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1 Introduction

Let G = (V,E) be a graph over n vertices. A cut C of G is a subset of E such that there exist
V1, V2 ⊆ V where V1 and V2 partition V , and for each e ∈ C, one of its vertices is in V1 and the
other is in V2.

Definition 1 (MAXCUT). A MAXCUT of a graph G = (V,E) is a cut C such that |C| is

maximized over all cuts of G.

Similarly to MAXCUT, MINCUT of G is defined as the minimum |C| over all cuts of G. We
know that MINCUT is in P. It can be solved using maximum network flow between all pairs of
vertices. Also, note that MAXCUT of G is not the same as MINCUT of G

�

, G’s complement graph.

We know that MAXCUT is NP-complete, meaning that we do not know how to solve it efficiently.
We do have approximations, however. To quantify the accuracy of our approximations we will
introduce a new term. We want a polynomial-time algorithm that achieves a cut C such that

|C|

|C∗|
≥ r

where C∗ is a maximum cut. Such an algorithm is called an r-approximation.

2 Deterministic MAXCUT Approximation Algorithm

We can define a greedy algorithm that achieves a 1/2-approximation:
For a graph G = (V,E) with V = {1, . . . , n}, define Ei = {(k, i) ∈ E : k < i}. Initially, let V1 = {1}
and V2 = ∅. Then, for each i from 2 to n, add i to either V1 or V2 so that number of edges in Ei

that are on the cut is maximized. We claim that this heuristic achieves 1/2-approximation.

Let C be the cut obtained by the algorithm. The disjoint sets E1, E2, . . . , En partition E. So,
|E| = ΣiEi. For each i ∈ V , let E ′

i = Ei ∩ C. Then, C =
⋃

i E
′
i. As sets Ei are disjoint, the sets

E′
i are also disjoint. Thus, |C| = Σi|E

′
i|. The main observation is that for each i ∈ V , we have

E′
i ≥ Ei/2. We conclude that |C| ≥ |E|/2. As the size of maximum cut |C ∗| ≤ |E|, |C| ≥ (1/2)|C∗|.

3 Randomized MAXCUT Approximation Algorithm

We present a randomized 1/2-approximation algorithm for MAXCUT. Then we show that it can
be derandomized in polynomial time. The main goal is to illustrate ideas of randomization and
derandomization.
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The randomized algorithm is very simple. Given a graph G = (V,E), we assign each vertex inde-
pendently with equal probability to either V1 or V2. This will give us a cut C of G, and we will
show that the expected size of C ≥ (1/2)|C∗|.

Consider an edge (i, j) ∈ E. Pr[(i, j) ∈ C] = 1/2. For e ∈ E, define χe to be a random variable
such that χe = 1 if e ∈ C and χe = 0 if e 6∈ C. Then |C| =

∑

e∈E
χe . Thus,

E[|C|] =
∑

e∈E

E[χe ] =
∑

e∈E

Pr[e ∈ C] =
|E|

2
≥

1

2
|C∗|.

The first equality follows from linearity of expectation. For two random variables X and Y , E[X +
Y ] = E[X] + E[Y ]. This formula holds even if X and Y are not independent.

4 Derandomization

The above algorithm chose random numbers from an exponential number of possibilities. Instead
of choosing among exponentially many numbers, we give a randomized algorithm that chooses from
polynomially many and show that the average cut size among the polynomially many is at least
half the maximum cut size. Thus, to derandomize, we can look at all of these cuts and pick the
largest. This will guarantee a cut of at least half the maximum size.

4.1 Universal Hash Functions

Definition 2 (Universal family of hash functions). Let U and T be finite sets. Let S be an

index set for a family of functions {hs : U → T}s∈S. {hs}s∈S is called a universal family of hash
functions if ∀α, β ∈ T,∀x, y ∈ U, x 6= y,

Pr
s∈S

[hs(x) = α ∧ hs(y) = β] =
1

|T |2

Notice that the RHS of above equation 1/|T |2 is the probability of getting α and β when we choose
two elements independently and uniformly at random from T .

