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Abstract

The sharing of caches among Web proxies is an impor-
tant technique to reduce Web traffic and alleviate net-
work bottlenecks. Nevertheless it is not widely deployed
due to the overhead of existing protocols. In this paper
we propose a new protocol called “Summary Cache”;
each proxy keeps a summary of the URLs of cached
documents of each participating proxy and checks these
summaries for potential hits before sending any queries.
Two factors contribute to the low overhead: the sum-
maries are updated only periodically, and the summary
representations are economical — as low as 8 bits per
entry. Using trace-driven simulations and a prototype
implementation, we show that compared to the exist-
ing Internet Cache Protocol (ICP), Summary Cache re-
duces the number of inter-cache messages by a factor of
25 to 60, reduces the bandwidth consumption by over
50%, and eliminates between 30% to 95% of the CPU
overhead, while at the same time maintaining almost
the same hit ratio as ICP. Hence Summary Cache en-
ables cache sharing among a large number of proxies.

1 Introduction

Caching has been recognized as one of the most impor-
tant techniques to reduce Internet bandwidth consump-
tion caused by the tremendous growth of the World-
Wide Web [17]. In particular, caching within Web prox-
ies has been shown to be effective [7, 21]. To gain the
full benefits of caching, proxy caches on the same side of
a common bottleneck link should cooperate and serve
each other’s misses, a process we call “Web cache shar-
ing.”

Web cache sharing was first proposed in the context
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of the Harvest project [14, 6]. The Harvest group de-
signed the Internet Cache Protocol (ICP) [31] that sup-
ports discovery and retrieval of documents from neigh-
boring caches. Today, many institutions and many coun-
tries have established hierarchies of proxy caches that
cooperate via ICP to reduce traffic to the Internet [13,
18, 2, 7].

Nevertheless, the wide deployment of web cache shar-
ing is currently hindered by the overhead of the ICP
protocol. ICP discovers cache hits in other proxies by
having the proxy multicast a query message to all other
proxies whenever a cache miss occurs. Thus, as the
number of proxies increases, both the communication
and the processing overhead increase quadratically.

Several alternatives have been proposed to address
this problem, for example, a cache array routing proto-
col that partitions the URL space among proxies [30].
However, such solutions are often not appropriate for
wide-area cache sharing, which is characterized by lim-
ited network bandwidth among proxies and non-uniform
network distances between proxies and their users.

In this paper, we address the issue of scalable proto-
cols for wide-area Web cache sharing. We first quantify
the overhead of the ICP protocol by running a set of
proxy benchmarks. The results show that even when
the number of cooperating proxies is as low as four,
ICP increases the inter-proxy traffic by a factor of 70 to
90, increases the number of network packets received by
each proxy by over 13%, and increases the CPU over-
head by over 15%. In the absence of inter-proxy cache
hits (remote cache hits), the overhead can increase the
average user latency by up to 11%.

We then propose a new cache sharing protocol called
Summary Cache. Under this protocol, each proxy keeps
a compact summary of the cache directory (that is, the
list of URLs of cached documents) of every other proxy.
When a cache miss occurs, a proxy first probes all the
summaries to see if the request might be a cache hit in
other proxies, and sends a query messages only to those
proxies whose summaries show promising results. The
summaries do not need to be accurate at all times. If a



request is not a cache hit when the summary indicates
so (afalse hit), the penalty is a wasted query message. If
the request is a cache hit when the summary indicates
otherwise (a false miss), the penalty is a higher miss
ratio.

We examine two key questions in the design of the
protocol: the frequency of summary updates and the
representation of summary. Using trace-driven simula-
tions, we show that the update of summaries can be
delayed until a fixed percentage (for example, 1%) of
cached documents are new, and the total cache hit ra-
tio will degrade proportionally (For the 1% choice, the
degradation is between 0.02% to 1.7% depending on the
traces).

To reduce the memory requirements, we store each
summary as a “Bloom filter” [3]. This is a computa-
tionally efficient hash-based probabilistic scheme that
can represent a set of keys (in our case, the collections
of URLs of cached documents) with minimal memory
requirements, while answering membership queries with
zero probability for false negatives and low probability
for false positives. Trace-driven simulations show that
with typical proxy configurations, for N cached docu-
ments represented within just N bytes, the percentage
of false positives is around 2%. In fact, the memory
can be further reduced at the cost of an increased false
positive ratio. (We describe Bloom filters in more detail
later.)

Based on these results, we design the Summary-
Cache Enhanced ICP protocol and implement a pro-
totype within the Squid proxy. Using trace-driven sim-
ulations and experiments with benchmarks and trace-
replays, we show that the new protocol reduces the
number of inter-proxy messages by a factor of 25 to 60,
reduces the network bandwidth consumption (in terms
of bytes transferred) by over 50%, and eliminates be-
tween 30% to 95% of the CPU overhead. Compared
with no cache sharing, our experiments show that the
protocol incurs little network traffic and increases CPU
time only by 5% to 12% depending on the remote cache
hit ratio. Yet, the protocol achieves a total cache hit
ratio similar to that of the ICP protocol most of the
time.

