
CS 810: Introduction to Complexity Theory 03/27/2003

Lecture 18: Circuit Lower Bounds for Parity.

Instructor: Jin-Yi Cai Scribe: Matthew Lee, Yingchao Liu, Uchechukwu Okpara

In this lecture we improve the bounds in switching lemma. Using the lemma, we establish lower
bounds on size of circuits computing or approximating parity.

1 The Switching Lemma

In the last lecture we proved the following lemma.

Lemma 1. Let G be a t-And-Or formula G1 ∧ G2 ∧ · · · ∧ Gw. For any β, 0 < β < t, let ρ be a

random p-restriction, where p = β
t−β , and let α = β/ln

[

1+
√

1+4eβ

2

]

. Then for all ∆ ≥ 0, we have

Pr[DC(G|ρ) ≥ ∆] ≤ α∆.

In the above lemma, α is minimized when β = β0 ≈ 0.227537. In which case, α = α0 ≈ 0.4164447.
Let γ0 = β0/2≈0.1137685.

Using Lemma 1, we will prove the Lemma 2, a stronger version of switching lemma. The key is the
the following composite property of random restrictions. Observe that a p1-restriction followed by
a p2-restriction has the same effect with a single p1p2-restriction. This property holds because the
boolean variables are independently assigned at each step.

Lemma 2. Let G be a t-And-Or formula G1∧G2∧· · ·∧Gw, and let ρ be a random γ0/t-restriction.

Then for all ∆ ≥ 0, we claim

Pr[DC(G|ρ) ≥ ∆] ≤ α0
∆

Proof. Let q = β0/t and p = q
2−q . Then q = 2p

1+p = p

p+ 1−p
2

is the probability a variable is assigned

a * in a random p-selection under the condition that it is assigned * or 0.

We have shown that

Pr[DC(G|ρ′) ≥ ∆] ≤ α0
∆,

where ρ′ is a random p-restriction.

Since p = q
2−q > q

2 = γ0

t , we know that γ0/(pt) is still a number less than 1. Because of the
composite property of random restriction, a random γ0/t-restriction ρ can be realized by first
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applying a random p-restriction ρ′, followed by a γ0

pt -restriction. Note that DC(G|ρ′) < ∆ means
there exists a decision tree with depth less than ∆, which can compute G. Therefore we would also
be able to compute G within less than ∆ depth with the more stringent restriction ρ. That is to
say,

Pr[DC(G|ρ) ≥ ∆] ≤ Pr[DC(G|ρ′) ≥ ∆] ≤ α0
∆.

2 Circuit Lower Bounds

Consider general constant depth circuits. Denote by C d(s, t) the class of depth d circuits with bfi
(the abbreviation of bottom fanin) ≤ t, and the number of gates above the first level ≤ s. Denote
by Cd(s) the class of depth d circuits without a bfi condition but with total size ≤ s. It is clear
that a circuit in Cd(s) can be considered as a circuit in Cd+1(s, 1), by adding an extra layer of
gates with fan-in 1.

The following lemma is proved using the switching lemma. In Lecture 16, we discussed on how to
use the switching lemma to prove circuit lower bounds. We use the same ideas here and hence, we
provide only a sketch of the proof.

Lemma 3. For all C ∈ Cd(s, γ0n
1/d), we have

Pr[DC(C|ρ) ≥ γ0n
1/d] ≤ s · αγ0n1/d

0 ≈ s · 2−0.143781·n1/d
,

where ρ is a random 1/n
d−1

d -restriction.

Proof. Let t = γ0n
1/d and p = 1/n

1
d . Let C ∈ Cd(s, t). Denote the number of gates on each level

as s1, s2, . . . , sd from the bottom to the top (output level). Clearly, sd = 1 and
∑d−1

i=1 si = s. Apply
Lemma 2 repeatedly d − 1 times, each time with a random p-restriction.

After applying the first random restriction, suppose all the s1 many t-AND-OR circuits at level 1
have DC ≤ t. Then, we can switch these into t-OR-AND circuits and merge first and second levels
eliminating a level. This process also eliminates s1 gates from the circuit. Nonetheless, for each
gate at the bottom level, it is possible that we cannot switch. By Lemma 2, for any one of the s1

circuits, probability that we fail to to switch is ≤ αt
0. So the probability of failure at this level is

at most s1 · αt
0. Accumulating the probability of the failure on each level, and combining with the

Lemma 2, we have

Pr[DC(C|ρ) ≥ γ0t] ≤
∑

i

si · αt
0 = s · αt

0 = s · αγ0n1/d

0 ≈ s · 2−0.143781·n1/d

Finally, by the composite property of random restrictions, applying d−1 random p-restrictions has
the same effect as one random pd−1-restriction. The proof is complete.
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We can apply Lemma 3 to C ∈ Cd(s) by first transforming them into C ∈ Cd+1(s, 1). But we can
actually do slightly better by a more delicate technique. Here we omit the proof of the following
better bound.

Lemma 4. For all C ∈ Cd(s), we have

Pr[DC(C|ρ) ≥ γ0n
1/d] < s · αγ0n1/d

0 ≈ s · 2−0.143781·n1/d
,

where ρ is a random α0/(2n
d−1

d )-restriction.

