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Abstract

The Counting Constraint Satisfaction Problef#{{SP (7)) over a finite relational structuf can be
expressed as follows: given a relational struct@rever the same vocabulary, determine the number of
homomorphisms frong to . In this paper we characterize relational structdtef®r which #CSP(H)
can be solved in polynomial time and prove that for all othierctures the problem is #P-complete.

1 Introduction

In the Counting Constraint Satisfaction ProblefaCSP(H), over a finite relational structureX the ob-
jective is, given a finite relational structufg to compute the number of homomorphisms frgnio H.
Various particular cases of the #CSP arise and have beensesdly studied in a wide range of areas from
logic, graph theory, and artificial intelligence [3, 18, 34, 38, 47, 51, 53, 54, 57, 58], to statistical physics
[2, 16, 45]. However, in different areas this problem oftg@pears in different equivalent forms: (1) the
problem of finding the number of models of a conjunctive fola2) the problem of computing the size
(number of tuples) of the evaluatidp(D) of a conjunctive query (without projectior) on a databas®
and also (3) the problem of counting the number of assignsnena set of variables subject to specified
constraints.

Since the seminal papers [55, 30], the complexity of thegi@cicounterpart of #CSP, the Constraint
Satisfaction Problem or CSP for short, has been an objeattensive study. The ultimate goal of that
research direction is to classify finite relational struesiwith respect to the complexity of the corresponding
CSP. We shall refer to this research problem ascthssification problemA number of significant results
have been obtain, see e.g. [55, 30, 6, 8], but a full classitas far from being completed.

Although the classification problem for the general #CSP lien tackled for the first time very re-
cently, a massive work has been done in the study of the caiplaf various particular counting CSPs.
These particular problems include classical combindtgniablems such as #GQUE, GRAPH RELIA-
BILITY, ANTICHAIN, PERMANENT etc. [47, 53, 57, 58] expressible in the form of #CSP; the tiagn
SATISFIABILITY and GENERALIZED SATISFIABILITY problems (in these problems the objective is to find
the number of satisfying assignments to a propositionahtda) [18, 54] which correspond t#CSP(H)
for 2-element structure®{, counting the number of solution of equations over finite igeoups [50, 44]
and many others.

However, the real focus of research in this area has béerCHLORING problem and its variants. In
the #H-COLORING problem the aim is to find the number of homomorphisms fromvergigraphG to
the fixed graphH. Thus, it is equivalent t¢tCSP(H) where’H is a graph. Dyer and Greenhill [27] have
proved that, for every undirected graph its associated #-COLORING problem is either in FP (we shall
call such problemgractablg or #P-complete and they have also provided a complete ciesization of the



tractable problems. This result has been extended to thatioguLiST #H-COLORING problem [24, 22],
which allows additional restrictions on possible images obde. Recently, Dyer, Goldberg, and Paterson
[28, 29] obtained a similar classification for directed diygraphs. Furthermore, some other variants of
the #H-COLORING problem for undirected graphs have been intensively studiging the last few years
[20, 21]. Another direction in this area is the study of pek with restricted input, that is subproblems
of the #H-COLORING problem in which the input grapty must be planar [38, 56], a partiattree [23],
sparse or of low degree [34, 35], etc. Finally, we should mo@nthe approach to counting problems using
approximation and randomized algorithms, see e.g. [43225,

In [4, 14] we started a systematic study of the classificafiozblem for the general #CSP. The main
approach chosen was thlgebraic approachwhich has proved to be quite useful in the study of the degisio
CSP [40, 41, 6, 8]. This approach uses invariance propestipgedicates definable in relational structures.
Invariance properties are usually expressepagmorphism®f the predicates, that is (multi-ary) operations
on the universe of the relational structure compatible withpredicates.

In [4], we proved that i##CSP(H) is tractable, theri{ has aMal'tsev polymorphism, that is a ternary
operationm(x, y, z) satisfying the identitiesn(z,y,y) = m(y,y,z) = =. Another observation was that
thecongruences.e. the definable equivalence relationsFoplay a very important role. In particular, these
results have allowed us to come up with a nearly trivial prof/the result of [27]. In [5], another necessary
condition for the tractability of#CSP(H) has been identified. It imposes certain restrictions ongsite
congruences oft, in terms of sizes of their equivalence classes.

