Lecture 21: Claims 8.2-8.4

Instructor: Jin-Yi Cai
Scribe: Hesam Dashti

Last time we stoped at the claim 8.2, where we showed

$$
\begin{aligned}
& \mathbf{D}_{2, a}=\lambda \mathbf{D}_{1, a} \quad a \in K \text { and } \lambda \in \mathbb{C}, \\
& \text { where } K=\left\{i \in[h] \mid \mathbf{D}_{1, i} \neq 0\right\}
\end{aligned}
$$

We ultimately want to show that the equality is correct for every a. Let us recal the vanishing lemma A that we will use it for the first time in this lecture:
For a positive integer k and $1 \leq i \leq k$, let $\left\{x_{i, n}\right\}_{n \geq 1}$ be k infinite sequences of non-zero real numbers. In addition, let $\left\{x_{0, n}\right\}_{n \geq 1}$ be a sequence with $\left\{x_{0, n}\right\}_{n \geq 1}=1$. The following is correct for all $0 \leq i<k$

$$
\lim _{n \rightarrow \infty} \frac{x_{i+1, n}}{x_{i, n}}=0
$$

Vanishing lemma A Let a_{i} and b_{i} be complex coefficients of $x_{i, n}$. Suppose

$$
\begin{aligned}
& \exists 1 \leq l \leq k, \text { such that } a_{i}=b_{i}, \quad \forall 0 \leq i<l . \\
& a_{0}=b_{0}=1 \\
& \operatorname{Im}\left(a_{l}\right)=\operatorname{Im}\left(b_{l}\right) .
\end{aligned}
$$

For infinity many $n,\left|\sum_{i=0}^{k} a_{i} x_{i, n}\right|=\left|\sum_{i=0}^{k} b_{i} x_{i, n}\right|$, then $a_{l}=b_{l}$.
We start this lecture by defining

$$
K_{2}=\left\{i \in[h] \mid \mathbf{D}_{2, i} \neq 0\right\} .
$$

Note that K may not be a subset of K_{2}, in which for $a \in K, \mathbf{D}_{1, a} \neq 0$ but $\mathbf{D}_{2, a}=0$ and by the claim 8.2 this means $\lambda=0 \in \mathbb{C}$.
In addition, let

$$
\mathcal{T}_{g}=\left\{T_{1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), T_{2}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), T_{3}=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right), T_{4}=\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right)\right\} .
$$

We want to show

$$
\begin{equation*}
\sum_{T \in \mathcal{T}_{g}} X_{v, T}=\sum_{T \in \mathcal{T}_{g}} X_{1, T} \quad \forall v \in A \tag{1}
\end{equation*}
$$

To do so we show that for every g^{\prime}

$$
\sum_{T \in \mathcal{T}_{g^{\prime}}} X_{v, T}=\sum_{T \in \mathcal{T}_{g^{\prime}}} X_{1, T} \quad \text { where } 1 \leq g^{\prime}<g \text { and } v \in A
$$

And also if

$$
\operatorname{Im}\left(\sum_{T \in \mathcal{T}_{g}} X_{v, T}\right)=\operatorname{Im}\left(\sum_{T \in \mathcal{T}_{g}} X_{1, T}\right)
$$

then we can use the vanishing lemma part A to prove the equation (??).
Let us first consider all the $T \geq_{\mu} T_{1}$ which by definition have $\mu_{b} \mu_{b^{\prime}} \geq \mu_{1} \mu_{2}$ and thus have one of

$$
\binom{1}{1},\binom{1}{2}, \text { or }\binom{2}{1}
$$

as their first column.
Among these, the matrices that have at least one 1 in each row $\left(\right.$ recall $\left.T=\left(\begin{array}{cc}b & c \\ b^{\prime} & c^{\prime}\end{array}\right)\right)$ have this neat property that \mathbf{D}_{1} appears in both sum's of $X_{v, T}$

$$
X_{v, T}=\left(\sum_{a \in[h]} \mathbf{D}_{b, a} \overline{\overline{\mathbf{D}}_{c, a}} \mathcal{H}_{a, v}\right)\left(\sum_{a \in[h]} \mathbf{D}_{b^{\prime}, a} \overline{\mathbf{D}_{c^{\prime}, a} \mathcal{H}_{a, v}}\right)
$$

Therefore we can consider two cases for the $X_{v, T}$, either $a \notin K$ and $X_{v, T}=0$, or $a \in K$ and the other \mathbf{D} term is a multiple of \mathbf{D}_{1} so we are dealing with $\mathbf{D}_{1} \overline{\mathbf{D}_{1}}$.
On the other hand, we showed that for any $\mathcal{H}_{a, v}=\alpha$ is a root of unity whenever $a \in K$ and $v \in A$. Therefore \mathcal{H} and its conjugate give us a product of a root of unity and its conjugate $\alpha \bar{\alpha}$ which is equal to 1 . Since \mathbf{D}_{1} is zero for $a \notin K$ we can have

$$
X_{v, T}=\left(\sum_{a \in[h]} \mathbf{D}_{b, a} \overline{\mathbf{D}_{c, a}}\right)\left(\sum_{a \in[h]} \mathbf{D}_{b^{\prime}, a} \overline{\mathbf{D}_{c^{\prime}, a}}\right)=\left\|\mathbf{D}_{1}\right\|^{4} .
$$