The results indicate that the Summary Cache En-
hanced ICP protocol can scale to a large number of
proxies. Thus, the protocol has the potential to sig-
nificantly increase the deployment of Web cache shar-
ing and reduce Web traffic on the Internet. Toward
this end, we make our implementation publicly avail-
able [8]. In addition, a variant of our approach called
Cache Digest is under beta test at the National Cache
Hierarchy [29].

2 Traces and Simulations

For this study we have collected five sets of traces of
HTTP requests (for more details, see [9]):

e Digital Equipment Corporation Web Proxy server
traces (DEC) [20];

o traces of HTTP requests from the University of
California at Berkeley Dial-IP service (UCB) [12];

o traces of HTTP requests made by users in the
Computer Science Department, University of Pisa,
Italy (UPisa);

e logs of HTTP GET requests seen by the parent
proxies at Questnet, a regional network in Aus-
tralia (Questnet);

e one-day log of HTTP requests to the four major
parent proxies, “bo”, “pb”, “sd”, and “uc” in the
National Web Cache hierarchy by National Lab of
Applied Network Research (NLANR) [28].

Table 1 lists various information about the traces, in-
cluding duration of each trace, the number of requests
and the number of clients. The “infinite” cache size is
the total size in bytes of unique documents in a trace.

To simulate cache sharing, we partition the clients in
DEC, UCB and UPisa into groups, assuming that each
group has its own proxy, and simulate the cache shar-
ing among the proxies. This roughly corresponds to the
scenario where each branch of a company or each de-
partment in a university has its own proxy cache, and
the caches collaborate. We set the number of groups
in DEC, UCB and UPisa traces to 16, 8 and 8, respec-
tively. A client is put in a group if its clientID mod the
group size equals the group ID. Questnet traces contain
HTTP GET requests coming from 12 child proxies in
the regional network. We assume that these are the
requests going into the child proxies (since the child
proxies send their cache misses to the parent proxy),
and simulate cache sharing among the child proxies.
NLANR traces contain actual HTTP requests going to
the four major proxies, and we simulate the cache shar-
ing among them.

The simulation results reported here assume a cache
size that is 10% of the “infinite” cache size. Results
under other cache sizes are similar. The simulations
all use LRU as the cache replacement algorithm, with
the restriction that documents larger than 250KB are
not cached. The policy is similar to what is used in
actual proxies. We do not simulate expiring documents
based on age or time-to-live. Rather, most traces come
with the last-modified time or the size of a document
for every request, and if a request hits on a document
whose last-modified time or size is changed, we count
it as a cache miss. In other words, we assume that



Traces DEC UCB UPisa Questnet NLANR
Time 8/29-9/4, 1996 | 9/14-9/19, 1996 | Jan-March, 1997 | 1/15-1/21, 1998 | 12/22, 1997
Requests 3,543,068 1,007,762 2,833,624 2,885,285 1,766,400
Infinite Cache Size 2.88e+10 1.80e+4-10 2.07e4+10 2.33e+10 1.37e+10
Max. Hit Ratio 49% 30% 49% 30% 36%
Max. Byte Hit Ratio 36% 14% 27% 15% 27%
Client Population 10089 5780 2203 12 4
Client Groups 16 8 8 12 4

Hit Ratio w. Cache Sharing 43% 27% 45% 26% 32%
Hit Ratio w/o Cache Sharing 21% 13% 27% 16% 14%

Table 1: Statistics about the traces. The maximum cache hit ratio and byte hit ratio are achieved with the infinite
cache. The other hit ratios are calculated assuming a cache size that is 10% of the infinite cache.

cache consistency mechanism is perfect. In practice,
there are a variety of protocols [6, 22, 16] for Web cache
consistency.

Benefits of Cache Sharing Using the traces, we have
studied the benefits of cache sharing. Results show that
sharing cache contents among proxies significantly re-
duces traffic to the Internet. Table 1 lists the cache hit
ratios under cache sharing and no cache sharing, assum-
ing a cache size that is 10% of the infinite cache size.
Results also show that in most cases, ICP-style sim-
ple cache sharing suffices and more tightly coordinated
schemes such as global replacement are not necessary.
More details can be found in [9].

3 Overhead of ICP

Though the Internet Cache Protocol (ICP) [31] has been
successful at encouraging Web cache sharing around the
world, it is not a scalable protocol. It relies on query
messages to find remote cache hits. Every time one
proxy has a cache miss, everyone else receives and pro-
cesses a query message. As the number of collaborating
proxies increases, the overhead quickly becomes pro-
hibitive.

To measure the overhead of ICP and its impact on
proxy performance, we run experiments using the Wis-
consin Proxy Benchmark 1.0 [1]. The benchmark is
designed by us and has been submitted to SPEC as a
candidate for the industry standard benchmark. It con-
sists of a collection of client processes that issue requests
following patterns observed in real traces (including re-
quest size distribution and temporal locality), and a
collection of server processes that delay the replies to
emulate Internet latencies.