In this paper, after giving general definitions (Section) 2dd introducing the basics of the algebraic
approach (Sections 2.2 and 2.3), we go deeper into thesteuot congruences of a relational structure (Sec-
tion 3.1) and then identify several further necessary dal for tractability (Section 3.2), again expressed
in terms of properties of congruences. Then, in Section 4preee that, for every relational structufg
satisfying all the conditions obtained, the problef’SP(H) can be solved in polynomial time. Thus, we
completely solve the classification problem for the geneoainting CSP.

We intensively use methods and results from a number of afem®dern algebra: lattice theory, tame
congruence theory, commutator theory and ring theory. Tekentlae paper available for a wider audience we
are avoiding the excessive use of algebraic terminologgplte of that, some parts of the paper, Section 4
and especially proofs, are demanding: they require fronrélaeer some familiarity with basic algebraic
objects and ideas. The keen reader is referred to textbddks3[L, 33, 37]. The reader should be aware
that to avoid yet another layer of objects we use algebraiit®logy for relational structures, while in the
algebraic literature the same concepts are used for “dumé€obs, universal algebras.

2 Preliminaries

2.1 Relational structures and homomorphisms

Our notation concerning tuples and relational structusdairly standard. Lefn| denote the sefl, ..., n}.
The set of alln-tuples of elements from a séf is denoted byH™. We denotes tuples of elements in
boldface, e.ga, and their components by1],a[2],.... For a subsef = {iy,...,it} C [n] and ann-
tuple a, by pr;a we denote thgrojection ofa onto I, the k-tuple (a[i], . .., a[ix]). For ann-ary relation

R C H™, its projection onto!/ is defined to ber;R = {pr;a | a € R}. If D; = pr;R fori € [n]
we say thatR is subdirect producof Dy,...,D,. If Dy = ... = D, = H thenR is said to be am-

th subderect poweof H. Fora = (a[l],...,a[n]) andb = (b[1],...,b[m]), (a,b) denotes the tuple
(a[l],...,a[n],b[1],...,b[m], while (a, b) denotes the pair of tuples.



A vocabularyis a finite set of relational symbolg,, . . . , R,, each of which has a fixed arity. ®elational
structureover the vocabulang, . .., R, is atupleH = (H; R}, ..., RI!) such that4 is a non-empty set,
called theuniverseof H, and eachZ.f is a relation onH having the same arity as the symi®l. LetG, H
be relational structures over the same vocabulyy. . . , R,,. A homomorphisnrom G to H is a mapping
p: G — H from the universe of (theinstancé to the universed of H (thetemplat@ such that, for every
relation RY of G and every tupléay, ..., a,,) € RY, we have(p(ay),. .., o(am)) € R,

A relation R is said to beprimitive positive definablép-) in H, if it can be expressed using the predi-
catesR!* of H together with the binary equality predicate Bh(denotedA ;), conjunction, and existential
quantification. We useef () to denote the set of all pp-definable relations.

2.2 Constraint Satisfaction Problem

The counting constraint satisfaction problem can be foateal in several ways (see Section 1). We use the
model theoretic form of this problem.

Definition 1 Let$) be a class of relational structures. In tlweunting constraint satisfaction problem as-
sociated with$) (#CSP($))), the objective is, given a structufé € § and a structureg, to compute the
number of homomorphisms fragto 7. We will refer to this problem as aniform #CSP.

If $ consists of a single structur¥, then we write#CSP(H) instead ofCSP({#}) and refer to such
a problem as anon-uniform homomorphism problerbecause the inputs are just source structures.

Example 1 (#H-COLORING, [27, 36, 46]) A graphH is a structure with a vocabulary consisting of one
binary symbolR. Then#CSP(H) is widely known as thet H-COLORING Problem, in which the objective
is to compute the number of homomorphisms from a given grafaiH.

Example 2 #3-SAT, [18, 19, 57, 58])An instance of the #3-SAT problem is specified by giving a prop
sitional logic formula in CNF each clause of which containkté¥als, and asking how many assignments
satisfy it. Therefore, #3-SAT is equivalent $#6CSP(Ss), whereSs is the 2-element relational structure
with the universe{0,1} and the vocabulany;, ..., Rs, the predicated%‘f3, ey R§3 are the 8 predicates
expressible by 3-clauses.

Example 3 Let F' be a finite field and #INEAR EQUATIONS is the problem of finding the number of solu-
tions to a system of linear equations ovérlt is not hard to see that #NEAR EQUATIONS is equivalent to
#CSP(£), wherel is the class of relational structures with the univeFsand the relations corresponding
to hyperplanes of finite-dimensional vector spaces @ver

Example 4 (Equations over semigroups, [50, 44])et S be a finite semigroup, that is, a set with a binary
associative operation. An equation oveis an expression of the formy - 2o - ... X = y1 Y2« -+ - - Ym
where- is the semigroup operation, angl, y; are either indeterminants or constants. THEAQNT stands
for the problem of counting the number of solutions to a gysté semigroup equations.