These results can be used to prove circuit lower bounds for the parity function. Consider any circuit
C in Cd(s, γ0n

1/(d−1)). Apply d − 2 rounds of random 1/n1/(d−1)-restrictions. With probability

> 1 − s · 2−0.143781·n1/(d−1)
, we get a circuit in C2(1, γ0n

1/(d−1)) after switching and merging. The
process is equivalent to applying a single random n(d−2)/(d−1)-restriction. Let N be the random
variable for number of variables left (i.e., variables assigned *). Then, its expectation E[N ] =
n1/(d−1). By Chernoff bound we have,

Pr[N ≤ γ0n
1

d−1 ] < e−
(1−γ0)2

2
·n

1
d−1

< e−0.3927n
1

d−1
.

Hence, if s < 20.143781·n1/(d−1)
, the probability is approaching 1 that both C is reduced to a circuit

in C2(1, γ0n
1/(d−1)) and N > γ0n

1/(d−1). Suppose the circuit we started with computes parity on
n variables. Then, the circuit obtained after applying the random restriction computes parity on
the remaining N variables. Clearly, a C2(1, t) circuit cannot compute parity on > t variables (see
Lecture 16). We have proved the following lemma.

Lemma 5. For all C ∈ Cd(s, γ0n
1/(d−1)), if C computes the parity function, then its size s must

satisfy

s ≥ 20.143781·n1/(d−1)
.

Lemma 5 can be used to obtain lower bounds for general circuits (without bfi). Again, we can
simply transform a circuit in Cd(s) into a circuit in Cd+1(s, 1), then apply Lemma 5. Using a more
direct and finer analysis, one can prove the following lemma.

Lemma 6. For all C ∈ Cd(s), if C computes the parity function, then its size s must satisfy

s ≥ 20.143781·n
1

d−1

3 Inapproximability Type Lower Bounds

Now we consider the inapproximability type lower bound. By inapproximability, we mean circuits
with certain restrictions (like size, depth and bfi) cannot compute parity on significantly more than
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half of the possible cases. Specifically, for the parity function, we can simply guess 0 and 1 as the
function value. So, it is easy to get 50% success. We want to show that, one cannot do significantly
better. The decision tree depth lower bound is ideally suited for deriving the inapproximability
type lower bound, and the decision tree perspective was introduced precisely for this reason. Our
goal is to show that, when the sizes of the circuits are below some lower bound, the circuits will
make asymptotically 50% error on all possible inputs.

Let C be a depth d circuit. Note that after some restriction ρ, if C is reduced to a decision tree of
depth smaller than the number of variables left, then for exactly half of the 0-1 extensions of ρ, C
agrees on the parity. This is because at every leaf of the decision tree, the circuit C is completely
determined.

Consider Pr[ C(x1, . . . , xn) = ⊕(x1, . . . , xn) ], where ⊕(x1, . . . , xn) denotes the parity function,
and the probability is over all 2n assignments. This random restriction technique can be realized by
first assigning any random restriction, followed by an unbiased 0-1 assignments for all the remaining
variables. Let E1 denote the event that after the random restriction, we end up with a decision tree
of depth not more than t, and let E2 denote the event that the number of variables N assigned to
* is more than t. Then let E = E1 ∧E2, and let [C = ⊕ ] denote [C(x1, . . . , xn) = ⊕(x1, . . . , xn) ]
for convenience. As we already pointed out, Pr[C = ⊕ |E ] = 1/2 due to a property of the parity
function.

Expending in terms of conditional probabilities, we have

Pr[C = ⊕] = Pr[E] · Pr[C = ⊕|E] + Pr[¬E] · Pr[C = ⊕|¬E]

= (1 − Pr[¬E]) · Pr[C = ⊕|E] + Pr[¬E] · Pr[C = ⊕|¬E]

= Pr[C = ⊕|E] + Pr[¬E](Pr[C = ⊕|¬E] − Pr[C = ⊕|E]).

As we noted, Pr[C = ⊕ |E ] = 1/2, and Pr[C = ⊕|¬E] ≤ 1. Then substitute these 2 observations
into the above equation,

∣

∣

∣

∣

Pr[C = ⊕] − 1

2

∣

∣

∣

∣

≤ 1

2
Pr[¬E].

Since Pr[C = ⊕] + Pr[C 6= ⊕] = 1, we have

Pr[C = ⊕ ] − Pr[C 6= ⊕ ] = 2

(

Pr[C = ⊕ ] − 1

2

)

,

and hence

|Pr[C = ⊕ ] − Pr[C 6= ⊕ ]| ≤ Pr[¬E].

Now we specify the parameters of the random restrictions. Let m = γ0n
1/d. First consider any

C ∈ Cd(s, γ0m). Let t = γ0m and apply Lemma 3. With a random 1/n(d−1)/d-restriction, we have

Pr[¬E1] ≤ sαt
0 ≈ s2̇0.143781·m.

Again by using the Chernoff bound, we estimate Pr[¬E2] = Pr[N ≤ γ0m] as follows.

Pr[¬E2] ≤ e−
(1−γ0)2

2
m < e0.3927m.

Thus Pr[¬E2] is dominated by Pr[¬E1]. This analysis gives the following bound.
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Lemma 7. For all C ∈ Cd(20.07189n1/d
, γ0n

1/d), we have

|Pr[C = ⊕ ] − Pr[C 6= ⊕ ]| ≤ 2−0.07189n1/d
.

Again straightforward application of the above lemma gives inapproximability results for general
circuits (without bfi). A more careful analysis leads to the following lemma.

Lemma 8. For all circuits C ∈ Cd(20.07189n1/d
), we have

|Pr[C = ⊕] − Pr[C 6= ⊕]| ≤ 20.07189n1/d
.
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