The experiments are performed on 10 Sun Sparc-20
workstations connected with 100Mb/s Ethernet. Four
workstations act as four proxy systems running Squid
1.1.14, and each has 75MB of cache space. Another four
workstations run 120 client processes, 30 processes on
each workstation. The client processes on each worksta-
tion connect to one of the proxies. Client processes issue

requests with no thinking time in between, and the doc-
ument sizes follow the Pareto distribution with a = 1.1
and k = 3.0 [5]. Two workstations act as servers, each
with 15 servers listening on different ports. Each server
forks a new process when handling an HTTP request,
and the process waits for 1 second before sending the
reply to simulate the network latency.

We experiment with two different cache hit ratios,
25% and 45%, as the overhead of ICP varies with the
cache miss ratio in each proxy. The benchmark allows
the cache hit ratio to be adjusted. In each experiment,
a client process issues 200 requests, for a total of 24,000
requests.

We compare two configurations: no-ICP, where prox-
ies do not collaborate, and ICP, where proxies collabo-
rate via ICP. Since we are only interested in the over-
head, the requests issued by the clients do not overlap;
there is no remote cache hit among proxies. This is the
worst case scenario for ICP, and the results measure the
overhead of the protocol. We use the same seeds in the
random number generators for the no-ICP and ICP ex-
periments to ensure comparable results; otherwise the
heavy-tailed document size distribution would lead to
high variance. The relative differences between no-ICP
and ICP are the same across different settings of seeds.
We present results from one set of experiments here.

We measure the hit ratio in the caches, the average
latency seen by the clients, the user and system CPU
times consumed by the Squid proxy, and network traffic.
Using netstat, we collect the number of UDP datagrams
sent and received, the TCP packets sent and received,
and the total number of IP packets handled by the Eth-
ernet network interface. The third number is roughly
the sum of the first two. The UDP traffic is incurred
by the ICP query and reply messages. The TCP traf-
fic include the HTTP traffic between the proxy and the
servers, and between the proxy and the clients. The
results are shown in Table 2.

The results show that ICP incurs considerable over-
head even when the number of cooperating proxies is as
low as four. The number of UDP messages is increased
by a factor of 73 to 90. Due to the increase in the UDP



Exp 1 Hit Ratio | Client Latency User CPU System CPU | UDP Msgs | TCP Msgs | Total Packets
no ICP 25% 2.75 (5%) 94.42 (5%) 133.65 (6%) 615 (28%) | 334K (8%) 355K (7%)
ICP 25% 3.07 (0.7%) 116.87 (5%) | 146.50 (5%) | 54774 (0%) | 328K (4%) 402K (3%)
Owverhead 12% 24% 10% 9000% 2% 13%
SC-ICP 25% 2.85 (1%) 95.07 (6%) 134.61 (6%) 1079 (0%) | 330K (5%) 351K (5%)
Overhead 1% 0.7% 0.7% 75% -1% -1%

Exp 2 Hit Ratio | Client Latency | User CPU | System CPU | UDP Msgs | TCP Msgs | Total Packets
no ICP 45% 2.21 (1%) 80.83 (2%) 111.10 (2%) 540 (3%) 272K (3%) 290K (3%)
ICP 45% 2.39 (1%) 97.36 (1%) | 118.59 (1%) | 39968 (0%) | 257K (2%) | 814K (1%)
Owverhead 8% 20% 7% 7300% -1% 8%
SC-ICP 45% 2.25 (1%) 82.03 (3%) 111.87 (3%) 799 (5%) 269K (5%) 287K (5%)
Owverhead 2% 1% 1% 418% -1% -1%

Table 2: Overhead of ICP in the four-proxy case. The SC-ICP protocol is introduced in Section 5.1 and will
be explained later. The experiments are run three times, and the variance for each measurement is listed in the
parenthesis. The overhead row lists the increase in percentage over no-ICP for each measurement. Note that in
these synthetic experiments there is no inter-proxy cache hit.

messages, the total network traffic seen by the proxies is
increased by 8% to 13%. Protocol processing increases
the user CPU time by 20% to 24%, and UDP process-
ing increases the system CPU time by 7% to 10%. To
the clients, the average latency of an HTTP request is
increased by 8% to 12%. The degradations occur de-
spite the fact that the experiments are performed on a
high-speed local area network.

The results highlight the dilemma faced by cache
administrators: there are clear benefits of cache shar-
ing (as shown in Table 1), but the overhead of ICP is
high. Furthermore, the effort spent on processing ICP
is proportional to the total number of cache misses ex-
perienced by other proxies, instead of proportional to
the number of actual remote cache hits.

To address the problem, we propose a new scalable
protocol: Summary Cache.

4 Summary Cache

In the Summary Cache scheme, each proxy stores a
summary of URLs of documents cached at every other
proxy. When a user request misses in the local cache,
the proxy checks the stored summaries to see if the re-
quested document might be stored in other proxies. If it
appears so, the proxy sends out requests to the relevant
proxies to fetch the document. Otherwise, the proxy
sends the request directly to the Web server.