The problem#EQNTY is equivalent to the probleCSP(S) where& is the class of structures with
universeS and relations expressible as the set of solutions of a sempgequation.

In the last two examples, as well as for many other uniformblenms, there is a minor ambiguity
concerning a representation of the input. We always asshatart uniform problems the relations of the
template are represented explicitly, by a list of tupleshim telation. In Examples 3,4 such a representation
is not the most natural one. However, the class of relati@miting a succinct representation is rather
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limited (see, e.g. [39]), and thus such representationsiaseitable for the study of the general problem.
Morever, changing representation does not affect the cexitplof non-uniform problems.

Every counting CSP belongs to the class #P. However, thet exaaplexity of #CSP(H) strongly
depends on the structufé. We say that a relational structute is #-tractableif #CSP(H) is solvable in
polynomial time;H is #P-completef #CSP(H) is #P-complete. Note that all reductions used in this paper
are Turing reductions. The research problem we deal withi;gaper is the following one.

Problem 1 (classification problem) Characterize #-tractable and #P-complete relational stuues.

Example 5 (1) Dyer and Greenhill [27] proved that i is an undirected graph thepH-COLORING can
be solved in polynomial time if and only if every connectedangmnent ofH is either a complete bipartite
graph, or a complete graph with all loops present, or a singiex. Otherwise the problem is #P-complete.

(2) A 2-element relational structuf is #-tractable if and only if every predicate Bf can be represented
by a system of linear equations over the 2-element field [28, Qtherwise H is #P-complete.

(3) #CSP(L) is solvable in polynomial time.

(4) The problem#EQNT is solvable in polynomial time if and only # is a direct product of a uniformly
inflated Abelian group, and inflated left-zero semigroupd an inflated right-zero semigroup. Otherwise
#EQN5 is #P-complete. For details see [44].

2.3 Polymorphisms, Algebras and Complexity

We have shown in [4] that polymorphisms of relational stnues are a very powerful tool to study the com-
plexity of counting problems. Any operation on a ¢étcan be extended in a standard way to an operation
on tuples ovelH, as follows. For anysf-ary) operationf, and any collection of tuples,, ..., a,, € H",
definef(ai,...,a,) tobe(f(ai[l],...,an[l]),..., f(ai[n],...,an[n])). Thenf preservesnn-ary re-
lation R (or R is invariant under f, or f is a polymorphism ofR) if for any a;,...,a,, € R the tuple
f(a1,...,a,) belongs toR. For a given set of operation§;, the set of all relations invariant under every
operation fromC' is denoted bynv(C). For a relational structuré/ we usePol() to denote the set of all
operations preserving every relationdt

Example 6 Let R be the solution space of a system of linear equations ovetdafie Then the operation
m(x,y,z) = x —y + z is a polymorphism ofR. Indeed, letA - x = b be the system defining, and
X,y,z € R. Then

A-m(xy,z)=A- (x—y+z)=A-x—A-y+A-z=hb.

In fact, the converse can also be shownRifs invariant underm then it is the solution space of a certain
system of linear equations.

The following propositions links together polymorphismlgp-definability of relations.

Proposition 1 ([32, 1, 42]) Let’H be a finite structure, and l€k C H" be a non-empty relation. Theris
preserved by all polymorphisms &fif and only if R is pp-definable irA.

The connection between polymorphisms and the complexigoahting CSPs is provided by the fol-
lowing result.

Proposition 2 ([4]) LetH; andH be relational structures with the same universeRdf(H;) C Pol(Hs)
then#CSP(H>) is polynomial time reducible t¢¢CSP(H;).
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Theorem 2 amounts to say that all the information about thepbexity of #CSP(H) can be extracted from
the family of polymorphisms of{. Sets of polymorphisms often provide a more convenient amtise
way of describing a class of constraint satisfaction pnoisleFor example, in [4], we used polymorphisms
to identify some conditions necessary for the #-tractgbidif a relational structure. A ternary operation
m(x,y, z) on a setd is said to beMal'tsevif m(z,y,y) = m(y,y,z) =z forall z,y € H.

Proposition 3 ([4]) If H is a relational structure which is invariant under no Makts operation thert{ is
#P-complete.

