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Abstract

This paper examines how and why web server performance changes as the workload at the server varies. We
measure the performance of a PC acting as a standalone web server, running Apache on top of Linux. We use two
important tools to understand what aspects of software architecture and implementation determine performance
at the server. The first is a tool that we developed, called WebMonitor, which measures activity and resource
consumption, both in the operating system and in the web server. The second is the kernel profiling facility
distributed as part of Linux. We vary the workload at the server along two important dimensions: the number
of clients concurrently accessing the server, and the size of the documents stored on the server. Our results
quantify and show how more clients and larger files stress the web server and operating system in different and
surprising ways. Our results also show the importance of fixed costs (i.e., opening and closing TCP connections,
and updating the server log) in determining web server performance.

1 Introduction

Web server performance is an important issue for content publishers and web users alike. They have the common
goal of delivering information to all interested end-users with good response time. Several factors determine whether
or not the server is the bottleneck in this process. Some of these factors are machine dependent (e.g., CPU speed and
memory size), whereas others are not.

This paper examines how and why web server performance changes as the workload at the server varies. We
measure the performance of a PC acting as a standalone web server, running Apache on top of Linux. We use two
important tools to understand what aspects of software architecture and implementation determine performance at the
server. The first is a tool that we developed, called WebMonitor, which measures activity and resource consumption,
both in the operating system and in the web server. The second is the kernel profiling facility distributed as part
of Linux. We vary the workload at the server along two important dimensions: the number of clients concurrently
accessing the server, and the size of the documents stored on the server. In all experiments we use a set of documents
that has a heavy-tailed size distribution. This captures the fact that servers must simultaneously handle many requests
for small files (e.g., text and image files) and a few requests for large files (e.g., audio and video files).

Our results show that our server becomes saturated as soon as 5 clients are accessing it at full speed (with zero
think time), but sustains its aggregate throughput surprisingly well for up to 60 clients. Our results also show that
the nature of the workload at the server stresses different parts of the operating system in different and surprising
ways. For example, increasing average document size (by up to a factor of 16) actually increases server performance.
Specifically, the throughput in bytes per second increases with document size, even though the connection throughput
(requests per second) decreases. This is because the increase in file size doesn’t significantly increase file system
activity, but does increase the amount of useful work the network protocol stack can perform, as a side-effect of
requiring longer TCP connections to transfer larger documents. These results also show the importance of fixed costs
(i.e., opening and closing TCP connections, and updating the server log) in determining web server performance.
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The paper is organized as follows. Section 2 presents an overview of the WebMonitor architecture and important
aspects of its implementation. In section 3, we describe the experimental environment that was instrumented and
measured, and the workload used to drive our experiments. Section 4 discusses and analyzes the results obtained by
WebMonitor and the Linux profiling facility. Finally, we summarize the main contributions of our work in section
5.

2 WebMonitor Architecture

WebMonitor is a tool for measuring and understanding server behavior. It can be viewed as a combination of two
main modules that operate at different levels of the system and collect performance data using different techniques.
The Kernel Module (KM) runs independently of the web server and collects information about the operating system
as a whole. The code for the Server Module (SM) is actually compiled and linked with the server code, and therefore
runs as part of the server.

KM periodically collects resource usage data from both system-wide and web server standpoints. The infor-
mation collected includes processor utilization, disk activity, paging activity and interrupt rates. This module also
collects statistics about network activity, such as the number and state of TCP connections to the HTTP port at the
server. Such statistics are useful for understanding the “lifetime” of connections in the server. KM also obtains per-
process performance data including CPU and memory utilization. The Linux kernel provides a “virtual file system”,
the / pr oc filesystem [12], that keeps, in main memory, performance data regarding kernel activity. This informa-
tion can be read by user programs through several read system calls. However, we found that obtaining performance
statistics through / pr oc was very expensive, especially during the operation of our web server when it was busy.
Thus, we decided to implement KM using four new system calls that summarize and return specific information
about kernel activity [1].