For all x, the map Zx : s 7→ hs(x) is a random variable. Note that Zx(s) = hs(x). We have
∀x 6= y ∈ U , ∀α, β ∈ T , Prs∈S[Zx(s) = α ∧ Zy(s) = β] = 1

|T |2 . Hence, ∀α ∈ T,∀x, y ∈ U, x 6= y,

Pr
s∈S

[Zx(s) = α] =
∑

β∈T

Pr
s∈S

[Zx(s) = α ∧ Zy(s) = β]

=
∑

β∈T

1

|T |2

=
1

|T |

So, Zx is a uniform random variable on T . From this, for any x 6= y ∈ U and α, β ∈ T ,

Pr
s∈S

[Zx(s) = α ∧ Zy(s) = β] = Pr
s∈S

[Zx(s) = α] · Pr
s∈S

[Zy(s) = β].
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So, for any x 6= y ∈ U , the random variables Zx and Zy are independent. The set of random
variables, {Zx}x∈U are pairwise independent. The random variables in this set depend on each
other, but if we pick any two of them, they will be independent.

We do not want to think in terms of the Zx(s). We will instead consider the hs(x).

Example:

Let p be a prime number. Then � /p = {0, 1, . . . , p − 1} with the operations + and · is a finite
field. Consider the map hs=(a,b) : x 7→ ax + b for a, b ∈ � /p. We will verify that {h(a,b)}a,b∈ � /p is a
universal family of hash functions.

For all x, y, α, β ∈ � /p, x 6= y, how many pairs (a, b) ∈ � /p are there satisfying the equations

ax + b = α

ay + b = β ?

(In the above equations, a and b are the unknowns.) These equations are equivalent to

(

x 1
y 1

)(

a
b

)

=
(

α
β

)

. The determinant of

(

x 1
y 1

)

= x− y 6= 0. Therefore, there exists a unique solution such that

this equation holds. Thus,

Pr
s=(a,b)∈( � /p)2

[hs(x) = α ∧ hs(y) = β] =
1

p2
.

So, {h(a,b)}a,b∈ � /p is a universal family of hash functions.�

This can be generalized to any finite field, namely the finite field of 2k elements GF (2k), sim-
ply by a replacement of � /p.

4.2 MAXCUT Approximation Algorithm Using Universal Hash Functions

Let G = (V,E) be a graph with V = {0, . . . , n − 1}. Set k so that 2k ≥ n > 2k−1. Choose a and
b at random from GF (2k). Start with V1, V2 = φ. For each i ∈ V , treat i as a member of GF [2k]
compute ai + b. Assign i to either V1 or V2 according to the first bit of ai + b. We claim that the
expected size of cut obtained is ≥ |E|/2.

Let χ
(a,b)

(i) = the first bit of ai + b. We know that {ai + b}a,b∈GF (2k) is a universal family of hash
functions. Thus, {χ

(a,b)
}a,b∈GF (2k) is a universal family of hash functions. Then, a cut C obtained

by the above randomized algorithm is given by C = {(i, j)|χ
(a,b)

(i) 6= χ
(a,b)

(j)}.

Because {χ
(a,b)

}a,b∈GF (2k) is a universal family of hash functions, Pr[χ
(a,b)

(i) 6= χ
(a,b)

(j)] = 1/2.
Thus, using the analysis from Section 3, we have E[|C|] ≥ |E|/2.

We can derandomize the above algorithm in polynomial time. There are less than 4n2 different
choices for (a, b). To derandomize, we can examine the cuts created by {χ

(a,b)
} for all a, b ∈ GF (2k)

in polynomial time. One of these cuts is guaranteed to be at least |C ∗|/2 because E[|C|] ≥ |C∗|/2.
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This gives us a deterministic r-approximation algorithm for MAXCUT.

This derandomized algorithm does not give a better approximation ratio than the greedy algorithm,
but it is a parallel algorithm. For each pair (a, b), the determination of which side of the cut each
vertex is on is independent of the other vertices . Thus, this can be executed in parallel. Addition-
ally, the cut produced from each pair (a, b) is independent of the cuts from other pairs. Therefore,
all cuts can be determined in parallel. After these cuts have been computed, the maximum can be
found with an NC computation. Also, this algorithm is a good example of derandomization.

4


