CS 880: Complexity of Counting Problems	April 17, 2012	
	Lecture 25: More Structure for F	
Instructor: Jin-Yi Cai		Scribe: Aaron Gorenstein

This is a quick summary of the lecture.

- Recall that the rows of F are a column.
- We are going to apply Abelian group structure theory to say that F has a nice structure.

We have 3 facts:

- R_{1} : representation of $\mathbf{p}, \mathbf{t}, \mathbf{q}$.
- $R_{2}: C \in \mathbb{C}^{2 m \times 2 m}$ is a bipartization of $F \in \mathbb{C}^{2 m \times 2 m}$ where M, N, C, \mathcal{D} satisfy the \mathcal{U}.
- $R_{3}:$ Closed form of $F_{a, b}=\prod_{i, j} \omega_{q_{i, j}}^{a_{i j} b_{i j}}$.

We want to get the whole partition function as ω to a quadratic-form power.
We discussed the issues of a non-bipartite graph, but will not cover that topic.
We define for each $D^{[r]}$ the sets Λ_{r} and Δ_{r}. These sets are used to prove theorem 5.5 from the paper, saying that $E V A L(C, \mathcal{D})$ is sharp-P hard unless if the \mathcal{L} properties are satisfied. We proved a very simple lemma, the equivalent of the Chinese Remainder Theorem of cosets.

Our goal then was to show that Δ_{r} is a coset. Consider the gadget on page 79 . We replace all the edges with it, and once again we get a dramatic equation. However, that equation simplifies just as dramatically, and we can say that

$$
\begin{equation*}
A_{(0, u)(0, v)}=m^{4 N}\left|\sum_{a \in \Delta_{r}} F_{u-v, a}\right|^{2} \tag{1}
\end{equation*}
$$

In turn, you can understand the summation as an inner product:

$$
\begin{equation*}
A_{(0, u)(0, v)}=m^{4 N}\left|\left\langle\chi, F_{u-v, \star}\right\rangle\right|^{2} \tag{2}
\end{equation*}
$$

The value χ is 1 whenever $x \in \Delta_{r}$.
In considering the diagonals of the matrix, we realize that they are the largest value possible: $m^{4 N}\left|\Delta_{r}\right|^{2}$. Therefore, every element in A is either 0 or the max value, by Bulatov-Grohe.

At this point we move in for the kill. We have a coset $\Phi=a+\left\langle\Delta_{r}-a\right\rangle$, and it is obvious that $\Delta_{r} \subset \Phi$. We prove, ultimately with a Fourier expansion, that Δ_{r} and Φ have the same cardinality, and therefore the same set.

Now we have two major notes:
1.

$$
\begin{equation*}
\left|\left\langle\chi, F_{u, \star}\right\rangle\right|=n \Longrightarrow \exists \alpha \in \mathbb{Z}_{M} \text { s.t. } F_{u, x}=\omega_{N}^{\alpha} \forall x \in \Delta_{r} \tag{3}
\end{equation*}
$$

2. otherwise,

$$
\begin{equation*}
\left\langle\chi, F_{u, \star}\right\rangle=0 \Longrightarrow \exists y, z \in \Delta_{r} \quad F_{u, y} \neq F_{u, z} . \tag{4}
\end{equation*}
$$

This is a trivial observation.
Then we prove the following Lemma, 10.2: If $\exists \alpha F_{u, x}=\omega_{N}^{\alpha} \forall x \in \Delta_{r}$ then $F_{u, x}=\omega_{M}^{\alpha} \forall x \in \Phi$.
And concluded by proving Lemma 10.3: if $\exists u, z \in \Phi$ s.t. $F_{u, y} \neq F_{u, z}$ then $\sum_{x \in \Phi} F_{u, x}=0$.
After all this we conclude our major punchline, that $\Phi=\Delta_{r}$.