Instead of being based on periodic sampling, like KM, the SM collects information about server performance
based on a trace of events that occur during the handling of each HTTP request. The data collected includes bytes
transmitted, connections established and disk operations. Another important piece of information is the response
time of the server for processing a request. The time measured by the SM begins with the establishment of a
connection and ends when the server (i.e., HTTP process) is ready to handle the next request. It is broken into three
components, which are measured in processor time and elapsed time. Parsing time is the interval that begins just
after the establishment of the connection and ends when the header of the request has been parsed and is ready to be
processed. Processing time is the time spent actually processing the request. It does not include the server logging
time. It accounts for the time spent reading the URL (Uniform Resource Locator) and the time needed to move the
file from memory or disk to the network. Logging time is the time spent performing standard HTTP logging. After
logging, a server process is ready to handle a new request.

Document size at web servers follow heavy-tailed distributions, that have very large variance [2]. Thus, average
results for the whole population of requests would have no statistical meaning. However, keeping detailed informa-
tion about each individual request is unfeasible in terms of overhead. As a compromise to keep overhead as low as
possible without impairing the accuracy and significance of the measurements, SM categorizes requests into a small
number of classes, defined by ranges of file sizes. The overhead introduced by WebMonitor is low. We compared
the performance of our web server with and without the monitor (KM and SM modules). We found the difference
in performance between these two cases to be less than 4% [1].

3 Measurement M ethodology

This section describes the environment where we carried out the web server experiments. Our hardware platform
was an Intel Pentium 75 MHz system, with 16 Megabytes of main memory, a 0.5 Gigabyte disk and a standard 10
Megabit/second Ethernet card. The operating system used is Linux version 2.0.0, which is distributed under the
terms of GNU General Public License [12]. The server software is Apache, version 1.1.1, a public domain HTTP
server [10]. Our Apache server was configured to run in standalone mode, since this is far more efficient than
running it from the i net d system process.



To generate a representative WWW workload, we used WebStone [11] (version 2.0), which is an industry-
standard benchmark for generating HTTP requests. WebStone is a configurable client-server benchmark, that uses
workload parameters and client processes to generate web requests. It makes a number of HTTP GET requests for
specific pages on a web server and measures the server performance, from a client standpoint. Each client process
successively requests files from the server, as fast as the server can answer the requests and collects performance
statistics. After all clients finish running, the master process generates an overall server performance report based
on the statistics collected by each client. The main performance measures collected by WebStone are latency and
throughput, measured in connections per second and also in bytes transferred per second. Table 1 gives parameters
that define the baseline HTTP workload (referred to as workload A) used in our experiments. To vary document
sizes, we multiply and divide the documents in workload A by 2 and 4, to give workloads A/4, A/2, A*2, and A*4.
Table 2 gives the mean document size for each of the workloads. Truncation and rounding are responsible by the
fact that averages do not increase exactly by a factor of 2 in this table.

File size (KBytes) | Access probability

Item | Number of files | Total | Average | Total | Average
HTML 24 180 7.5 0.192 0.008
Images 29 385 13.28 0.754 0.026
Sound 20 3580 179 0.05 0.0025
Video 4 9216 2304 0.004 0.001

Table 1: Characteristics of workload A.

Workload Al4 | A2 A A*2 A*4
Average File
Size (KBytes) | 7.00 | 14.82 | 29.31 | 58.73 | 117.46

Table 2: Average file size of the workloads.

4 Reaults

Our results evaluate web server performance for different workloads, and provide insight into what aspects of the
operating system are most important in determining web server performance. We vary the web server workload
along two important dimensions: the number of clients accessing the server, and the size of the documents stored
on the server. In one set of experiments, we fix the set of documents accessed, and vary the number of clients
concurrently accessing the server. In another set of experiments, we fix the number of clients accessing the server
and vary the size of the documents stored on the server. The performance metrics we use in our evaluation are
throughput and latency.

4.1 Throughput Behavior

Figure 1 shows both connection throughput and byte throughput for workload A, where the number of clients is
varied between 1 and 60. As can be seen from both curves, our server is saturated when 5 clients are making
requests at full speed (with zero think time). However, throughput is sustained surprisingly well over an order of
magnitude increase in the number of clients. For example, consider the Mbit/s curve in Figure 1. With 5 clients the
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aggregate throughput is 4.23 Mbit/s whereas with 60 clients the aggregate throughput is 3.81 Mbit/s. This represents
only a 10% drop in terms of byte (or bit) throughput. Since connection throughput is close to the byte throughput
divided by the mean file size (about 29 KB for workload A), the decrease in connection throughput from 5 to 60
clients mimics the decrease in byte throughput.