The key to the scalability of the scheme is that sum-
maries do not have to be up to date or accurate. A
summary does not have to be updated every time the
cache directory is changed; rather, the update can occur
upon regular time intervals or when a certain percent-
age of the cached documents are not reflected in the
summary. A summary only needs to be inclusive (that
is, depicting a superset of the documents stored in the
cache) to avoid affecting the total cache hit ratio. That
is, two kinds of errors are tolerated:

e false misses: the document requested is cached at
some other proxy but its summary does not re-
flect the fact. In this case, a remote cache hit is
lost, and the total hit ratio within the collection
of caches is reduced.

e false hits: the document requested is not cached at
some other proxy but its summary indicates that
it is. The proxy will send a query message to the
other proxy, only to be notified that the document
is not cached there. In this case, a query message
is wasted.

The errors affect the total cache hit ratio or the inter-
proxy traffic, but do not affect the correctness of the
caching scheme. For example, a false hit does not result
in the wrong document being served. In general, we
strive for low false misses, because false misses increase
traffic to the Internet and the goal of cache sharing is
to reduce traffic to the Internet.

A third kind of error, remote stale hits, occurs in
both summary cache and ICP. A remote stale hit is
when a document is cached at another proxy, but the
cached copy is stale. Remote stale hits are not nec-
essarily wasted efforts, because delta compressions can
be used to transfer the new document [27]. However, it
does contribute to the inter-proxy communication.

Two factors limit the scalability of summary cache:
the network overhead (the inter-proxy traffic), and the
memory required to store the summaries (for perfor-
mance reasons, the summaries should be stored in DRAM,
not on disk). The network overhead is determined by
the frequency of summary updates and by the number
of false hits and remote hits. The memory requirement
is determined by the size of individual summaries and
the number of cooperating proxies. Since the memory
grows linearly with the number of proxies, it is impor-
tant to keep the individual summaries small. Below, we
first address the update frequencies, and then discuss



various summary representations.

4.1 Impact of Update Delays

We investigate delaying the update of summaries un-
til the percentage of cached documents that are “new”
(that is, not reflected in the summaries) reaches a thresh-
old. The threshold criteria is chosen because the num-
ber of false misses (and hence the degradation in total
hit ratio) tends to be proportional to the number of
documents that are not reflected in the summary. An
alternative is to update summaries upon regular time
intervals. The false miss ratio under this approach can
be derived through converting the intervals to thresh-
olds. That is, based on request rate and typical cache
miss ratio, one can calculate how many new documents
enter the cache during each time interval and their per-
centage in the cached documents.

Using various traces, we simulate the total cache hit
ratio when the threshold is 0.1%, 1%, 2%, 5% and 10%
of the cached documents. For the moment we ignore the
issue of summary representations and assume that the
summary is a copy of the cache directory (i.e. the list
of document URLSs). The results are shown in Figure 1.
The top line in the figure is the hit ratio when no update
delay is introduced. The second line shows the hit ratio
as the update delay increases. The difference between
the two lines is the false miss ratio. The bottom two
curves show the ratio of remote stale hits and the ratio
of false hits (the delay does introduce some false hits
because documents deleted from the cache may still be
present in the summary).

The results show that, except for the NLANR trace
data, the degradation in total cache hit ratio increases
almost linearly with the update threshold. At the thresh-
old of 1%, the relative reductions in hit ratio are 0.2%

(UCB), 0.1% (UPisa), 0.3% (Questnet), and 1.7% (DEC).

The remote stale hit ratio is hardly affected by the up-
date delay. The false hit ratio is very small, though it
does increase linearly with the threshold.

For the NLANR trace, it appears that some clients
are simultaneously sending two requests for the exact
same document to proxy “bo” and another proxy in the
collection. If we only simulate the other three proxies,
the results are similar to those of other traces. With
“bo” included, we simulate the delay being 2 and 10 user
requests, and the hit ratio drops from 30.7% to 26.1%
and 20.2% respectively. The hit ratio at the threshold of
0.1%, which roughly corresponds to 200 user requests,
is 18.4%. Thus, we believe that the sharp drop in hit
ratio is due to the anomaly in the NLANR trace.

The results demonstrate that in practice, a delay
threshold of 1% to 10% for updating summaries re-
sults in a tolerable degradation of the cache hit ratios.
For the five traces, the threshold values translate into
roughly 300 to 3000 user requests between updates, and

on average, an update frequency of roughly every 5 min-
utes to an hour. Thus, the bandwidth consumption of
these updates can be very low.

4.2 Summary Representations

The second issue affecting scalability is the size of the
summary. Summaries need to be stored in the main
memory not only because memory lookups are much
faster, but also because disk arms are typically the bot-
tlenecks in proxy caches [24]. Although DRAM prices
continue to drop, we still need a careful design, since
the memory requirement, grows linearly with the num-
ber of proxies, and summaries take DRAM away from
in-memory cache of hot documents.

We first investigate two naive summary representa-
tions: exact-directory and server-name. In the exact-
directory approach, the summary is essentially the list
of URLs of cached documents, with each URL repre-
sented by its 16-byte MD5 signature [26]. In the server-
name approach, the summary is the collection of Web
server names in the URLs of cached documents. Since
on average, the ratio of different URLs to different Web
server names is about 10 to 1 (observed from our traces),
the server-name approach can cut down the memory re-
quirement by a factor of 10.

