CS 880: Complexity of Counting Problems

April 17, 2012

Lecture 25: More Structure for F

Instructor: Jin-Yi Cai

Scribe: Aaron Gorenstein

This is a quick summary of the lecture.

- Recall that the rows of F are a column.
- We are going to apply Abelian group structure theory to say that F has a nice structure.

We have 3 facts:

- R_1 : representation of $\mathbf{p}, \mathbf{t}, \mathbf{q}$.
- R_2 : $C \in \mathbb{C}^{2m \times 2m}$ is a bipartization of $F \in \mathbb{C}^{2m \times 2m}$ where M, N, C, \mathcal{D} satisfy the \mathcal{U} .
- R_3 : Closed form of $F_{a,b} = \prod_{i,j} \omega_{q_{i,j}}^{a_{ij}b_{ij}}$.

We want to get the whole partition function as ω to a quadratic-form power.

We discussed the issues of a non-bipartite graph, but will not cover that topic.

We define for each $D^{[r]}$ the sets Λ_r and Δ_r . These sets are used to prove theorem 5.5 from the paper, saying that EVAL(C, D) is sharp-P hard unless if the \mathcal{L} properties are satisfied. We proved a very simple lemma, the equivalent of the Chinese Remainder Theorem of cosets.

Our goal then was to show that Δ_r is a coset. Consider the gadget on page 79. We replace all the edges with it, and once again we get a dramatic equation. However, that equation simplifies just as dramatically, and we can say that

$$A_{(0,u)(0,v)} = m^{4N} \left| \sum_{a \in \Delta_r} F_{u-v,a} \right|^2.$$
(1)

In turn, you can understand the summation as an inner product:

$$A_{(0,u)(0,v)} = m^{4N} \left| \langle \chi, F_{u-v,\star} \rangle \right|^2.$$
⁽²⁾

The value χ is 1 whenever $x \in \Delta_r$.

In considering the diagonals of the matrix, we realize that they are the largest value possible: $m^{4N} |\Delta_r|^2$. Therefore, every element in A is either 0 or the max value, by Bulatov-Grohe.

At this point we move in for the kill. We have a coset $\Phi = a + \langle \Delta_r - a \rangle$, and it is obvious that $\Delta_r \subset \Phi$. We prove, ultimately with a Fourier expansion, that Δ_r and Φ have the same cardinality, and therefore the same set.

Now we have two major notes:

1.

$$|\langle \chi, F_{u,\star} \rangle| = n \implies \exists \alpha \in \mathbb{Z}_M \text{ s.t. } F_{u,x} = \omega_N^{\alpha} \forall x \in \Delta_r$$
(3)

2. otherwise,

$$\langle \chi, F_{u,\star} \rangle = 0 \implies \exists y, z \in \Delta_r \quad F_{u,y} \neq F_{u,z}.$$
 (4)

This is a trivial observation.

Then we prove the following Lemma, 10.2: If $\exists \alpha F_{u,x} = \omega_N^{\alpha} \forall x \in \Delta_r$ then $F_{u,x} = \omega_M^{\alpha} \forall x \in \Phi$. And concluded by proving Lemma 10.3: if $\exists u, z \in \Phi s.t.F_{u,y} \neq F_{u,z}$ then $\sum_{x \in \Phi} F_{u,x} = 0$. After all this we conclude our major punchline, that $\Phi = \Delta_r$.