Notice that ifH has a Mal'tsev polymorphism then the decision CSP corradipgno can be solved in
polynomial time [7, 13].

Example 7 A Mal'tsev operationn(z, y, z) is a polymorphism of the grapH; shown in Fig. 1, wheren
is defined as
m(i1j1, 422, 9373) = 1],
i =11 [j = j1] unlessiy = is [j1 = jo], in this case = i3 [j = js3].
The graphH, has no Mal'tsev polymorphisms. Indeed, if soifie:, y, z) is a Mal'tsev operation, then

() (3)-() - (8) e

01 a b
00
d
11
10 H,
Hl
Figure 1:

In our algebraic definitions we follow [17, 49]. For algelwraiotions and results concerning the decision
CSP the reader is referred to [9, 11].

A (universa) algebrais an ordered paif = (A, F') where A is a non-empty set and is a family of
finitary operations oM. The setA is called theuniverseof A, the operations fron¥” are calledbasic An
algebra with a finite universe is referred to afsgte algebra

Any relational structuré with universeHcan be converted into an algebddg(H) = (H; Pol(H)).
Conversely, every algebra = (A; F') corresponds to a class of structugs(A) with universeA and
relations frominv(F"). Using this correspondence we can define #-tractable algbém algebra\ is said
to be #-tractable if every structufé € Str(A) is #-tractable; itis said to be #P-complete if sohe= Str(A)
is #P-complete.

We shall express the complexity ¢fCSP(H) in terms of Alg(H). For example, if an algebra has a
Mal'tsev operation, it is called Mal'tsev algebra Proposition 3 implies that ##CSP(H) is solvable in
polynomial time therAlg(H) is Mal'tsev.



2.4 Subalgebras and congruences

We shall use various constructions on algebras, but twoesititonstructions, subalgebras and congruences,
can be defined for relational structures, and are very usefdlillustrative in this context.

A subalgebreof a structureH = (H; R}, .. ., RQ‘) is a unary relation definable iH, and acongruence
of H an equivalence relation definable’th For a subseBB C H, the substructure df{ inducedby B
is defined to bé—(‘B = (B; R?‘B, . ,RQ“B), whereRi‘B = R; N B™, R; is m;-ary. For an equivalence
relationa anda € H, the class ofx containinga is denoted by:/ , and the set of all classes of by
H/,. Thequotient structure}{/, is defined to bet/,, = (H/,;R/,.--..R}'/,), whereR;/ =
{(ar/ gy vami/ ) | (a1, am;) € R}

Example 8 Let H be a digraph without sources and sinks, i.e. the in-degrdeoatidegree of each vertex
is non-zero. We define two binary relations on the vertexieif H: (a,b) € 0 if and only if a,b have
a common out-neighbour arid, b) € 7 if and only if a,b have a common in-neighbour; in other words,
0 ={(a,b) | (a,c),(b,c) foracertainc € H}, n = {(a,b) | (c,a),(c,b) for a certainc € H}. In general,
0,n are reflexive and symmetric relation. HoweverHfhas a Mal'tsev polymorphism, they are also
transitive. Indeed, suppose that 3) € 0, d € H is their common out-neighbour ards an out-neighbour
of a. If ¢ is not an out-neighbour df, then’H containsH» (see Fig. 1) as an induced subgraph, which
contradicts the assumption thgthas a Mal'tsev polymorphism. Therefore, the out-neighhoads ofa, b
are equal whenevér, b) € 6, that implies transitivity. Thugj,  are congruences 6{.

For the graphd; shown in Fig. 2, thé-classes ar¢a, b, c}, {d, e} and they-classes ar¢a, b, e}, {c, d}.

Figure 2:

Proposition 4 ([4]) Let’H be a relational structureB and « its subalgebra and congruence respectively.
(1) If H is #-tractable then so aré(‘B andH/,,.

@) If H‘B or M/, is #P-complete thef is #P-complete.

Let R € def(H) be ann-ary relation. It can be viewed as a subalgebraibf direct power ofH. A
congruence omit is a2n-ary relation@ € def(H) such thapry; 1@ = pry, 41,2,y Q = R, and, ifQ is
treated as a binary relation d# it is an equivalence relation.



The existence of a Mal'tsev polymorphism provides a neggssandition for the #-tractability of a
relational structure. However, it is not a sufficient coiaiit as Example 9 shows. In the next section we
prove two more necessary conditions, and a particular daseeoof them is that proved [5].

Let a, 6 be congruences of &, wherea, § are incomparable, that is, neither C 3, nor g C «.