We simulate these approaches using the traces and
find that neither of them is satisfactory. The results
are in Figure 6, along with those on another summary
representation (Figure 6 is discussed in detail in Sec-
tion 4.4). The exact-directory approach consumes too
much memory. In practice, proxies typically have 8GB
to 20GB of cache space. If we assume 16 proxies of 8GB
each and an average file size of 8KB, the exact-directory
summary would consume (16 —1) x 16 x (8GB/8K B) =
240M B of main memory per prozy. The server-name
approach, though consuming less memory, generates
too many false hits that significantly increase the net-
work traffic.

The requirements on an ideal summary representa-
tion are small size and low false hit ratio. After a few
other tries, we found a solution in an old technique
called “Bloom filters.”

4.3 Bloom Filters — the math

A Bloom filter is a method for representing a set A =
{ai,as,...,a,} of n elements (also called keys) to sup-
port membership queries. It was invented by Burton
Bloom in 1970 [3] and was proposed for use in the
web context by Marais and Bharat [25] as a mechanism
for identifying which pages have associated comments
stored within a CommonKnowledge server.
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Figure 1: Impact of summary update delays on total cache hit ratio, remote stale hit ratio, and false hit ratio. The
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Figure 2: A Bloom Filter with 4 hash functions.

The idea (illustrated in Figure 2) is to allocate a
vector v of m bits, initially all set to 0, and then choose
k independent hash functions, hq, ha, ..., h, each with
range {1,...,m}. For each element a € A, the bits at
positions hi(a), ha(a), ..., hg(a) in v are set to 1. (A
particular bit might be set to 1 multiple times.) Given
a query for b we check the bits at positions hy (b), ha(b),
..., hi(b). If any of them is 0, then certainly b is not
in the set A. Otherwise we conjecture that b is in the
set although there is a certain probability that we are
wrong. This is called a “false positive.” The parameters
k and m should be chosen such that the probability of
a false positive (and hence a false hit) is acceptable.

The salient feature of Bloom filters is that there is a
clear tradeoff between m and the probability of a false
positive. Observe that after inserting n keys into a table
of size m, the probability that a particular bit is still 0
is exactly (1 — 1/m)*™. Hence the probability of a false

positive in this situation is

(-03)7) =y

The right hand side is minimized for k¥ =In2 x m/n, in
which case it becomes 1/2* = (0.6185)™/™. Thus, under
optimal k, the probability of a false positive reduces
exponentially as m increases. In practice £ must be an
integer and we might chose a value less than optimal to
reduce computational overhead.

The graph in Figure 3 shows the probability of a false
positive as a function of the number of bits allocated for
each entry, that is, the ratio o = m/n. The curve above
is for the case of 4 hash functions. The curve below is
for the optimum number of hash functions. The scale is
logarithmic so the straight line observed corresponds to
an exponential decrease. It is clear that Bloom filters
require little storage per key at the slight risk of some
false positives. For instance for a bit array 10 times
larger than the number of entries, the probability of a
false positive is 1.2% for 4 hash functions, and 0.9% for
the optimum case of 5 hash functions. The probability
of false positives can be easily decreased by allocating
more memory.

Since in our context each proxy maintains a local
Bloom filter to represent its own cached documents,
changes of set A must be supported. This is done by
maintaining for each location £ in the bit array a count
¢(£) of the number of times that the bit is set to 1 (that
is, the number of elements that hashed to £ under any
of the hash functions). All the counts are initially 0.
When a key a (in our case, the URL of a document) is
inserted or deleted, the counts ¢(h;(a)), ¢(h2(a)), -..,
¢(hik(a)) are incremented or decremented accordingly.
When a count changes from 0 to 1, the corresponding
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Figure 3: Probability of false positives (log scale). The
top curve is for 4 hash functions. The bottom curve is
for the optimum (integral) number of hash functions.

bit is turned on. When a count changes from 1 to 0 the
corresponding bit is turned off. Hence the local Bloom
filter always reflects correctly the current directory. In
practice, allocating 4 bits per count is amply sufficient
(for analysis, see [9]).

4.4 Bloom Filters as Summaries

Bloom filters provide a straightforward mechanism to
build summaries. A proxy builds a Bloom filter from
the list of URLs of cached documents, and sends the
bit array plus the specification of the hash functions to
other proxies. When updating the summary, the proxy
can either specify which bits in the bit array are flipped,
or send the whole array, whichever is smaller.

The advantage of Bloom filters is that they provide a
tradeoff between the memory requirement and the false
positive ratio (which induces false hits). Thus, if proxies
want to devote less memory to the summaries, they can
do so at a slight increase of inter-proxy traffic.

We experiment with three configurations for Bloom
filter based summaries: the number of bits being 8, 16,
and 32 times the average number of documents in the
cache (the ratio is also called a “load factor”). The
average number of documents is calculated by dividing
the cache size by 8K (the average document size). All
three configurations use four hash functions; the num-
ber of hash functions is not the optimal choice for each
configuration, but suffices to demonstrate the perfor-
mance of Bloom filters. The hash functions are built
by first calculating the MD5 signature [26] of the URL,
which yields 128 bits, and then taking four groups of
32 bits from it. MD5 is a cryptographic message di-
gest algorithm that hashes arbitrary length strings to
128 bits [26]. We select it because of its well-known
properties and relatively fast implementation.