Therefore we can conclude that the equation ?? is correct for these matrices.
Next we need to show that the imaginary parts are the same for every $T \in \mathcal{T}_{g}$. In this case we need to consider T_{3} and T_{4} as well. From the above discussion $X_{v, T_{1}}=X_{1, T_{1}}$ and $X_{v, T_{2}}=X_{1, T_{2}}$ and we only need to consider T_{3} and T_{4} which occur as the following sum

$$
\begin{equation*}
\left(\sum_{a \in K}\left|D_{1, a}\right|^{2} \mathcal{H}_{a, v}\right)\left(\sum_{a=1}^{[h]}\left|D_{2, a}\right|^{2} \overline{\mathcal{H}_{a, v}}\right)+\left(\sum_{a \in K}\left|D_{2, a}\right|^{2} \mathcal{H}_{a, v}\right)\left(\sum_{a=1}^{[h]}\left|D_{1, a}\right|^{2} \overline{\mathcal{H}_{a, v}}\right) . \tag{2}
\end{equation*}
$$

From this sum it is clear that the conjugates cancel each other out and the sum ends up to be a real number. Hence the imaginary parts for every $T \in \mathcal{T}_{g}$ are the same and by using the vanishing lemma part A we conclude that

$$
\sum_{T \in \mathcal{T}_{g}} X_{v, T}=\sum_{T \in \mathcal{T}_{g}} X_{1, T} \quad \forall v \in A
$$

Since the terms corresponding to T_{1} and T_{2} are equal ($X_{v, T_{1}}=X_{1, T_{1}}$ and $X_{v, T_{2}}=X_{1, T_{2}}$), therefore the sum becomes a sum on T_{3} and T_{4} terms that reaches the maximum possible amount

$$
X_{v, T_{3}}+X_{v, T_{4}}=X_{1, T_{3}}+X_{1, T_{4}}=2 \cdot\left\|\mathbf{D}_{1, *}\right\|^{2}\left\|\mathbf{D}_{2, *}\right\|^{2}
$$

Let us consider the sum in (??) and consider the conditions that the addition reaches this maximum possible value. To reach this maximum, not only the coefficients of \mathcal{H} must be constant, also they need to end up to give us a 2 (note that we consider the case when $\mathbf{D}_{1, *}\left\|^{2}\right\| \mathbf{D}_{2, *} \|^{2}>0$ because for the equal zero case the proof is trivial).
Let,

$$
\mathcal{H}_{a, v}=\left\{\begin{array}{ll}
\beta_{v} & a \in K_{2} \\
\alpha_{v} & a \in K
\end{array} \quad \alpha_{v}, \beta_{v} \in \mathbb{C},\left|\alpha_{v}\right|=\left|\beta_{v}\right|=1\right.
$$

therefore(recall that K may not be a subset of K_{2}),

$$
\alpha_{v} \overline{\beta_{v}}+\overline{\alpha_{v}} \beta_{v}=2,
$$

which means $\alpha_{v}=\beta_{v}$.
At this point we proved the claim 8.3.
Claim 8.3. $\forall v \in A, \exists \alpha_{v}$ of norm 1, such that $\mathcal{H}_{a, v}=\alpha_{v}$ for all $a \in K_{2} \cup K$.

We want to extend this to every a and show K_{2} is in fact equal to K and we can have $\mathbf{D}_{2, *}=\mathbf{D}_{1, *}$ everywhere. To this goal, we first show that $\left|\mathbf{D}_{2, *}\right|^{2} \perp \mathcal{H}_{a, v}$ for all $v \in B$. Obviously if $B=\emptyset$ the equation is true, so we can assume $B \neq \emptyset$.
Let,

$$
T^{*}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \in \mathcal{T}_{g}
$$

In the property 3 we saw that

$$
\sum_{T \in \mathcal{T}_{i}} X_{v, T}=0 \quad i \in[d] \text { and } v \in B
$$

therefore $\sum_{T \in \mathcal{T}_{g}} X_{v, T}=0 \quad \forall v \in B$. We use this nice property and consider $T \in \mathcal{T}_{g}$ with $\mu_{b} \mu_{b^{\prime}}=\mu_{c} \mu_{c^{\prime}}=\mu_{2}^{2}$. To be in \mathcal{T}_{g}, a matrix can be constructed using the following columns

$$
\binom{2}{2},\binom{1}{s}, \text { or }\binom{s}{1},
$$

where $s>2$ such that $\mu_{b} \mu_{b^{\prime}}=\mu_{2} \mu_{2}$.
We divide the matrices in \mathcal{T}_{g} into two cases as follows:
case 1: Let us consider matrices $T \in \mathcal{T}_{g}$ that have a row of the form (11), (12), or (21). Therefore

