
CS 810: Introduction to Complexity Theory 04/03/03

Lecture 20: Goemans-Williamson MAXCUT Approximation Algorithm

Instructor: Jin-Yi Cai Scribe: Christopher Hudzik, Sarah Knoop

1 Overview

First, we outline the Goemans-Williamson Approximation Algorithm for MAXCUT and demon-
strate that can be expected to randomly produce a cut that is approximately 88% of the size of
the maximum cut. The algorithm depends on nonlinear programming relaxation and semidefinite
programming to achieve this result. These techniques have proven quite promising for designing
approximation algorithms. The full paper published by Goemans-Williamson in JAMC (1995) can
be found at http://www-math.mit.edu/∼goemans, and was used to aid in this write up. The sec-
ond portion is dedicated to defining the hierarchy of languages that can be decided,with certain
probability, by a randomized one-sided error or a randomized two-sided error in p-time TM.

2 Goemans-Williamson Approximation Algorithm for MAXCUT

2.1 Preliminaries: Defintions & Propositions

Before the algorithm is presented, we’ll provided some needed definitions and propositions.

Definition 1 (positive semidefinite). An n × n matrix, A, is positive semidefinite if
∀x ∈

� n , xtAx ≥ 0.

Definition 2 (semidefinite program). A semidefinite program is the problem of optimizing a
linear function of a symmetric matrix subject to linear equality constriaints and the constraint that
the matrix be positive semidefintite.

It pays to note that a semidefinite program is just a special case of a linear program. Thus it can
be solved (using a generalized Simplex method, or other) in polynomial time.

Proposition 1. For a symmetric matrix A, TFAE:

1. A is positive semidefinite.

2. All eigenvalues of A are non-negative

3. There exists a m × n (m ≤ n) matrix B such that A = B tB.

We also note that finding such a B can be done in p-time using Cholesky decomposition.

2.2 The Algorithm

We are given a graph, G = (V,E) of n vertices. For simplicity, we denote V = {1, 2, ..., n} and
E = {(i, j)|there is an edge between i and j in the graph, i ≤ j(no double counting)}.
We can view a maximum cut, M , for G as the solution to the following integer quadratic program:

1

Maximize
1

4

∑

(i,j)∈E

(xi − xj)
2

subject to xi ∈ {−1, 1}∀i ∈ V

Equivalently, and useful later:

(QP) Maximize
1

4

∑

(i,j)∈E

(x2
i − x2

j + 2xixj)

subject to xi ∈ {−1, 1}∀i ∈ V

Here the optimal values for the xi’s correspond to vertex i being on the one side of the cut
(xi = 1) or the other (xi = -1).

Solving QP is NP-complete. We’ll relax the constraints of QP to formulate a semidefinite program
that will find an approximate maximum to QP. This solution can be decomposed and partitioned
to reveal an approximate maximal cut. So, hold on to your horses!!
We’ll relax QP as follows:

1. We can view xi as 1 dimensional (rank 1) unit vectors. Denote these as yi. Now consider
span{y1, y2, ...yn}. These vectors span a space no larger in dimension than

� n . So these
vectors can be seen as elements of

� n . So we can restate the quadratic function in QP, using
the dot product, as follows:

1

4

∑

(i,j)∈E

(yi · yi − yj · yj + 2yi · yj)

2. Form the matrix A = (aij) where aij = yi · yj. Now we obtain the following semidefinite
program that approximately solves QP.

(SD) Maximize
1

4

∑

(i,j)∈E

(aii − ajj + 2aij)

subject to aii = 1,∀i ∈ V

A is symmetric positive semidefinite.

Now we can proceed to find an approximate maximum cut as follows:

1. Solve SD to obtain an optimal solution, z, for SD. Note that the optimal solution for SD could
be irrational. In such a case we can obtain, for any ε > 0, an approximation z > z ′ > z − ε
in p-time.

2. Say the maximum value of SD, z, is produced when the matrix A∗ is used. By the proposition
above and using Cholesky Decomposition, in p-time we can decompose A∗ = U tU . Consider
column vectors of the matrix U = {u1, ...un}. Since A∗ is positive semidefinite with a∗

ii = 1
these vectors are unit vectors: 1 = a∗

ii = ut
i · ui = ||ui||

2.

2

3. We can imbed these vectors in
� n (since m ≤ n). Now we randomly pick a hyperplane

through the origin. We can, in p-time, determine which of the vectors ui have endpoints
above or below the plane. The ui’s above will highlight vertices i on one side of the cut and
the uj ’s below the plane will give verticies on the other side of the cut. Different hyperplanes
separating the ui will produce different cuts, however, any cut made by this proceedure will
be guaranteed to have an expected size significantly larger than 1

2 the size of the maximum
cut.