The performance of these summary representations,
exact-directory, and server-name are shown in Figures 4
through 7. In Figure 4 we show the total cache hit
ratios and in Figure 5 we show the false hit ratios. Note
that the y-axis in Figure 5 is in log scale. The Bloom
filter based summaries have virtually the same cache hit
ratio as the exact-directory approach, and have slightly
higher false hit ratio when the bit array is small. Server-
name has a much higher false hit ratio. It has a higher
cache hit ratio, probably because its many false hits
help to avoid false misses.

Figure 6 shows the total number of inter-proxy net-
work messages, including the number of summary up-
dates and the number of query messages (which includes
remote cache hits, false hits and remote stale hits). Note
that the y-axis in Figure 6 is in log scale. For compari-
son we also list the number of messages incurred by ICP
in each trace. All messages are assumed to be uni-cast
messages. The figure normalizes the number of mes-
sages by the number of HTTP requests in each trace.
Both exact-directory and Bloom filter based summaries
perform well, and server-name and ICP generate many
more messages. For Bloom filters, there is a tradeoff
between bit array size and the number of messages, as
expected. However, once the false hit ratio is small
enough, false hits are no longer a dominant contributor
to inter-proxy messages. Rather, remote cache hits and
remote stale hits become dominant. Thus, the differ-
ence in terms of network messages between load factor
16 and load factor 32 is small. Compared to ICP, Bloom
filter based summaries reduce the number of messages
by a factor of 25 to 60.

Figure 7 shows the estimated total size of inter-proxy
network messages in bytes. We estimate the size be-
cause update messages tend to be larger than query
messages. The average size of query messages in both
ICP and other approaches is assumed to be 20 bytes
of header and 50 bytes of average URL. The size of
summary updates in exact-directory and server-name
is assumed to be 20 bytes of header and 16 bytes per
change. The size of summary updates in Bloom fil-
ter based summaries is estimated at 32 bytes of header
(see Section 5.1) plus 4 bytes per bit-flip. The results
show that in terms of message bytes, Bloom filter based
summaries improve over ICP by 55% to 64%. In other
words, Summary Cache uses occasional bursts of large
messages to avoid continuous stream of small messages.
Looking at the CPU overhead and network interface
packets in Tables 2 and 4 (in which SC-ICP stands for
the summary cache approach), we can see that this is a
good tradeoff.

Table 3 shows the memory requirement per proxy of
the summary representations, in terms of percentage of
the proxy cache size, for DEC (16 proxies), and NLANR
(4 proxies). (More data are available in [9].) The three
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Table 3: Storage requirement, in terms of percentage of
proxy cache size, of the summary representations.
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Figure 4: Total hit ratio under different summary representations.

* exact_dir

1.00

0.10

0.01

0.00

0.00

- —— -+

2 bloom_filter_8

e et

< bloom_filter_32 —+ server
-+ - — —+

-+ - — —+

o bloom_filter_16
et - - — -

0.00 4
0

Graph 1: DEC-8-29-9-4

Threshold (%)

L
2 4 6 8 10

0 2

L L L L
6 810 0 2 4 6 8100 2 4 6 8 100 2 4 6 8 10

Threshold (%)
Graph 2: UCB

Threshold (%)
Graph 4: UPisa

Threshold (%)
Graph 5: Questnet

Threshold (%)
Graph 3: NLANR

Figure 5: Ratio of false hits under different summary representations. Note that the y-axis is in log scale.

Approach DEC | NLANR
exact_dir 2.8% | 0.70%
server_name 0.19% | 0.08%
bloom filter 8 | 0.19% | 0.038%
bloom filter 16 | 0.38% | 0.075%
bloom filter_32 | 0.75% | 0.15%

Bloom filter configurations consume much less memory
than exact-directory, and yet perform similarly to it in
all other aspects. The Bloom filter summary at the load
factor of 8 has a similar or smaller memory requirement
to the server-name approach, and yet has many fewer
false hits and network messages. Table 3 also shows
that for all approaches, the memory requirement grows
linearly with the number of proxies.

Considering all the results, we see that Bloom filter
summaries provide the best performance in terms of low
network overhead and low memory requirements. Thus,
we recommend the following configuration for the sum-
mary cache approach. The update threshold should be
between 1% and 10% to avoid significant reduction of
total cache hit ratio. If a time-based update approach
is chosen, the time interval should be chosen such that
the percentage of new documents is between 1% and
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Figure 7: Bytes of network messages per user

10%. The proxy can either broadcast the changes (or
the entire bit array if it is smaller), or let other proxies
fetch the updates from it. The summary should be in
the form of a Bloom filter. A load factor between 8 and
16 works well, though proxies can lower or raise it de-
pending on their memory and network traffic concerns.
Based on the load factor, four or more hash functions
should be used. The data provided here and in [9] can
be used as references in making the decisions. For hash
functions, we recommend taking disjoint groups of bits
from the 128-bit MD5 signature of the URL. If more
bits are needed, one can calculate the MDJ5 signature
of the URL concatenated with itself. In practice, the
computational overhead of MD5 is negligible compared
with the user and system CPU overhead incurred by
caching documents (see Section 5.2).

request under different summary forms.