Let Ay,...,A; and By, ..., By be - and 3-classes respectively (see Fig.3). Thef{«, 5) denotes the
k x ¢-matrix (m;;), wherem;; = |A; N Bj|.

B —classes

. ".[+— a -classes

Figure 3:

Proposition 5 ([5]) Let’H be a relational structure, and let, 5 be congruences 6. If rank(M («, 3)) >
k, wherek is the number of classes in the smallest congruence contabotha and 3, then#CSP(H) is
#P-complete.

Example 9 Let H be the graphf/; shown in Fig. 2o« = 0, ands = ng,. We haved; = {a,b,c}, A =
{e,d}, By ={a,b,e}, B, = {¢,d} and

M(a,ﬁ):<i 1)

By Proposition 5, the probles#CSP(Hs3) is #P-complete.

2.5 Varieties and Complexity

It will be convenient for us to jump back forth between motteeoretic and algebraic views to the CSP.
The language of relational structures is more conveniergnadescribing algorithms. On the other hand,
standard algebraic constructions allow us to strengtheassary conditions for #-tractability, and eventually
formulate a criterion for #-tractability.

Definition 2 (1) LetA = (A; F) be an algebra. Thé-th direct powerof A is the algebraA® = (A*; F)
where we treat eactn-ary) operationf € F as acting on4* component-wise.
(2) Let A = (A; F) be an algebra, and leB be a subset ofi such that, for anyn-ary) f € F, and for
anybq,...,b, € B, we havef(by,...,b,) € B. Then the algebr® = (B;F‘B), WhereF‘B consists of
restrictions of operationg € F'to B, is called asubalgebraf A.
Note that a sefB is a subalgebra of a structurg( if and only if B is the universe of a subalgebra of

Alg(H).
(3) Let A = (Al;Fl) and Ay = (AQ;FQ) such thatl}, = {fll | 1 € I}, Fy = {fZQ | 1 € I}, and

L f? are of the same arity;, € I. A mappingp : A; — As is called ahomomorphisnfrom A; to A, if
oft(ar,... an,) = f2(¢(ar),...,¢(ay,)) holds for alli € I and allay, ..., a,, € A;. If the mappingy
is onto thenA, is said to be &nhomomorphic imagef A;.
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A common way of constructing homomorphic images is througiiigcuences and quotient algebras. A
congruenceof an algebraA = (A; F') is an equivalence relation a# invariant under all operations from
F. Letd be a congruence of. The algebrad /g = (A/p; F/g), whereF/y = {f/g | f € F} and
[/ g is defined through the equality)/g(a1/p, - .-, an/g) = (f(a1,...,a,))/g is called aguotient algebra
Observe that an equivalence relation is a congruence otiatste’ if and only if it is a congruence of
Alg(H).

A property of algebras such that if an algebra enjoys theguntgghen any its subalgebra, homomorphic
image, and direct power also enjoys it, is said tdeesditary Universal algebra mostly deals with hered-
itary properties [37, 49]. Therefore, the next theoremvadlas to apply the methods of modern algebra to
the study of the complexity of the counting CSP.

Theorem 1 ([4, 14]) LetA = (A; F') be a finite algebra. Then

(i) if A is #-tractable then so is every subalgebra, homomorphiganand direct power of.

(i) if A has an #P-complete subalgebra, homomorphic image, ortdirewer, thenA is #P-complete
itself.

For an algebra\ the class of algebras that are homomorphic images of sutralgef direct powers of
A is called thevariety generated bw.

An operationf on the universe of an algebfa= (A; F') that preserves all relations invariant under
is called aterm operation ofA. Every term operation of can be obtained from operations Bfby means
of superposition.

An operationf on a setA is said to beidempotentf the equality f(z,...,2) = x holds for all z
from A. Algebras whose basic operations are idempotent posesg usaful properties that will assist in
our investigation. Théull idempotent reducof an algebrad = (A; F) is the algebrdd(A) = (4; Fiq)
where Fjq consists of all idempotent term operationsfof There is another way to characterizg;. If
A = Alg(H) for a certain relational structur®, thenld(A) = Alg(Hq), whereH;q is an expansion of{
by unary relationg”;,, h € H, andC}, is interpreted an aonstant relation{(h)}, containing only one tuple,
namely(h).

Theorem 2 ([4, 14]) A finite algebraA is #-tractable[#P-completgif and only if so isld(A).