Figure 2 shows the connection throughput and byte throughput for 30 clients, where the document sizes increase
by a factor of 16 from workload A/4 to A*4. As expected, the connection throughput decreases as the document (or
file) sizes increase. However, the byte throughput actually increases as the document sizes increase. This is because
fixed per-connection costs are reduced for larger files, relative to the duration of the connection. We were somewhat
surprised by this result since we expected more cache misses and paging in the memory system when transferring
larger documents, and thus a decrease in byte throughput. If we just consider the footprint of the documents relative
to the amount of physical memory in our server, workload A/4 represents about 21% of memory whereas workload
A*4 covers memory more than 3 times over. These results suggest the importance of fixed costs associated with
servicing each request from a client. In fact, the connection throughput results in Figure 2 also hint at this. If fixed
costs were not important, we would expect connection throughput to drop by roughly a factor of 16 going from
workload A/4 to A*4. However, we observe that this drop is only a factor of about 3.3. Our latency results in the
next section confirm the hypothesis that fixed costs are important in determining web server performance, and show
that the cost of updating the server request log is significant. We now turn our attention to understanding why byte
throughput increases as document size increases.

To determine why byte throughput increases as document sizes increase, we reran our experiments for 30 Web-
Stone clients with Linux kernel profiling enabled. We chose to profile the kernel rather than our application (i.e.,
the HTTP processes) since about 90% of the time is spent in the kernel on a web server [1], and the Server Module
in WebMonitor already provides a coarse profile of where time is spent in the web server code. From the profiling
data, we broke down how time was being spent in the kernel into six categories:

1. Low-level networking: Ethernet interrupt and device driver routines
High-level networking: TCP, IP, and socket routines

Low-level file system: IDE disk interrupt and device driver routines
High-level file system: read, write, and buffer cache routines

Timer management: timer routines used by TCP and device drivers

o o~ w D

Other: routines for system calls, interrupt handling, scheduling, and memory management

Figure 3 shows where time is spent in the kernel for different document sizes. Note that the timer management
routines consume a large fraction of processing in the kernel, especially when documents are smaller. For example,
for workload A/4 over 50% of the time spent in the kernel is spent managing timers. We discovered that the
vast majority of this timer management is due to maintaining timers for keeping TCP connections open at the
server. This is required by TCP to guard against old data being received by a new connection. The Linux TCP
implementation keeps these connections open for 60 seconds after the web server code has closed them, and during
this time they linger in TCP's so-called TIME_WAIT state. These results extend those in [7, 8, 9], which point out
the poor interaction between TCP and HTTP. Our results suggest that other performance optimizations may also
be appropriate. For example, improving the implementation of timer management in Linux may yield a significant
performance improvement. It is also interesting to note that as less time is spent managing timers, the time is
mostly consumed by the low-level networking as it is reallocated. In contrast, the fraction of time spent performing
high-level networking, high-level file system operations, and other activities doesn't change that much as file sizes
increase. However, the number of low-level file system operations does become non-negligible as the file sizes
increase, as one would expect.

We wanted to understand what inside TCP was changing as the time spent managing timers in the kernel dropped
from about 51% for workload A/4 to about 11% for workload A*4. To do this we used the Kernel Module within
WebMonitor to determine the number of connections in each of the different TCP states (including TIME _WAIT).
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Figure 3: Kernel profiles for different file sizes.

Table 3 shows these results for the three TCP states where a significant number of connections were found. Note that
there is a strong correlation between number of connections in the TIME_WAIT state and the percentage of kernel
time devoted to timer management.

Workload Al Al2 A A*2 A*4

ESTABLISHED | 29.59 29.25 29.25 | 28.20 | 26.51
TIME_WAIT 1399.85 | 1216.54 | 937.35 | 626.74 | 398.02
CLOSED 52.10 45.44 34.83 | 24.09 | 15.92

Table 3: TCP connection states for different file sizes.