4.5 Scalability

Although our simulations are done for 4 to 16 proxies,
we can easily extrapolate the results. For example, as-
sume that 100 proxies each with 8 GB of cache would like
to cooperate. Each proxy stores on average about 1M
Web pages. The Bloom filter memory needed to rep-
resent 1M pages is 2MB at load factor 16. Each proxy
needs about 200 MB to represent all the summaries plus
another 8 MB to represent its own counters. The inter-
proxy messages consist of update messages, false hits,
remote cache hits and remote stale hits. The threshold
of 1% corresponds to 10K requests between updates,
each update consisting of 99 messages, and the num-
ber of update messages per request is less than 0.01.
The false hit ratios are around 4.7% for the load fac-
tor of 16 with 10 hash functions. (The probability of



a false positive is less than 0.00047 for each summary,
but there are 100 of them.) Thus, not counting the
messages introduced by remote cache hits and remote
stale hits (which are relatively stable across the num-
ber of proxies), the overhead introduced by the protocol
is under 0.06 messages per request for 100 proxies. Of
these messages, only the update message is large, on
the order of several hundreds KB. Fortunately, update
messages can be transferred via a non-reliable multicast
scheme. Our simulations predict that, while keeping the
overhead low, this scheme reduces the total hit ratio by
less than 2% compared to the theoretical hit ratio of
ICP.

Though none of the traces are large enough to en-
able meaningful simulation of 100 proxies, we have per-
formed simulations with larger number of proxies and
the results verify these “back of the envelope” calcu-
lations. Thus, we are confident that Summary Cache
scales well.

5 Implementation and Experiments

Based on the simulation results, we propose the follow-
ing Summary-Cache Enhanced Internet Cache Protocol
as an optimization of ICP. The protocol has been im-
plemented in a prototype built on top of Squid 1.1.14
and the prototype is publicly available [8]. A variant of
our approach is also implemented in Squid 1.2b20 [29].

5.1 Summary-Cache Enhanced ICP

Our implementation assumes small delay thresholds
and updates summaries via sending the differences.
We add a new opcode in ICP wversion 2 [31],
ICP_OP DIRUPDATE (= 20), which stands for di-
rectory update messages. In an update message,
an additional header follows the regular ICP header
and consists of: 16 bits of Function Num, 16 bits of
Function Bits, 32 bits of BitArray_Size_InBits, and
32 bits of Number _of Updates. The header completely
specifies the hash functions for the filter. There are
Function Num of hashing functions. The functions are
calculated by first taking bits 0 to M-1, M to 2M-1, 2M
to 3M-1, etc. out of the MD5 signature of the URL,
where M is Function Bits, and then taking the mod-
ulo of the bits by BitArray Size InBits. If 128 bits
are not enough, more bits are generated by computing
the MD5 signature of the URL concatenated with itself.

The header is followed by a list of 32-bit integers.
The most significant bit in an integer specifies whether
the bit should be set to 0 or 1, and the rest of the bits
specify the index of the bit that needs to be changed.
The design is due to the concern that if the message
specifies only which bits should be flipped, then loss of
previous update messages would have cascading effects.

The design enables the messages to be sent via a un-
reliable multicast protocol. Furthermore, every update
message carries the header, enabling receivers to verify
various information.

We modify Squid 1.1.14 to implement the above pro-
tocol. The default load factor in the implementation is
8, and the default number of hash functions is 4. An
additional bit array is added to the data structure for
each neighbor. The array is initialized when the first
summary update message is received from the neigh-
bor. The proxy also allocates an array of byte counters
for maintaining the local copy of the bloom filter, and
an integer array to remember the filter changes. The
update messages are sent via the outgoing ICP connec-
tion to all neighbors. Since ICP uses UDP, in order for
the message to fit in one IP packet, we deviate from
the recommendation in Section 4.4 by sending updates
whenever there are enough changes to fill an IP packet.
The implementation leverages Squid’s built-in support
to detect failure and recovery of neighbor proxies, and
reinitializes a failed neighbor’s bit array when it recov-
ers.

5.2 Performance Experiments

We run two experiments with the prototype. The first
experiment repeats the test in Section 3 and the results
are included in Table 2 in Section 3, under the title “SC-
ICP.” The improved protocol reduces the UDP traffic
by a factor of 50, and has network traffic, CPU times
and client latencies similar to those of No-ICP.

Our second experiment replays the first 24,000 re-
quests from the UPisa trace. We use a collection of
80 client processes running on 4 workstations, and have
each client process emulate a set of real-life clients through
issuing their Web requests. Client processes on the same
workstation connect to the same proxy server. Each re-
quest’s URL carries the size of the request in the trace
file, and the server replies with the specified number of
bytes. The rest of the configuration is similar to the
experiments in Section 3. Different from the synthetic
benchmark, the trace contains a noticeable number of
remote hits. The results are listed in Table 4.

