
CS 880: Complexity of Counting Problems April 17, 2012

Lecture 23: Towards Proving U5

Instructor: Jin-Yi Cai Scribe: Aaron Gorenstein

Today we will begin proving U5, which is on page 24 in the paper. Our goal is to prove this main theorem:

Theorem 1 (Condition U5) For all r ∈ [N − 1] and i ∈ [0 : 2m− 1], D
[r]
i is either 0 or a power of ωN .

Recall U1–U4 (page 23). Matrix A is purified, and there is a sequence of diagonal matrices D indexed
according to the degree of the vertex mod N , where N is some fixed even number. With these, C is the
bipartisation of the M -discrete unitary matrix F ∈ Cn×n (note that C and F uniquely determine each other).
And importantly, recall that D

[0]
i = 1 for some i, and that D[0] is all integers.

We currently know that
D

[r]
i ∈ Q(ωN ), and

∣∣∣D[r]
i

∣∣∣ = 0 or 1. (1)

Our goal will be to show that D
[r]
i are all powers of the same ωn. We want this so that the entries can all

be powers of the same base, so their product is a sum of their exponents. Then it becomes a polynomial
evaluation problem.

Recall our current partition function:

Z =
∑

σ:V→[m]

∏
e=(u,v)

Cσ(u),σ(v)

∏
v∈V

D
[deg(v) mod N ]
σ(v) . (2)

We already know that C is made of powers of ωn, now we will make D also powers of ωn. It is sufficient to
instead show that D

[r]
i is a root of unity.

1 Interlude from last lecture: Group Condition

Recall that
Xij = {

∣∣〈Fi,? ◦ Fj,?, Fa,? ◦ Fb,?〉
∣∣}. (3)

We also define Sij(x) = the number of times x appears in Xij . So we see that
∑

Sij(x) = m2, and∑
Sij(x) · x2p = m2p+1, (4)

following from the idea that the matrix determinant must be 0. For x ∈ Xij , as p = 1, 2, . . ., p need only go
up to |Xij | − 1.

In other words, 
1 1 . . . 1
x2

1 x2
2 . . . x2

|Xij |
x4

1 x4
2 . . . . . .

...
...

...
. . .




Sij(x1)
Sij(x2)
Sij(x3)

...

 (5)

and recall that by definition all x are distinct and non-negative, so their squares are different. That means
we have set up a Vandermonde system!

Such a system has a single solution, and we will ultimately guess it. We want to pick a value such that
all of the equations are satisfied. We know that 0 ∈ Xij and m ∈ Xij . We get 0 by setting a = i, b 6= j in
equation (3) and noting that F is orthogonal. We get m by setting a = i, b = j, and with their conjugates
we get a sum of 1 for the inner product, and there are m of them.

Let Zij be a function similar to Sij , but we define it such that Zij(0) = m2 −m and Zij(m) = m. Every
other parameter is set to 0 (if any exist!). Considering Z for S in our equation (4) defining the Vandermonde
system, we see that it works! So we have correctly guessed the unique solution.
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Aside The approach to concluding this is not unlike the proof showing log space is equal to co-log space.
You guess, and realize that in guessing you’ve covered everything, and so you’re done! This method is
surprising: until the proof, most thought log space was not equal to co-log space!

We are not yet there with the group action. Consider j = 0, we can rewrite the right-hand-side of (3) as
follows:

m−1∑
a=0

|〈Fi,? ◦ Fb,?, Fa,?〉|2 . (6)

We can view the inner product as expanding the left-hand-side vector on the Fourier basis of the right-hand-
side. This is a generalization of Pythagoras’s inequality. The summation is equal to m · ‖Fi,? ◦ Fb,?‖2. All
of the vectors involved, though, become 1, so we get m2.

So how can equation (6), a sum of m, m2 be equal to m2? The only way is if there is exactly one m! We
now know it is the case that

∀i∀x∃a |〈Fi,? ◦ Fb,?, Fa,?〉| = m.

Now consider how all of the values in that vector or roots of unity of length 1. For them all to sum to 1,
they must point in the same direction. So the two vectors we are inner-producting over differ, element-wise,
by a fixed θ. In other words,

Fa,? = eiθ · (Fi,? ◦ Fb,?). (7)

Look at the first entry, and we can set it to 1. The equation (7) becomes 1 = θ · 1 · 1, so θ ≡ 0 mod 2π.
Thus we have our group condition! Now we return to determining the composition of D

[r]
i .

