CS 880: Complexity of Counting Problems 04/10/2012
Lecture 21: Claims 8.2-8.4

Instructor: Jin-Yi Cai Scribe: Hesam Dashti

Last time we stoped at the claim 8.2, where we showed

Ds. =Dy, a€K and AeC,
where K = {i € [h]|Dy,; # 0}

We ultimately want to show that the equality is correct for every a. Let us recal the vanishing
lemma A that we will use it for the first time in this lecture:

For a positive integer k and 1 < i < k, let {x;,},>1 be k infinite sequences of non-zero
real numbers. In addition, let {zo,}n>1 be a sequence with {zg,}n,>1 = 1. The following is

correct for all 0 <17 < k
. Titin
lim —— =0.
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Vanishing lemma A Let a; and b; be complex coefficients of z;,. Suppose
d1 <[ < k,such that a; =b;, V0 <17 <I.

apg = bo =1
Im(a;) = Im(b;).

For infinity many n, | Zf:o a;Tin| = | Zf:o bix; |, then a; = b;.

We start this lecture by defining
Ky = {i € [h]|Dq; # 0}.

Note that K may not be a subset of K5, in which for a € K, Dy, # 0 but Dy, = 0 and by
the claim 8.2 this means A =0 € C.
In addition, let
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We want to show

Z XU,T = Z Xl,T VU € A (1)
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To do so we show that for every ¢’

Z Xor = Z Xir where 1 < ¢’ < g and v € A.
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And also if

Im ZXQ,,T =1Im ZXLT ;
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then we can use the vanishing lemma part A to prove the equation (?7).
Let us first consider all the 7" >, T which by definition have pypy > p11p12 and thus have

one of
1 1 2
1)°\2)°" 1
as their first column.

Among these, the matrices that have at least one 1 in each row (recall T = ([f’ CC,)) have

this neat property that D; appears in both sum’s of X,

Xv,T = Z Db,aDc,aHa,v Z Db’,aDc’,aHa,U
a€lh] a€(h]

Therefore we can consider two cases for the X, r, either a ¢ K and X, r =0, or a € K and
the other D term is a multiple of D; so we are dealing with D;D;.

On the other hand, we showed that for any H,, = « is a root of unity whenever a« € K and
v € A. Therefore H and its conjugate give us a product of a root of unity and its conjugate
aa which is equal to 1. Since Dy is zero for a ¢ K we can have

XU,T - Z Db,aDc,a Z Db’,aDc’,a - ||D1||4
a€[h] a€lh]

Therefore we can conclude that the equation 7?7 is correct for these matrices.

Next we need to show that the imaginary parts are the same for every 7' € 7,. In this
case we need to consider T3 and T} as well. From the above discussion X, , = X;n, and
Xy, = X117, and we only need to consider T3 and 7 which occur as the following sum

(Z Drq
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[A] [A]
2Ha,v> Z ‘D2,a’2Ha,v + (Z ‘D2,a’2Ha,v) Z |Dl,a|2Ha,v . (2)

a=1 aeK a=1

From this sum it is clear that the conjugates cancel each other out and the sum ends up to
be a real number. Hence the imaginary parts for every 7' € 7, are the same and by using
the vanishing lemma part A we conclude that

Z vaT = Z Xl,T Yo € A.
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Since the terms corresponding to 77 and 75 are equal (X, r, = X1 and X, 1, = Xin,),
therefore the sum becomes a sum on T3 and Ty terms that reaches the maximum possible
amount

Xors + X = Xiry + X = 2 [Do[? Do
Let us consider the sum in (?7) and consider the conditions that the addition reaches this
maximum possible value. To reach this maximum, not only the coefficients of H must be
constant, also they need to end up to give us a 2 (note that we consider the case when
D . ||*[|D2.||* > 0 because for the equal zero case the proof is trivial).
Let,

, a € K
Ha,v = {B ? Oévaﬁv € C; |Oév‘ = ’Bv’ - 17
a, aekK

therefore(recall that K may not be a subset of K5),
O‘vE + a8, = 2,

which means a, = 5,.
At this point we proved the claim 8.3.
Claim 8.3. Vv € A, 3o, of norm 1, such that H,, = «, for all a € Ky U K.

We want to extend this to every a and show K is in fact equal to K and we can have
Dj. = D; . everywhere. To this goal, we first show that |D2,>,<|2 1L Hy, for all v € B.
Obviously if B = () the equation is true, so we can assume B # ().

Let,
« (2 2
T_<2 2>e7;.

Y X,r=0 icdandve B,
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In the property 3 we saw that

therefore ZTG% Xy =0 Vv € B. We use this nice property and consider 7' € 7, with
Pty = Hepte = p3. To be in T, a matrix can be constructed using the following columns

5-0) = )

where s > 2 such that pypuy = pops.
We divide the matrices in 7, into two cases as follows:
case 1: Let us consider matrices 7' € 7, that have a row of the form (1 1), (1 2), or (2 1).

Therefore
[h] (h]

XU,T = Z Db,aD_c,aHa,v Z Db’,aDc’,aHa,v = 07

a=1 a=1

we know that



1. Dy restricts a to a € K.

2. on K, Dy, and Dy, are equal to a complex number (could be zero) times D, ,. there-
fore Dy, -Dy, and Dy, - D5, are equal to |D17*|2 by a constant scale factor. Moreover,

3. |D1.4)? L H., for all v € B (claim 8.1).

so the equality to zero is correct.
case 2: Next, let us consider the matrices T' € 7, without the above rows. Using the
definition of the matrices in 7, these remaining matrices are

« (2 2 (1 s (s 1
re(a) =)=

Considering the X, of these matrices shows that they have the conjugate-pair form with
non-negative values
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JE— 2 [ N
X([zhz]lDZ,aDQ,a%a,v ) )X}zﬂlDl,aDs,aHu,v Ds,aDl,aHa,fu

Since the sum of these non-negative values is equal to zero, then all are zeros.
X+ Xy + Xy =0.
In addition we can conclude that
Do.* L H., VwERB
according to the same reasoning as before, this means
D, |* € span{H..|v € A}

and therefore |D27*\2 is a constant on K U K5. On the other hand, we defined K5 such that
|D2,*|2 # 0 therefore this quantity is nonzero on K. Recall that on K, Dy, = AD; . hence
we can conclude that Dy, = AD; , and also Ky C K.

We have one more step to show Ky = K. To this aim, we need to show that they have the
same cardinality. Let xx be the characteristic vector for K where

1 on K
XK =

0 O/W
=YK = Z%H*’” z, € C
vEA

and also by using the claim 8.3 we can have:

xUHH*,U”Z =< XK?H*,’U >
=D Ha

= |K|a, Yve A
= |z,|h = |K|Vv € A.




Thus

K1\ _ JA[KP
K| = IIxull® =D lzollHanl? = 1AL (5= ) =
h h
h
= |K|=—.
|4
The exact same process for K, gives us the equality of the cardinalities:
h
K| = K| = 7.
A

By this we extended the claim 8.2 and showed the correctness of claim 8.4 as we define it
here:
Claim 8.4 There exists some complex number A, such that Dy, = ADy ,

The next step will be to extend this to have D; ., = AD; .. We do not go through this in the
class but the explanations in the paper are clear to follow and understand.



