
CS 880: Complexity of Counting Problems 04/10/2012

Lecture 21: Claims 8.2-8.4

Instructor: Jin-Yi Cai Scribe: Hesam Dashti

Last time we stoped at the claim 8.2, where we showed

D2,a = λD1,a a ∈ K and λ ∈ C,
where K = {i ∈ [h]|D1,i 6= 0}

We ultimately want to show that the equality is correct for every a. Let us recal the vanishing
lemma A that we will use it for the first time in this lecture:
For a positive integer k and 1 ≤ i ≤ k, let {xi,n}n≥1 be k infinite sequences of non-zero
real numbers. In addition, let {x0,n}n≥1 be a sequence with {x0,n}n≥1 = 1. The following is
correct for all 0 ≤ i < k

lim
n→∞

xi+1,n

xi,n
= 0.

Vanishing lemma A Let ai and bi be complex coefficients of xi,n. Suppose

∃1 ≤ l ≤ k, such that ai = bi, ∀0 ≤ i < l.

a0 = b0 = 1

Im(al) = Im(bl).

For infinity many n, |
∑k

i=0 aixi,n| = |
∑k

i=0 bixi,n|, then al = bl.

We start this lecture by defining

K2 = {i ∈ [h]|D2,i 6= 0}.

Note that K may not be a subset of K2, in which for a ∈ K, D1,a 6= 0 but D2,a = 0 and by
the claim 8.2 this means λ = 0 ∈ C.
In addition, let

Tg =

{
T1 =

(
2 1
1 2

)
, T2 =

(
1 2
2 1

)
, T3 =

(
1 1
2 2

)
, T4 =

(
2 2
1 1

)}
.

We want to show ∑
T∈Tg

Xv,T =
∑
T∈Tg

X1,T ∀v ∈ A. (1)

To do so we show that for every g′∑
T∈Tg′

Xv,T =
∑
T∈Tg′

X1,T where 1 ≤ g′ < g and v ∈ A.
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And also if

Im

∑
T∈Tg

Xv,T

 = Im

∑
T∈Tg

X1,T

 ,

then we can use the vanishing lemma part A to prove the equation (??).
Let us first consider all the T ≥µ T1 which by definition have µbµb′ ≥ µ1µ2 and thus have
one of (

1
1

)
,

(
1
2

)
, or

(
2
1

)
as their first column.

Among these, the matrices that have at least one 1 in each row

(
recall T =

(
b c
b′ c′

))
have

this neat property that D1 appears in both sum’s of Xv,T

Xv,T =

∑
a∈[h]

Db,aDc,aHa,v

∑
a∈[h]

Db′,aDc′,aHa,v

 .

Therefore we can consider two cases for the Xv,T , either a /∈ K and Xv,T = 0, or a ∈ K and
the other D term is a multiple of D1 so we are dealing with D1D1.
On the other hand, we showed that for any Ha,v = α is a root of unity whenever a ∈ K and
v ∈ A. Therefore H and its conjugate give us a product of a root of unity and its conjugate
αα which is equal to 1. Since D1 is zero for a /∈ K we can have

Xv,T =

∑
a∈[h]

Db,aDc,a

∑
a∈[h]

Db′,aDc′,a

 = ‖D1‖4.

Therefore we can conclude that the equation ?? is correct for these matrices.
Next we need to show that the imaginary parts are the same for every T ∈ Tg. In this
case we need to consider T3 and T4 as well. From the above discussion Xv,T1 = X1,T1 and
Xv,T2 = X1,T2 and we only need to consider T3 and T4 which occur as the following sum(∑

a∈K

|D1,a|2Ha,v

) [h]∑
a=1

|D2,a|2Ha,v

+

(∑
a∈K

|D2,a|2Ha,v

) [h]∑
a=1

|D1,a|2Ha,v

 . (2)

From this sum it is clear that the conjugates cancel each other out and the sum ends up to
be a real number. Hence the imaginary parts for every T ∈ Tg are the same and by using
the vanishing lemma part A we conclude that∑

T∈Tg

Xv,T =
∑
T∈Tg

X1,T ∀v ∈ A.
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Since the terms corresponding to T1 and T2 are equal (Xv,T1 = X1,T1 and Xv,T2 = X1,T2),
therefore the sum becomes a sum on T3 and T4 terms that reaches the maximum possible
amount

Xv,T3 +Xv,T4 = X1,T3 +X1,T4 = 2 · ‖D1,∗‖2‖D2,∗‖2.
Let us consider the sum in (??) and consider the conditions that the addition reaches this
maximum possible value. To reach this maximum, not only the coefficients of H must be
constant, also they need to end up to give us a 2 (note that we consider the case when
D1,∗‖2‖D2,∗‖2 > 0 because for the equal zero case the proof is trivial).
Let,

Ha,v =

{
βv a ∈ K2

αv a ∈ K
αv, βv ∈ C, |αv| = |βv| = 1,

therefore(recall that K may not be a subset of K2),

αvβv + αvβv = 2,

which means αv = βv.
At this point we proved the claim 8.3.
Claim 8.3. ∀v ∈ A,∃αv of norm 1, such that Ha,v = αv for all a ∈ K2 ∪K.