The results show that the enhanced ICP protocol
reduces the network traffic and CPU overhead signifi-
cantly, while only slightly decreasing the total hit ratio.
The enhanced ICP protocol lowers the client latency
slightly compared to the No-ICP case, even though it
increases the CPU time by about 12%. The reduction in
client latency is due to the remote cache hits. Separate
experiments show that most of the CPU time increase is
due to servicing remote hits, and the CPU time increase
due to MD5 calculation is less than 5%. We have ex-
perimented with other ways of replaying the trace, and
the results are similar [9)].



Exp Hit Ratio | Client Latency User CPU System CPU | UDP Traffic | TCP Traffic | Total Packets
no ICP 16.94 6.22(0.4%) 81.72(0.1%) | 115.63(0.1%) | 4718(1%) | 242K(0.1%) | 259K(0.1%)
ICP 19.3 6.31(0.5%) 116.81(0.1%) | 137.12(0.1%) | 72761(0%) | 245K(0.1%) 325K (0.2%)
Owerhead 1.42% 43% 19% 1400% 1% 25%
SC-ICP 19.0 6.07 (0.1%) 91.53(0.4%) | 121.75(0.5%) 5765(2%) 244K (0.1%) 262K (0.1%)
Owverhead -2.4% 12% 5% 22% 1% 1%

Table 4: Performance of ICP and Summary-Cache for UPisa trace.

Our results indicate that the summary-cache enhanced

ICP solves the overhead problem of ICP, requires min-
imal changes, and enables scalable Web cache sharing
over a wide-area network.

6 Related Work

Web caching is an active research area. There are many
studies on Web client access characteristics, web caching
algorithms [32, 23, 4], and Web cache consistency [16,
22, 19]. Our study does not address caching algorithms
or cache consistency maintenance, but leverages the ex-
isting results.

Recently there have been several new proposals on
Web cache sharing protocols. The Cache Array Routing
Protocol [30] divides the URL-space among an array of
loosely coupled proxy servers, and lets each proxy cache
only the documents whose URLs are hashed to it. An
advantage of the approach is that it eliminates duplicate
copies of documents. However, it is not clear how well
it performs for wide-area cache sharing, where proxies
may be distributed over a regional network. The Re-
lais project [15] suggests using local directories to facil-
itate finding documents in other caches, and updating
the directories asynchronously. However, existing pub-
lications on this project do not seem to address the
issues of update frequency and memory consumption.
Finally, proxies built on top of a tightly-coupled cluster
of workstations also use various hashing and partition-
ing schemes to utilize the memory and disks in the clus-
ter [10], but the relevant methods are not appropriate
for wide-area networks.

Our study is partially motivated by an existing pro-
posal called directory server [11]. The approach uses a
central server to keep track of the cache directories of all
proxies, and lets all proxies query the server for cache
hits in other proxies. The drawback of the approach is
that the central server can easily become a bottleneck.
The advantage is that little communication is needed
between sibling proxies.

Many studies also focus on Web cache hierarchies
and cache sharing. Hierarchical Web caching was first
proposed within the Harvest project [14, 6]. The “Adap-
tive Web caching” proposed in [33] offers a multicast-
based adaptive caching infrastructure for document dis-
semination on the Web.

Though we do not address the issue in this paper,
summary cache can be easily applied to cache hierar-
chies. That is, it can be used as a mechanism to com-
municate the contents of parent caches to child proxies,
and eliminate most of ICP queries to the parent caches.
Our inspection of the Questnet traces shows that the
child-to-parent ICP queries can be a significant portion
(over 2/3) of the messages that a parent proxy has to
process. Applying summary cache can result in signifi-
cant reduction of the queries and associated overheads.

7 Conclusions and Future Work

We propose the Summary-Cache enhanced ICP, a scal-
able wide-area Web cache sharing protocol. Using trace-
driven simulations and measurements, we demonstrate
the benefits of Web proxy cache sharing, illustrate the
overhead of current cache sharing protocols, and show
that the summary cache approach substantially reduces
the overhead. We study two key aspects of this ap-
proach: the effects of delayed updates, and the succinct
representation of summaries. Our solution, Bloom filter
based summaries with update delay thresholds, has low
demand on memory and bandwidth, and yet achieves
a hit ratio similar to that of the original ICP proto-
col. In particular, trace-driven simulations show that,
compared to ICP, the new protocol reduces the number
of inter-proxy protocol messages by a factor of 25 to
60, reduces the bandwidth consumption by over 50%,
while incurring almost no degradation in the cache hit
ratios. Simulation and analysis further demonstrate the
scalability of the protocol.

We have built a prototype implementation in Squid
1.1.14. Synthetic and trace-replay experiments show
that, in addition to the network traffic reduction, the
new protocol reduces the CPU overhead between 75%
to 95% and improves the client latency. The prototype
implementation is publicly available [8].

Much future work remains. We plan to investigate
the impact of the protocol on parent-child proxy coop-
erations, and the optimal hierarchy configuration for a
given workload. We also plan to study the application
of summary cache to various Web cache consistency pro-
tocols. Last, summary cache can be used in individual
proxy implementation to speed up cache lookup, and
we will quantify the effect through modifying a proxy



implementation.
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