The main conclusion we can draw from Figure 3 and Table 3 is that timer management for the TCP TIME_WAIT
state is an important fixed cost associated with handling each HTTP request. As this fixed cost is reduced relative
to the duration of the connection, the fraction of time spent managing timers in the kernel is reduced. This time
is reallocated to performing more useful work on behalf of the clients communicating with the server. Thus, we
observe that byte throughput actually increases as document sizes increase.

We also profiled the kernel for experiments where we varied the number of clients accessing the document
collection in workload A (as in Figure 1). We found that the manner in which time was spent in the kernel did not
change that much. Specifically, the kernel profiles for between 5 and 60 clients were very similar to the workload
A profile shown in Figure 3. Thus, varying the file size changes the way the operating system is stressed, however,
changing the number of clients (at least from 5 to 60) does not.

4.2 Latency Behavior

Figure 4 shows variation in response time and latency by number of clients. Transmission time is the reason for
the difference between these metrics. As we increase the number of clients, the transmission time (which includes
the time to get access to the network) also increases. As a consequence, clients spend more time at the client-side
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sending packets. The number of server processes (running on behalf of the client requests) does not increase linearly
with the number of clients. For 1, 5, 10, 15, 20, 30, 45, and 60 clients, the number of running processes are 1, 6.47,
11.54, 15.09, 16.53, 24.90, 31.72, and 35.21, respectively. Figure 4 can be better understood in light of Little's Law,
which states that N = R x X, where N is the average number of clients in the system, R is the average time
spent in the system and X is the throughput. As can be seen in Figure 1, throughput is sustained as the number of
clients is varied between 1 and 60. We can roughly consider that throughput (X) is constant from 10 to 60. As a
result, we then have R directly proportional to the number of clients, which explains the straight line for latency in
Figure 4. Likewise, we can understand why response time (measured at the server-side) increases sub-linearly. This
is because the number of running processes increases more slowly than the number of clients.

In Figure 5, we show latency measurements for 30 clients, where the size of the workload varies by a factor of
16, from A/4 to A*4. We used these measurements to estimate the fixed cost per connection for a zero-byte request,
which is around 25 milliseconds. This includes logging time plus parsing time, and the time on the network to send
the response header.

We wanted to further analyze the breakdown of response time at the server (see Figure 5) for our experiments
varying document sizes for 30 clients. Again, our goal was to separate the fixed costs associated with each HTTP
request and assess their importance in determining web server performance. To achieve this goal, we used the timing
facility within the Server Module of WebMonitor to separate fixed costs (parsing and logging HTTP requests) from
variable costs (i.e., processing requests).
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Figure 6: Breakdown of response time at the server.

Figure 6 shows the server response time (from Figure 5), broken into its three main components. What is most
surprising about these results is the cost of updating the server log after each HTTP request. This logging cost
dominates all other costs (including actually processing the request) until the mean file size is larger than 30 KB.
The logging time is slightly less when document sizes are smaller, however, it still averages about 23 milliseconds
per connection for workload A/4. In examining the Linux code that is executed when the server log is updated, there
is a critical section in which a clean buffer cache entry containing the inode for log file is acquired by the HTTP
process updating the log. The HTTP process then locks the inode, writes it, and then releases the lock. Although the



disk is not updated for every write, we believe that this critical section for acquiring and manipulating the inode for
the log file is a bottleneck in our web server.

5 Conclusions

This paper examines how and why web server performance changes as the workload at the server varies. We have
measured the performance of a PC acting as a standalone web server, running Apache on top of Linux. We varied
the workload at the server along two important dimensions: the number of clients accessing the server, and the size
of the documents stored on the server.

Our results demonstrate that more clients and larger files stress the web server and operating system in different
and surprising ways. For example, we have seen that our web server is robust in terms of sustaining throughput as the
number of clients increases. However, we have also seen that increasing average document size decreases connection
throughput while increasing byte throughput. This increase in byte throughput is because increases in file size don't
significantly increase file system activity, but do increase the amount of useful work the network protocol stack can
perform, as a side-effect of requiring longer TCP connections to transfer larger documents. Our results also show
the importance of fixed costs in determining web server performance. We have seen that the cost of managing timers
for TCP connections in the TIME _WAIT state and updating the server request log are both significant fixed costs
incurred for each HTTP request.
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