If A is an idempotent algebra and the condition of Propositios tiue for every pair of congruences of
A thenA is said to becongruence singularlf every finite algebra in a variety is congruence singukeam
the variety is called congruence singular. We call a reteticstructure{ congruence singular i\lg(H)
generates a congruence singular variety. By PropositiondbTdheorems 1, 2, every structufe that is
not #P-complete is congruence singular. The main resuli@paper is that this condition is sufficient for
#-tractability.

Theorem 3 A relational structureH [an algebraA], is #-tractable if and only ;4 is congruence singular
[A generates a congruence singular variety

Observe that the condition of having a Mal'tsev polymorphigerm operation) is not included into the
criterion. As we shall see later (Lemma 1) every congruemicguiar structure has a Mal'tsev polymor-
phism.



3 Congruence lattices and the structure of relations

3.1 Congruence lattices and types of prime quotients

In this section we look closer at the family of congruencea télational structuré{. We shall assume that
'H has a Mal'tsev polymorphismu(z, y, z). All definitions and results given here were originally oduced
for algebras [15, 49]. As our algorithms are described imteof relational structures, we reformulate them
in terms of structures, replacing congruences of algebtia @dngruences of structures, and term operations
of an algebra with polymorphisms of a structure. Howeveg, ribtions we arrive to for a structufé are
exactly the same as those defined for the algélg&r).
The set of all congruences #f is denoted byCon(H). Letw, 3 € Con(H). The intersection of and 5
is again a congruence &f is denoted A 8. As is well known, the smallest equivalence relation cantey
both« andg is the transitive closure @f U 5. It can be shown that this equivalence relation is a congreien
of H, denoted byy vV 3. The setCon(H) together with the operations (meej andV (join) is called the
congruence latticef H. The setCon(H) is naturally ordered with respect to inclusion. The leasthednt
of Con(H) is the equality relation, denoted kY, and the greatest element is the full relation, denoted by
V-
If R is a relation pp-definable 1, then Con(R) denotes the set of all congruences Bn This set
depends ori as well as orR, but usuallyH is clear from the context. The s€bn(R) is also a lattice.
Since’H has a Mal'tsev polymorphism, the 8bn(7) cannot be just an arbitrary collection of equiva-
lence relation. In particular, every two memberss of Con(H) must bepermutablethat isco 5 = o a.
This means that, for any-classA and anyg-classB belonging the same V -class,A N B is non-empty
(see Fig.4).

B-classes o —classes
\

T

oAB-classes avg-classes

Figure 4.

Lemma 1 If a relational structureH is congruence singuldian algebraA generates a congruence singular
variety], then it has a Mal'tsev polymorphisfa Mal’tsev term operation

Proof: By a well known result of Mal'tsev [15], an algebfahas a Mal'tsev term operation if and only
if any two congruences of any algebra in the variety gendrayeA are permutable. Therefore it suffices to
prove that if the variety generated Byg( ) for a structureH is congruence singular then it is congruence
permutable.

As is easily seen, congruences( are permutable if and only ko § = foa = a V 5. Suppose
H is congruence singulaB € var(Alg(H), anda, 5 € Con(B). If a« C g or 5 C « then they are obvi-
ously permutable. If the congruences are incomparable theét( ) («, 3)) = k wherek is the number
of a v (-classes. This equality implies, in particular, that foy anb from the samex v §-class, saya
belongs tax-classA; andg-classB;, andb belongs tax-classA, and§-classBsy, we haveAd; N By # &
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andA; N By # @ (the corresponding entries @ff («, 5) must be nonzero). Thefu,b) € a o 3, as any
¢ € A1 N By witnesses, antu, b) € fo «, as anyl € A, N By witnesses. Thugo = foa=aV (.0

A pair of congruencesa, (3) is said to be g@rime quotienif o < 3 and, for anyy such thaix < v < g,
eithery = a orvy = (3.

We shall use some notions and results of tame congruenceytf@4. Tame congruence theory is
a tool to study a local structure of universal algebras afatiomal structures through certain properties
of prime quotients of the congruence lattice. In generas theory identifies five possible types of such
quotients defined in a rather sophisticated way. Fortupatelour case of relational structures with a
Mal'tsev polymorphism, only two of those types can occud #re definition of these possible types can be
significantly simplified.

If every polymorphism of a relational structutéis idempotent, then, for any congruene®f H, every
a-classA is a subalgebra. Indeed, for atfyzy,...,z,) € Pol(H) and anya,,...,a, € A, we have
(a1,a1), (a2,a1),...,(an,a1) € «, f(ai,...,a1) = a; and therefore

) (@) e () = ()

Hence,f(a1,...,a,) € A.