2 Proving Lemma 9.2

We begin by proving a sufficient condition for our main theorem:

Lemma 1 (Lemma 9.2) Showing D
[r]
i is a root of unity is sufficient to show theorem 1.

Proof. Let D = ωk
M , such that (k, M) = 1 (here parens means the gcd). Now we know that (M,N) =

a ·N + b ·M . With some arithmetic, we can conclude that 1
lcm = a

M + b
N . The term lcm is the least common

multiple of M and N .
Observe:

e2πi 1
lcm = ωlcm(M,N) = e2πi a

M · e2πi b
N = ωa

M · ωb
N .

This is a formal verification of the idea that, if you have a pie, and can modify some size- 1
x portion, or some

size- 1
y portion, you can modify a 1

xy portion.
So we have ωlcm ∈ Q(D,ωN ). With D = ωk

M , and k relatively prime (so a′k + b′M = 1), we see that

ωM = ω′M = ωa′k+b′M
M , but it is mod M, = (ωk

M )a′

We conclude that ωlcm ∈ Q(ωM , ωN ) = Q(ωlcm). Here we invoke an external theorem, the fact that [Q(ωN ) :
Q] = φ(n). By φ we mean Euler’s totient function. This statement basically means that the cyclotomic
polynomial is irreducible, e.g.:

x7 − 1 = (x− 1)(x6 + x5 + . . . + x + 1), (8)

or Φ7(x), is irreducible.
More generally we define

Φn(x) =
∏

K=1...N
gcd(K,N)=1

(x− ωK
N ). (9)

It is true that Φn(x) ∈ Q[x] and the degree is the totient of n. If n = pe1
1 pe2

2 . . ., its prime factorization, we
can define the totient. Recall that the totient is n ·

∏
p|n(1− 1

p ) = pe1
1 (1− 1

p )pe2
2 . . .. Note that if n is odd, it
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has the same totient as 2n, because it merely adds a 1 factor to the totient. If we have 2ek>1, however, the
value does change.

Q(ωN ) = Q(ωM , ωN ) = Q(ωlcm)

then

Q(ωN ) = Q(ω′N ) =⇒ N | N ′

so we conclude

φ(N) = φ′(N).

Given the above, only these two cases are possible: if N is odd, then N = N ′ or N = 2N ′. The extra
2 factor is allowed, because the “first one” doesn’t change φ. Otherwise, if N is even, N = N ′, that’s it.
Recall that we designed N to be even. This is why! The two values must be equal, and we have finished our
lemma.

Now we need “just” to show that D
[r]
i is some root of unity. To do so, we’ll introduce a lemma without

proof. For K = {i ∈ [0,m − 1]|Di 6= 0}, we fix some r, Di = D
[r]
m+i. So we’re really considering the second

part of the bipartisation. Now, showing D
[r]
i is a root of unity. If |K| = 0 we’re done. If |K| = 1 recall there

must be at least one 1, so that element must be 1, and we’re done. We assume, then, that |K| ≥ 2. We
define a vector z = (DN

0 , DN
1 , . . . , DN

m−1).

Lemma 2 If ∃k ∈ K s.t. Zk(= DN
k ) is not a root of unity, then there exists a sequence {Pn} such that when n →∞

(note ZPn
k : k ∈ K) approaches to all 1, but never equal to it. But there is a time when all the values are “really

close”.

For example, with a vector of length 3, after n3 + 1 steps, 2 of the elements in the vector must be close
to 1. This is a multidimensional version of the box principle of Dirichlet, which is described as follows. Say
we want to minimize

∣∣α− n
m

∣∣ where m < M for some fixed α, M . An easy answer is 1
m . Some more thought

gives us 1
2m . The box principle says that we can always get ≤ c

M3/2 , for a universal constant c. Hint: consider
1 · α, 2 · α, 3 · α, etc. The multidimensional version says that you can get within c

M1+ 1
k

.
Now consider page 71 of the paper, figure 6. That is an edge gadget, and we’ve seen similar applications

before. We will create:

A[p]
u,v = by Bulatov-Grohe = Lp · (

∑
k∈K

DpN
k Fu,kFv,k)(

∑
k∈K

DpN
k Fu,kFv,k)∀u, v ∈ [0 . . .m− 1] (10)

We will pick up around the argument form the middle of page 72 to the end. Remember in particular
the sentence before the word “Assume”: it describes the proof by contradiction we will show next time.
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