forking a process or thread for each connection as it
arrives. Depending on the implementation, the cost of
forking a new process may be too high and may cause
unacceptable overhead per connection. Other servers
attempt to minimize the overhead problem by
implementing a mechanism known as a “pool of
processes”, where a number of processes are created
during initialization. When a new request arrives, an
idle process is removed from the pool and assigned to
the request, saving all the initialization costs. The time
to process an HTTP request depends on the server
speed and on the request complexity. The former is a
function of the hardware configuration (processor
clock, memory architecture, I/O subsystem, and
network interface) and the server load. The latter
depends on the size of the document and the amount
of computation required by a CGI program.

Time and rate are the basic measures for
performance of a server. The rate at which HTTP
requests are serviced represent the throughput (also
called connection rate). Because the size of objects
vary significantly, throughput is usually measured in
terms of bytes/sec. The time required to complete a
request is the response time (also called latency).
This number is very dependent on the network
transfer rate, in special the traffic and the capacity of
the network links between the client and the server.
Also, errors per second is a measurement of
performance. Error is defined as any failure in
attempting an interaction with the server. Errors such
as “Connection Refused” indicates, for instance, a
failure in the attempt of creating a TCP/IP connection
or a time-out on creating the connection. Thus, the
most common measurements of Web servers are:

• connections/second or requests/second
• bytes/second
• response time or latency
• errors/second

3. PERFORMANCE ANALYSIS
METHODOLOGY

The benefits of performance analysis of WWW
servers are multiple. The first one is to assess the
service level provided by a server, in terms of
response time, error rate, and throughput. Other
benefits are the following: to assess the server
resource usage in order to identify bottlenecks, to
anticipate performance problems, and to understand
the influence of system’s features (e.g., maximum
number of connections, file size distribution, file
placement, processor scheduling and thread

management policies) on server performance. The
latter can help system administrators to tune up the
software and hardware parameters. The ultimate
benefit of carrying out a performance analysis effort is
to determine the capacity of a Web server, which can
be defined as the largest throughput (in terms of
bytes/sec) at which the HTTP response time remains
acceptable (e.g., 98% of requests serviced in less
than 0.1 sec).

 Web server performance evaluation is complex and
depends on several factors such as: the hardware
platform, operating system, server software, network
speed, and workload. There exist various well-known
methodologies for performance evaluation of
computer systems, as pointed out in [1]. However,
there are significant differences between traditional
computing environments and the WWW. First of all,
the number of potential Web clients is in the tens of
millions [3]. The Web is also characterized by a large
diversity in terms of its components: different browsers
and servers running on a variety of hardware platform,
connected to the Internet at several different speeds.
The workload consists of requests for different types
of information such as text, graphics, video, and audio.
Also, the usage pattern of accesses to Web servers
and WWW traffic exhibit activity bursts, observable
over orders of magnitude [5, 9, 11], which lead to
peaks at levels much higher than averages. Thus, it is
important to adapt existing performance evaluation
techniques [1,8] to the Web environment. In this
section, we discuss the major steps to carry out a
performance evaluation study of a WWW server:

• understanding the server environment
• monitoring the server operation
• characterizing the HTTP workload
• analyzing the server performance and capacity

The first step in any performance analysis project is to
obtain a big picture of the environment. The main
question in this step is to determine the purpose of the
server, which implicitly defines the service level, in
terms of availability and performance. For instance,
one needs to answer questions such as: what is the
potential number of clients (i.e., in terms of
requests/day) for the information content available in
the site? Is the site going to “sell” or offer information
for free? What is maximum response time acceptable
for the site? Answers to these kind of questions help
to define the site service level. Then, we need to
identify the key components of a Web server, which
altogether create the environment for processing
HTTP requests. The hardware configuration includes
processors (e.g., single server with multiple
processors or multiple servers with single
processors?), memory, disk (e.g., RAID) and control
units, and the network interface unit. The software
components are the operating system (and the

TCP/IP protocol implementation) and the Web server.
Another key element is the network link that connects
the server to the Internet or the corporate network,
whose capacity is measured in Mbits/sec.