A prime quotientn < § is said to be o&ffinetype, if, for anyj-classB, there is a moduld/p with the
base sef3/ , over a ringRp such that for anyf (z1, ..., %n, y1,...,ym) € Pol(H) anday, ..., a, € H,
if the operationg(x1,...,z,) = f(x1,...,2n,0a1,...,a,) preservess, then it can be represented as an
operation of the modul@/:

(g‘B(xl, . ,a:n))/a =c1x1+...chTy + a.

In all other casesy < (3 hasBooleantype.

Example 10 Let L5 be a 2-element relational structure whose relational sysdue interpreted as solution
spaces to systems of linear equations. THegrhas only two congruences\,, the equality relation, and
V3, the total binary relation. As Example 6 shows, the primetigmb Ay, < V5 is of affine type. Thus,

affine type corresponds to some kind of “linearity” in a brease.

Prime intervalsy; < 1 andas < (5 are said to berojectiveif 81 Vas = §a, 1 Aas = a3 Ora Vs = [y,
a1 A By = aq. Thus projectivity is a binary relation on the set of primeeivals ofCon(H). Two intervals
that belong to the transitive closure of this relation aid $abeperspectiveo each other.

Lemma 2 ([37], Lemma 6.2) If a; < 1 andas < (2 are perspective intervals iion(H), then they have
the same type.

3.2 Congruence lattices of Mal'tsev Algebras

We will sometimes distinguish two cases: when the congreidatttice of our relational structure omits affine
type, and when affine type occurs in this lattice.

10



3.2.1 Algebras omitting affine type.

If H omits affine type then, by Theorem 9.15 of [3Wen(H) is distributive that is, for anya, 5,~v €
Con(H), the equalitya A (B V v) = (a A B) V (a A y) holds. Finite distributive lattices are exhaustively
studied (see, e.g. [33]). In particular, there is a finitg 8¢t and a injective mapping: Con(H) — 2™

(the set of all subsets) such thata vV 3) = 7(a) U n(8) andn(a A B) = w(a) N 7w(B). We use the
following representation of a sét/. Take a maximal chaid’ in Con(H), that is, a chain of congruences
A =10y <6 <...<6,=V. The setM is defined to be the set of the prime quotients of the chain.
Slightly abusing notion the quotient;_1, §; will be denoted byi. A congruence € Con(H) corresponds

to the sets of quotients frod/ that are projective to quotients of the form< 5 < 6. The bottom end of a
prime quotienty € {1, ..., ¢} will be denoted byx~, and the top one by ™.

Example 11 The lattice shown in Fig. 5(a) is distributive and its repmsition as a lattice of subsets is also
shown.

{1,2,3,4}

{1,2,4}

{1,3}

(b)

% ()
Figure 5:

The following proposition comprises properties@fn () that follow easily from the representation of
this lattice as a lattice of subsets.

Proposition 6 (1) Every prime interval irCon(H) is perspective to one and only one of the interval€'of
(2) For anya € M, thatis, any prime interval i, there is the greatest prime interva), < A, perspective
to «; that is, for anys < ~ perspective tex we haves < k, andy < A,.

(3) For anya € M, the congruence,, is meet-irreduciblethat is, ifk, = 8 Ay thank, = g or k, = v
(see Fig.5(b).

3.2.2 Algebras admitting affine type.

Let us again consider the congruence lattiea(7{). A congruences is said to besolvableover « if there

area = oy < ... < aj = 3 such that all the prime quotients < a;,1 have affine type. TheA denotes
a binary relation or€Con () defined as followsu X pifand only if oV 3 is solvable overr A 3. If a < 3

then the set of ally such thate < v < 3 is said to be annterval in Con(#), denotedc, 3]. The next
proposition lists some properties &fthat follows from well known facts about modular latticesalsev
operations and Lemma 7.4, Theorem 7.7 from [37].

11



Proposition 7 (1) X is an equivalence relation and, moreovercangruenceof Con(); that is, for any
aq, 9, 31,02 € CO!’I(H) such thai; N a9, B N B2, We haVE(Oq\/ﬁl) N (Oég\/ﬁg), (011/\ﬁ1) N (Oég/\ﬁg).
(2) Every classS of X has the greatests and the leasty elements (with respect tg), and equals the
interval [0s, ns]. Every prime quotient insidé has affine type.

(3) The quotient latticeC = Con(H)/ s, is distributive (see Fig.6).