We want to extend this to every a and show K2 is in fact equal to K and we can have
D2,∗ = D1,∗ everywhere. To this goal, we first show that |D2,∗|2 ⊥ Ha,v for all v ∈ B.
Obviously if B = ∅ the equation is true, so we can assume B 6= ∅.
Let,

T ∗ =

(
2 2
2 2

)
∈ Tg.

In the property 3 we saw that∑
T∈Ti

Xv,T = 0 i ∈ [d] and v ∈ B,

therefore
∑

T∈Tg Xv,T = 0 ∀v ∈ B. We use this nice property and consider T ∈ Tg with

µbµb′ = µcµc′ = µ2
2. To be in Tg, a matrix can be constructed using the following columns(

2
2

)
,

(
1
s

)
, or

(
s
1

)
,

where s > 2 such that µbµb′ = µ2µ2.
We divide the matrices in Tg into two cases as follows:
case 1: Let us consider matrices T ∈ Tg that have a row of the form (1 1), (1 2), or (2 1).
Therefore

Xv,T =

 [h]∑
a=1

Db,aDc,aHa,v

 [h]∑
a=1

Db′,aDc′,aHa,v

 = 0,

we know that
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1. D1 restricts a to a ∈ K.

2. on K, D1,∗ and D2,∗ are equal to a complex number (could be zero) times D1,∗. there-
fore D1,∗ ·D2,∗ and D1,∗ ·D2,∗ are equal to |D1,∗|2 by a constant scale factor. Moreover,

3. |D1,∗|2 ⊥ H∗,v for all v ∈ B (claim 8.1).

so the equality to zero is correct.
case 2: Next, let us consider the matrices T ∈ Tg without the above rows. Using the
definition of the matrices in Tg, these remaining matrices are

T ∗ =

(
2 2
2 2

)
, T1 =

(
1 s
s 1

)
, T2 =

(
s 1
1 s

)
Considering the Xv of these matrices shows that they have the conjugate-pair form with
non-negative values∣∣∣X [h]

a=1D2,aD2,aHa,v

∣∣∣2 , ∣∣∣X [h]
a=1D1,aDs,aHa,v

∣∣∣2 , ∣∣∣X [h]
a=1Ds,aD1,aHa,v

∣∣∣2 .
Since the sum of these non-negative values is equal to zero, then all are zeros.

Xv,T ∗ +Xv,T1 +Xv,T2 = 0.

In addition we can conclude that

|D2,∗|2 ⊥ H∗,v ∀v ∈ B

according to the same reasoning as before, this means

|D2,∗|2 ∈ span{H∗,v|v ∈ A}

and therefore |D2,∗|2 is a constant on K ∪K2. On the other hand, we defined K2 such that
|D2,∗|2 6= 0 therefore this quantity is nonzero on K. Recall that on K, D2,∗ = λD1,∗ hence
we can conclude that D2,a = λD1,a and also K2 ⊂ K.
We have one more step to show K2 = K. To this aim, we need to show that they have the
same cardinality. Let χK be the characteristic vector for K where

χK =

{
1 on K

0 O/W

⇒χK =
∑
v∈A

xvH∗,v xv ∈ C

and also by using the claim 8.3 we can have:

xv‖H∗,v‖2 =< χK ,H∗,v >

=
∑
a∈K

Ha,v

= |K|αv ∀v ∈ A.
⇒ |xv|h = |K|∀v ∈ A.

4



Thus

|K| = ‖χK‖2 =
∑
|xv|‖H∗,v‖2 = |A|.

(
|K|
h

)2

=
|A||K|2

h

⇒ |K| = h

|A|
.

The exact same process for K2 gives us the equality of the cardinalities:

|K| = |K2| =
h

|A|
.

By this we extended the claim 8.2 and showed the correctness of claim 8.4 as we define it
here:
Claim 8.4 There exists some complex number λ, such that D2,∗ = λD1,∗

The next step will be to extend this to have Dl,∗ = λD1,∗. We do not go through this in the
class but the explanations in the paper are clear to follow and understand.
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