The main source of information for performance
studies are the data collected from the observation of
the server’s operation. Server behavior can be
monitored by operating system’s tools, such as
UNIX/sar or the NT/Performance Monitor [1, 2, 7, 8].
Those monitors provide resource usage information.
In some cases, depending on the level of integration
between the server and the operating system,
information such as throughput and latency is also
provided by monitor tools. Web servers can be
configured to record information about all client
requests. The access logs have one line of information
per request processed by a server. Basically, each line
contains the name of the host making the request, the
timestamp the request was made, the filename of the
requested object and its size in bytes. Logs are useful
for workload characterization. The three most
important parameters to characterize Web workloads,
from the server standpoint, are the types of objects,
their popularity and the file sizes [5, 9, 11]. A number
of recent papers have addressed the problem of
characterizing workload of some WWW servers.
Reference 5 shows WWW workload characteristics
for six large servers. The document types accessed in
the servers fall into six categories: HTML, images
(e.g., gif and jpeg), sound (e.g., au and wav), video
(e.g., mpeg and avi), dynamic (e.g., gci and perl), and
formatted (e.g., ps, dvi, and doc). They also show that
HTML and IMAGE files account for over 90% of the
total requests to the servers. It has been shown
[5,9,11] that the distribution of filesizes is heavy-tailed
(also called power tail distributions), i.e., the
asymptotic shape of the distribution curve is
hyperbolic. In [11], it is shown that filesizes vary in the

range of 103 to 107 bytes and tail weight is increased
by audio and video files. Reference [12] analyzes a
large number of HTML documents and found that
average size was 4.4 Kbytes and the maximum value
of 1.6 Mbytes. In the next sections, we use the
framework presented here to analyze performance of
three different servers.

4. EXPERIMENTAL ENVIRONMENT

This section describes the environment where we
carried out the Web server performance tests. Our
server platform is Intel Pentium (75 and 100 MHz)
system with 16 MBytes of main memory, 256 KBytes
cache memory and two 1-gigabyte disks. It has a
standard 10-Megabit/second Ethernet connection
card. UNIX, Windows NT, Netware, and MacOS have
been all used as Internet server operating systems.
Each of them has some advantages and

disadvantages concerning relevant features such as
high-end scalability, multimedia tools, fast file systems,
management tools, and security schemes. We chose
Windows NT because it is becoming increasingly
important in the operating system arena and its
standard performance monitor tool (Perfmon)
provides part of the data needed for our analysis.
Performance Monitor [2] is a graphical tool for tracking
computer performance, that comes with the NT
operating system. It allows a user to study the
behavior of objects such as processors, memory,
logical disks, processes and threads. Perfmon
provides their measurements through counters,
which can be expressed as rates, such as Page
Faults/sec, File Data Operations/sec or as timers,
such as processor and disk utilization.

The client processes run on a SparcStation with 256
MBytes of main memory and operating system
SunOS 5.4. The web server software used in the
experiments are Emwac freeware HTTPS version
0.99, that originates from the European Microsoft
Windows NT Academic Centre, Purveyor WebServer,
version 1.2, from Process Software Corporation and
WebSite, version 1.1, from O’Reilly & Associates. All
the servers implement the HTTP/1.0 protocol and run
as a “service” in the Windows NT operating system.
We tried to configure the servers appropriately
whenever was possible. Emwac does not have any
configuration parameter. WebSite allows the user to
specify only the maximum number of simultaneous
connections to the server. It was set to 500, which is
the maximum value. In the case of Purveyor, we
inhibited all options that could add overhead to its
execution, such as the log option. There was no
additional parameter to be set in order to optimize
execution. All tests were run in an academic network
environment. In order to perform the experiments
under similar conditions of network traffic, we run all
experiments during the night, when the Ethernet
utilization was very low.

4.1 WEBSTONE

Benchmarking has been regarded as a useful
approach for analyzing and predicting performance of
computer systems. Several benchmarks have been
proposed for measuring hardware and software
speed, including compilers and operating systems.
Instead of developing a benchmark suite to represent
a specific Web workload, we decided to use a
standard benchmark. The workload of a WWW server
consists basically of HTTP requests. WebStone is a
configurable client-server benchmark for HTTP
servers [6], that uses workload parameters and client
processes to generate HTTP traffic that allows a
server to be stressed in a number of different ways. It
makes a number of HTTP 1.0 GET requests for

specific pages on a web server and measures the
performance of the server software and hardware
platform. It is a distributed, multi-process benchmark.
The master process (Webmaster) spawns, local or
remotely, a predefined number of client processes.