2.3 Analysis

Here we attend to the details of why this random algorithm produces a cut of size approximately
88% of the size of the maximum cut. Let C denote the cut produced by this proceedure. We easily
establish: E[|C|] =

∑
(i,j)∈E Pr[(i, j) is on the cut] and Pr[(i, j) is on the cut] is the same as the

probability that the hyperplane randomly selected separtes the vectors ui and uj .

Lemma 1. The probability of a random hyperplane separating two vectors is proportional to the
angle, θij, between the two vectors.

Proof. Let N denote a normal of unit length to the hyperplane selected. Now, saying that ui and
uj are on opposite sides of this plane is equivalent to sign(ui · N) 6= sign(uj · N) Thus,
Pr[hyperplane separates ui and uj] = Pr[sign(ui ·N) 6= sign(uj ·N)]. Using an equivalent statement
and by symmetry we have Pr[sign(ui · N) 6= sign(uj · N)] = 2Pr[vi · N ≥ 0 and vj · N < 0] Now
the set of all unit length normals, N , for which vi · N ≥ 0 and vj · N < 0, geometrically is the
intersection of two half spaces and the unit sphere in which the dihedral angle between the half
spaces is precicely θij. This resultant solid has volume:

θij

2π
∗(volume of the full sphere).

(See http://mathforum.org/dr.math/faq/formulas/faq.sphere.html#lune for 3D picture. Here you
can think of θ = θij and the volume as depicted in light blue)

In other words, the chance that our plane falls between ui and uj is the equivalently the chance

that our plane lands in this solid. Thus, Pr[vi · N ≥ 0 and vj · N < 0] =
θij

2π
.

Thus,

Pr[plane is between ui and uj] = Pr[sign(ui · N) 6= sign(uj · N)]

= 2Pr[vi · N ≥ 0 and vj · N < 0]

=
θij

2π

So we have

E[|C|] =
∑

(i,j)∈E

Pr[plane is between ui and uj]

=
∑

(i,j)∈E

θij

(2π)

=
∑

(i,j)∈E

4

π

θij

(2 sin
θij

2)2

||ui − uj ||
2

4

3

The last equality holds because 2 sin
θij

2 = ||ui − uj || by simple geometry. Using calculus, we can

show that the minimum of 4
π

θij

(2 sin
θij

2
)2

for 0 ≤ θij ≤ π is greater than .87856. Call the minimum α.

Thus, we get

E[|C|] ≥
α

4

∑

(i,j)∈E

||ui − uj ||
2

But 1
4

∑
(i,j)∈E ||ui − uj||

2 is the exact size of maximum cut, |M |. Therefore, we have an α-
approximation for MAXCUT.

2.4 Closing Notes

It is known that there exists a constant c < 1 such that the existence of a c-approximation algorithm
for MAXCUT (and other NP problems) would imply that P = NP (Arora, Lund, Motwani, Sudan,
Szegedy). It has been shown (Bellare, Goldreich, Sudan: 1995) that c is as small as 83

84 for MAXCUT.
Thus, it is not likely that vast improvements can be made on this approximation scheme.

3 Probabilistic Complexity Classes

Define BPP, RP, co-RP, ZPP and their hierarchy.

Definition 3 (Probabilistic Turing Machine, PTM). A PTM M is a DTM, M , that takes
in two inputs; x the regular input, and a random bit string γ ∈ {0, 1}p(|x|) that indicates probabilistic
moves of M where p is some polynomial. The probability that M accepts x is defined as follows:

PM (x) = Pr
γ∈{0,1}p(|x|)

[M(x, γ) = 1]

Definition 4 (BPP). The class BPP consists of all languages L in which membership in L can
be checked with two-sided error by a PTM. Formally, L ∈ BPP iff ∃ a p-time PTM, M , such that

x ∈ L ⇒ PM (x) ≥
3

4

x /∈ L ⇒ PM (x) ≤
1

4

Definition 5 (RP). The class RP consists of all languages L in which membership in L can be
checked with one-sided error by a PTM. Formally, L ∈ RP iff ∃ a p-time PTM, M , such that

x ∈ L ⇒ PM (x) ≥
1

2
x /∈ L ⇒ PM (x) = 0

Definition 6 (co-RP). The class co-RP consists of all languages L in which membership in L
can be checked with one-sided error by a PTM. Formally, L ∈ co-RP iff ∃ a p-time PTM, M , such
that

x ∈ L ⇒ PM (x) = 1

x /∈ L ⇒ PM (x) ≤
1

2

4

Definition 7 (ZPP). ZPP = RP ∩ co-RP. Intuitively, A language L ∈ ZPP if there exists a PTM
that with high probability will correctly determine membership in L and with small probability will
say “I don’t know”. This small probability can be made exponentially small.

With these definitions, we have established the relationships among these classes as depicted in
Figure 1.

BPP

RP co−RP

ZPP

Figure 1: Probabilistic Complexity Class Hierarchy

5