$$
X_{v, T}=\left(\sum_{a=1}^{[h]} \mathbf{D}_{b, a} \overline{\mathbf{D}_{c, a}} \mathcal{H}_{a, v}\right)\left(\sum_{a=1}^{[h]} \mathbf{D}_{b^{\prime}, a} \overline{\mathbf{D}_{c^{\prime}, a} \mathcal{H}_{a, v}}\right)=0
$$

we know that

1. \mathbf{D}_{1} restricts a to $a \in K$.
2. on $K, \mathbf{D}_{1, *}$ and $\mathbf{D}_{2, *}$ are equal to a complex number (could be zero) times $\mathbf{D}_{1, *}$. therefore $\overline{\mathbf{D}_{1, *}} \cdot \mathbf{D}_{2, *}$ and $\mathbf{D}_{1, *} \cdot \overline{\mathbf{D}_{2, *}}$ are equal to $\left|\mathbf{D}_{1, *}\right|^{2}$ by a constant scale factor. Moreover,
3. $\left|\mathbf{D}_{1, *}\right|^{2} \perp \mathcal{H}_{*, v}$ for all $v \in B$ (claim 8.1).
so the equality to zero is correct.
case 2: Next, let us consider the matrices $T \in \mathcal{T}_{g}$ without the above rows. Using the definition of the matrices in \mathcal{T}_{g}, these remaining matrices are

$$
T^{*}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right), T_{1}=\left(\begin{array}{ll}
1 & s \\
s & 1
\end{array}\right), T_{2}=\left(\begin{array}{ll}
s & 1 \\
1 & s
\end{array}\right)
$$

Considering the X_{v} of these matrices shows that they have the conjugate-pair form with non-negative values

$$
\left|X_{a=1}^{[h]} \mathbf{D}_{2, a} \overline{\overline{\mathbf{D}_{2, a}}} \mathcal{H}_{a, v}\right|^{2},\left|X_{a=1}^{[h]} \mathbf{D}_{1, a} \overline{\mathbf{D}_{s, a}} \mathcal{H}_{a, v}\right|^{2},\left|X_{a=1}^{[h]} \mathbf{D}_{s, a} \overline{\mathbf{D}_{1, a}} \mathcal{H}_{a, v}\right|^{2}
$$

Since the sum of these non-negative values is equal to zero, then all are zeros.

$$
X_{v, T^{*}}+X_{v, T_{1}}+X_{v, T_{2}}=0
$$

In addition we can conclude that

$$
\left|\mathbf{D}_{2, *}\right|^{2} \perp \mathcal{H}_{*, v} \quad \forall v \in B
$$

according to the same reasoning as before, this means

$$
\left|\mathbf{D}_{2, *}\right|^{2} \in \operatorname{span}\left\{\mathcal{H}_{*, v} \mid v \in A\right\}
$$

and therefore $\left|\mathbf{D}_{2, *}\right|^{2}$ is a constant on $K \cup K_{2}$. On the other hand, we defined K_{2} such that $\left|\mathbf{D}_{2, *}\right|^{2} \neq 0$ therefore this quantity is nonzero on K. Recall that on $K, \mathbf{D}_{2, *}=\lambda \mathbf{D}_{1, *}$ hence we can conclude that $\mathbf{D}_{2, a}=\lambda \mathbf{D}_{1, a}$ and also $K_{2} \subset K$.
We have one more step to show $K_{2}=K$. To this aim, we need to show that they have the same cardinality. Let χ_{K} be the characteristic vector for K where

$$
\begin{aligned}
\chi_{K} & = \begin{cases}1 & \text { on } K \\
0 & O / W\end{cases} \\
\Rightarrow \chi_{K} & =\sum_{v \in A} x_{v} \mathcal{H}_{*, v} \quad x_{v} \in \mathbb{C}
\end{aligned}
$$

and also by using the claim 8.3 we can have:

$$
\begin{aligned}
x_{v}\left\|\mathcal{H}_{*, v}\right\|^{2} & =<\chi_{K}, \mathcal{H}_{*, v}> \\
& =\sum_{a \in K} \overline{\mathcal{H}_{a, v}} \\
& =|K| \overline{\alpha_{v}} \quad \forall v \in A . \\
\Rightarrow\left|x_{v}\right| h & =|K| \forall v \in A .
\end{aligned}
$$

Thus

$$
\begin{gathered}
|K|=\left\|\chi_{K}\right\|^{2}=\sum\left|x_{v}\right|\left\|\mathcal{H}_{*, v}\right\|^{2}=|A| \cdot\left(\frac{|K|}{h}\right)^{2}=\frac{|A||K|^{2}}{h} \\
\Rightarrow|K|=\frac{h}{|A|}
\end{gathered}
$$

The exact same process for K_{2} gives us the equality of the cardinalities:

$$
|K|=\left|K_{2}\right|=\frac{h}{|A|}
$$

By this we extended the claim 8.2 and showed the correctness of claim 8.4 as we define it here:
Claim 8.4 There exists some complex number λ, such that $\mathbf{D}_{2, *}=\lambda \mathbf{D}_{1, *}$

The next step will be to extend this to have $\mathbf{D}_{l, *}=\lambda \mathbf{D}_{1, *}$. We do not go through this in the class but the explanations in the paper are clear to follow and understand.