Each process generates HTTP traffic to the web
server and collects statistics. After all clients finish
running, Webmaster gathers the data collected by the
clients and generates a performance report.
WebStone is designed to run for a specified period of
time. The number of iterations can also be specified
by the user. The client processes and the Webmaster
may or not run on the same machine. The number of
client processes per machine is limited only by the
machine memory. In our experiments, Webmaster
and client processes ran on the same UNIX machine.
The test time was set to 5 minutes, and the results
presented are the average values of three
experiments performed for each configuration and
workload. The WebStone main results are throughput
and latency. The former is measured in bytes/second
and the latter represents the average response time to
complete a request, from the client standpoint. Other
important measures are connection rate and Little’s
Load Factor, derived from Little’s Law [1]. This factor
reflects the degree of concurrency in the request
execution. It is the average number of requests a
server handles at a time. The Little’s Load Factor is
calculated by:

LLF
total cumulative time

test time
= _ _

_
 (1)

where total_cumulative_time is the sum of the latency
measured for all connections and test_time is the
duration of the benchmark execution. Ideally, Little’s
Load Factor should be equal to the number of client
processes. A lower value indicates that the server is
overloaded and some clients are not been serviced
before they time out.

The process of load generation in WebStone is
performed by successively requesting pages and files
from the server as fast as it can answer the requests.
A new request is sent out to the server just after a
client receives the answer of the previous request.
Actually, this is a problem we noted in the use of
WebStone. It is difficult to mimic the behavior of
WWW users. Real users cycles between idle
periods (user think time) and Web activity periods,
such as the network transmission and server
processing. WebStone does not allow one to model
user think times. The workload is defined by the
number of client processes and by the configuration
file, which specifies number and type of pages.
Each page is a set of HTML files of different sizes.
The type of a page is mainly determined by its size
and its access probability. A request for a page

represents a request for each one of its files. The
experiments were done using two different workloads
(A and B), whose main characteristics are shown in
table I. For workload A, the size of 94% of the
accessed files is under 50 Kbytes. For workload B, the
size of the files varies between 1 and 200 Kbytes, with
equal access probability.

Characteristics Wkl A Wkl B
Number of files 18 180
Total size 298 KB 5 MB
Average size 15 KB 27 KB

Table I: Workload Characteristics

5. RESULTS

In our experimental environment, we monitored the
system behavior from two different standpoints: client
and server. At the server side, the Performance
Monitor toll (Perfmon) recorded the resource usage
and the behavior of threads and processes. In this
work, we did not use information from the server logs.
However, some server software exhibit statistics
collected from the server log. Website, for instance,
provides counters (average response time,
throughput, etc.) that are displayed by the Perfmon. At
the client side, WebStone was used to measure the
latency of HTTP requests as well as the efficiency of
the system. The results obtained are shown and
discussed in this section.

5.1 THROUGHPUT AND CPU UTILIZATION

Figure 1 displays throughput (Kbytes/s), connection
rate (HTTPops/s), and processor utilization for
workload A. Resource usage statistics were collected
by Perfmon at two levels. At the operating system
level, we obtained the total CPU, disk and memory
utilization. At the lower level, we collected resource
usage per process. Thus, we are able to see the
amount of resources demanded by the operating
system (e.g., system calls, overhead, etc.) as a whole
and by the server process. The processor utilization
and throughput curves for the three servers are
similar. We note that as we increase the number of
concurrent clients, the throughput and connection rate
also increase up to a certain point. The number of
TCP/IP packets arriving at the server also increases,
as does the number interruptions that the processor
has to handle. As a consequence, the curve of
processor utilization by the server process increases
more slowly than the total processor utilization curve.
When the total processor utilization reaches almost
100% the CPU becomes saturated and the
throughput starts decreasing. Although the total
processor utilization remains constant, we observe

that processor utilization due to the server process
decreases, because of the high number of
interruptions that the operating system has to handle
(i.e., the system overhead increases).

Throughput and Connection Rate

0

50

100

150

200

250

300

350

0 10 20 30 40 50

Number
of Clients

Emwac (conn/s) Purveyor (conn/s)

WebS ite (conn/s) Emwac (KB ytes/s)

Purveyor (KB ytes/s) Webs ite (KB ytes/s)

Processor Utilization

0

20

40

60

80

100

0 10 20 30 40 50

Number
of Clients

Emwac (https) Purveyor (https)
WebS ite (https) Emwac (total)
Purveyor (total) WebS ite (total)

 Figure 1: Throughput and Processor Utilization
for workload A

Puveyor and WebSite reach about the same level of
throughput and connection rate. Emwac has a lower
throughput for its processor utilization is also lower
than the other ones. The saturation point occurs at 10
clients for both WebSite and Purveyor and at 20
clients for Emwac. The next section shows that latency
is higher for Emwac. Although the network that
connected clients and server was not dedicated, the
experiments were done during the night, when the
internal network traffic in our department is negligible.
Thus, the high latency of Emwac indicates that a
pending request spends more time in the Emwac
server than in Purveyor and WebSite servers. The
processor utilization by Emwac is lower than the
utilization by Purveyor or WebSite.

Results for workload B are similar to those obtained
for workload A. As one might expect, the throughput of

workload B is higher than the throughput of A,
because the page sizes of workload B are greater
than those in workload A. However, the connection
rate decreases, for the server spends more time
handling the requests for larger files. The processor
utilization by the server process is lower for workload
B. The reason stems from the fact that the large files
of workload B cause a high number of interruptions,
due to the fragmentation of TCP/IP packets. We also
note in the figures that CPU is the primary bottleneck
in our experiments. It is the first resource to become
saturated and limits the performance of the rest of the
system.

Response Time

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

Number
of Clients

Emwac Purveyor Webs ite

Interruption Rate

0

200

400

600

800

0 10 20 30 40 50
Number

of Clients

Emwac Purveyor Webs ite

 Figure 2: Response time and interruption rate
for workload A

5. 2 RESPONSE TIME AND INTERRUPTION
RATE

In this section, we analyze response time and
interruption rate for the three servers. The former was
obtained from the Webstone statistics and the latter
was collected by the NT/Perfmon. Figure 2 shows
response time and interruption rate of workload A as a

function of the number of clients. As expected, the
response time curve increases with the number of
clients as does the number of interruptions. Response
time is higher in Emwac than in Purveyor or WebSite
for small numbers of clients. As the number of client
increases, the error rate of Emwac increases (see
next section). A higher error rate normally indicates
that the server’s pending connection queue is
saturated, and “ Conn ection Refused” messages are
returned to clients. As the number of error messages
increases, we can notice that response time
increases slowly, for the queue length decreases (due
to the number of connections refused). This
observation can be noted in the Emwac response
time curve, that crosses the WebSite curve at 50
clients. The error rate (figure 3) of WebSite also
causes a higher latency, specially when the number of
concurrent clients increases. Purveyor has the lowest
error rate and response time. For a small number of
clients, the interruption rate of Emwac is lower than
the other servers’s rate. That stems from the high
latency that diminishes the total number of requests.
After the saturation point, the number of errors
increases as does the number of interruptions. That is
due to the behavior of the WebStone benchmark.
When an error occurs, the client process receives an
answer faster than what was expected in the normal
case, when the request is accepted and treated by
the server. As the client receives the answer, it sends
a new request to the server, causing a new
interruption. As the number of requests increases, the
error rate also increases, and, as a consequence, the
number of interruptions. The interruption rate of
Purveyor gets higher as we increase the number of
clients. That is explained by the increase in disk
activity, as described in section 5.5. Response time
and interruption rate are higher for workload B than for
workload A. That is due to the large average file size
and the fragmentation caused by the TCP/IP protocol.

5.3 LITTLE’S FACTOR AND ERROR RATE

Figures 3 displays the Little’s Load Factor and error
rate as a function of the number of clients. For
Emwac, we can notice that Little’s Load Factor
coincides with the identity curve until the saturation
point. After that, the behavior of the curve changes
and start increasing slowly, suggesting the system
spending more time in overhead activities, the system
is spending more time in overhead activities, such as
thread management, interruption and error handling.

Litt le's Load Factor

0

10

20

30

40

50

60

0 10 20 30 40 50

Number
of Clients

Emwac Purveyor WebS ite

Err or Rate

0

100

200

300

400

500

600

700

0 10 20 30 40 50

Number
of Clients

Emwac Purveyor WebS ite

 Figure 3: Little’s Load Factor and Error rate for
workload A

That is confirmed by the error rate curves, that exhibit
a steep increase after 20 clients. As a consequence,
processor utilization by the Emwac server process
decreases after the saturation point, as can be seen
in figure 1. The Little’s Load Factor for Purveyor and
WebSite stay close to the identity curve, even for a
high number of concurrent clients. The error rate for
WebSite becomes significant only when the number
of clients becomes greater than 40. After that point, its
Little’s Load Factor starts decreasing slowly but still
keeps close to the identity curve. The Little’s Load
Factor of Purveyor also starts increasing slowly for
higher loads. That is not due to the error rate that is
very low, but to the higher interrupt rate. The fact that
Little’s Load Factor for WebSite and Purveyor keeps
close to the identity curve for higher loads indicates
that the servers bear a high degree of internal
concurrency in the request execution.

5.4 PROCESSOR SPEED

A series of experiments were carried out using the

same Emwac HTTP server in two different hardware
platforms. The difference between the two
configurations is the clock rate: the first one is a 75
MHz Pentium, and the second is a 100 MHz Pentium.
Figure 4 shows throughput (Kbytes/s) and connection
rate as a function of the number of clients for workload
A. Both curves are similar in terms of shape, but the
average throughput achieved by the 100 MHz-
processor is 36% higher than that obtained by the
slower processor. The differences in the two curves
becomes apparent after 20 clients, which is the point
where the 75 MHz CPU gets saturated and the
throughput reaches its maximum value. Those results
suggest that CPU is the primary bottleneck of the
WWW server in the executing our synthetic workload.

Throughput and Connection Rate for the
two hardware plataforms

0

50

100

150

200

250

300

10 20 30 40 50
Number

of Clients
Conn/s - 75MHz T hroughput - 75MHz

Conn/s - 100 MHz T hroughput - 100 MHz

Figure 4: Throughput for two different processor
speed

5.5 DISK AND MEMORY USAGE

Disk and memory usage for the two workloads are
presented in figures 5 and 6. By analyzing each
server separately, we notice that disk utilization and
memory activity (measured in pages/sec) curves are
similar. The difference results for workloads A and B
are due to differences in the characteristics of their
files (see Table I). The low disk utilization shown in the
graphs of figure 5 is explained by the small size of
the files of workload A (i.e., 18 different files with total
size equal to 298 Kbytes). Due to an efficient caching
mechanism, several disk accesses were avoided, that
explains the low disk activity. The total size of the files
requested by the workload B is 5 Mbytes, much larger
than workload A. Looking at the results for the three
servers, we note that WebSite and Emwac exhibit
similar behavior. Purveyor has a much higher disk
activity. Furthermore, we notice that Purveyor

demands more disk and memory as we increase the
number of concurrent clients. For 55 concurrent
clients, the disk was busy 78% of the observation
time. That high utilization does not happen with
WebSite or Emwac. Neither memory nor disk are
bottlenecks for workload A. For workload B, Website
and Purveyor have a significant disk utilization, when
the number of clients becomes large. For 55 clients,
the disk utilization by Purveyor, WebSite, and
Emwacs are 92%, 64%, and 7%, respectively. This
difference is explained by the throughput of WebSite
and Purveyor that is much higher than the one
achieved by Emwacs. In the case of workload B, the
higher the throughput, the higher the disk and
memory utilization.

Details of implementation, such as the use of internal
cache, may be explanation for the differences in disk
usage by the servers. When we increased the
average file size, we noticed that Emwac had a
similar behavior to the two other servers. In order to
understand the way Emwac uses disks, we carried
out a set of experiments with different workload and
memory configuration. In the first experiment, we
increased the average file size to 300 Kbytes and
used a PC with 16 Mbytes. In the second experiment,
we used an average file size equal to 27 Kbytes and 8
Mbytes of RAM. For both experiments we observed
high levels of disk utilization for Emwac. For those
special workloads, the disk utilization increased with
the number of clients, as we noted for the other
servers with workloads A and B.

Disk Utilization for workload A

0

10
20

30
40

50

60
70

80

0 10 20 30 40 50
Number

of Clients

% Disk T ime

Emwac Purveyor WebS ite

Memory Activity for workload A

0

10

20

30

40

50

60

0 10 20 30 40 50
Number

of Clients

pages/s

Emwac Purveyor Webs ite

 Figure 5: Disk and memory usage for workload A

6. CONCLUDING REMARKS

This paper presents a performance analysis of WWW
servers. We first discussed the main steps to carry out
a WWW performance analysis effort. We then
examined the performance of three different servers
(Emwac, Purveyor, and Website) running on top of a
Windows NT platform. Using standard performance
tools provided by the NT operating system and by the
WebStone benchmark, we carried out a series of
experiments to monitor the behavior of Web servers.
The performance of the three servers varies with the
nature of the workload, i.e., file sizes, total number of
files and number of clients. The Webstone benchmark
is useful to generate HTTP workloads for performance
comparison purpose. However, we noted that
Webstone is not adequate to model the behavior of
real WWW users. It does not allow one to represent
user think times.

 Using the “black box approach”, we tried to explain
the relationships between performance and workload
characteristics for each server. A problem with that
approach is that it is not able to explain all results
observed in the experiments. In our benchmark, we
identified CPU as the primary bottleneck to server
performance in our experiments. We also observed a
close relationship between error rate, response time
and throughput of the servers. The size and the
number of documents in the WWW server has a
profound impact on its performance, as shown by the
disk and memory utilization curves in figure 6. We are
currently developing a performance monitor that will
provide insight in the behavior of a WWW server. We
want to investigate details of implementation that may
explain some of the curious results we described here.
For instance, we want to evaluate the cost of different
policies to manage threads that are created to handle
pending connections. We also want to investigate the
cost associated with management of threads that

service very short HTTP requests. Furthermore, we
plan to develop analytical models that are able to
represent and predict performance of WWW servers.

Disk Utilization for workload B

0

20

40

60

80

100

0 10 20 30 40 50

Number
 of Clients

% Disk
T ime

Emwac Purveyor Webs ite

Memory Activity for Workload B

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

Number
of Clients

pages/s

Emwac Purveyor Webs ite

Figure 6: Disk and memory usage for workload B

 Acknowledgments

 The authors thank the referees for comments that

improved the contents of this work.

 REFERENCES

1. Capacity Planning and Performance Modeling:

from mainframes to client/server systems, Daniel
Menascé, Virgilio Almeida and Larry Dowdy, PTR
Prentice Hall, Englewood Cliffs, 1994

2. Optimizing Windows NT, Russ Blake, Microsoft

Press, 1993

3. World Wide Web: Whence, Whiter, What next?,
Henning Schulzrinne, IEEE Network, March 1996.

4. The World Wide Web, T. Bernes-Lee, R. Cailiau,

A. Luotoneu, H. Nielsen, and A, Secret,
Communications of the ACM, Vol. 37, No. 8,
August 1984.

5. Web Server Workload Characterization: the

search for invariants, M. Arlitt and C. Williamson,
Proceedings of Sigmetrics 96, ACM, May 1996.

6. WebStone: the first generation in HTTP server

benchmarking, G. Trent and M. Sake, MTS Silicon
Graphics, February 1995.

7. Windows NT as a Personal or intranet Server, L.

Press, Communications of the ACM, Vol. 39, No.
5, May 1996

8. Performance Analysis and Modeling of a Windows

NT Server, V. Almeida and G. Fialho, CMG
Conference Proceedings, Nashville, December
1995.

9. Characteristics of WWW Client-Based Traces, C.

Cunha, A. Bestavros, and M. Crovella, Tech.
Rep., BU-CS-95-010, Boston University, July
1995.

10. Software for Reliable Networks, K. Birman and R.

van Renesse, Scientific American, May 1996.

11. Self-similarity in World Wide Web traffic: Evidence

and possible causes, M. Crovella, A. Bestavros
Proceedings of the 1996 ACM SIGMETRICS
Conference , May 1996.

12. An Investigation of Documents from the World
Wide Web, P. Aoki, A. Woodruf, E. Brewer, P.
Gauthier, L. Rowe, Proceedings of the Fifth
International Conference on WWW, Paris, May
1996.

13. Characterizing Reference Locality in the WWW,
V. Almeida, A. Bestravos, M. Crovella, A. Oliveira,
Proceedings of the Fourth International
Conference on Parallel and Distributed
Information Systems (PDIS’96), ACM/IEEE,
Miami, December 1996.

14. Web Server Technology, N. Yeager and R.
McGrath, Morgan Kaufmann Publishers, Inc., San
francisco, 1996.