Con() Con@ )

Figure 6: Congruence lattice and its quotient lattice modul Prime quotients of affine type are shown by
thick lines; the least elements in the classed a@fre encircled

Proposition 7(3) implies thaf can be represented as a lattice of subsets of a finitd/seSimilar to
Subsection 3.2.1)/ can be chosen to be the set of prime intervals of a maximahehian £. Note that the
endpoints ofx € M are setsSy, S, of congruences fronton(H) (S correspods to the bottom end @f.
By a~ we denote the greatest elementsf and bya™ the least element of; such thath™ < ™. Let
8 < ~ be the greatest interval i perspective tax. Again, 3 and~ are setsl7, 7> of congruences from
Con(H) (1 corresponds t@). By k. we denote the greatest elementlof and )\, the least element i’
such thate, < A, (see Fig.7).

Figure 7. Congruence lattice and congruencgs)... Solid lines represent prime intervals of Boolean type,
ovals represeni-classes

Proposition 8 (1) The intervalla—, o] is perspective tdkq, Ao
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(2) The interval§a—, a™] and [kq, Ao | are prime.
(3) The interval§a ™, o] and k4, A« | have Boolean type.
(4) The congruence,, is meet-irreducible.

3.3 Structure of relations invariant under a Maltsev operaton
3.3.1 Basic properties

The following proposition contains some basic propertiellal’tsev algebras and relations invariant under
a Mal'tsev operation, that will be constantly used. Soméefresults we cite below are traditionally stated
in terms of algebras: a relation pp-definable in a structtns treated as a subalgebra of a direct power of
Alg(H). In order to keep the presentation uniform we formulate thenerms of relations and relational
structures.

Proposition 9 Let’H be a structure with a Mal'tsev polymorphism afdan n-ary relation pp-definable in
H. Then for anyl C [n] the following properties hold

1. Risrectangularthatis ifa, b € pr; R, c,d € pr,_ ;R and(a,c), (a,d), (b,c) € R, then(b,d) € R.
2. The relationd; = {(a,b) € (pr;R)? | there isc € pr},_; R such that(a, c), (b, c) € R} is a congru-
ence ofpr; R.

3. Ris a disjoint union of sets of the fori x C' whereB is afd;-class andC'is a |, _;-class.

Binary relations invariant with respect to a Mal'tsev ofna have particularly simple form. Ld$,, B5
be subalgebras ¢ft anda; € Con(B;), as € Con(Bs). Let alsop be a mapping frorrBl/O[l to B2/a2.
Thethick mappingcorresponding te is the binary relation? = {(a,b) € By x By | cp(a/al) = b/a2}.
Any congruence is the thick mapping corresponding to the identity mapping® ,.

Corollary 1 Every binary relation compatible with is a thick mapping.

We shall intensively use thick mappings throughout the papet R € def(H) be akth subdirect
power of . Fori,j € [k] by v; ; we denote the thick mapping equaliig, ; R. If it is a thick mapping
corresponding te: H/,, — H/, for somea € Con(H), we say that); ; is athick mapping of leved.
Let 8 € Con(H). By 3* we denote an equivalence relation on the[setlefined as followsyi, j) € g*
if and only if pr; ;R is a thick mapping frorTH/71 to H/72 for some~y;, 2 < 3. The following lemma
follows from the definitions.

Lemma3 If R € def(H) is a subdirect power off then, for anya € Con(H), any a*-class A, any
9,9 € A, and any sequenagg= g, ..., g, = ¢’ such that),, 4, , is a thick mapping oH/ﬁ, to H/V‘ for

someg;,v; < «, i € [n — 1], we have

Vg1,92 0 - © Vg, 1,90 € Vg g

Lemma 3 implies that, for any congruenaeand anya*-classA, we can select a representatiyg and a
family of mappingsy,: H/, — H/,, whereg € A, such that for any homomorphisth: G — H,, we

havey(g)/,, = ¢q(¥(ga)).

13



3.3.2 Boolean type and rectangularity properties

Let A be a finite algebra. The algeb#ais calledsubdirectly irreducibleif there is a congruenceg, the
monolithof A, such thatA < y and, for any congruence # A, we haveu < . We call a relational
structure’ subdirectly irreducible ifAlg(H) is subdirectly irreducible. The monolith of a subdirectly
irreducible structure is defined as the monolithAdg ().

Let R € def(H), where’H is a subdirectly irreducible structure with a Mal'tsev pmigrphism, be an
k-ary subdirect power of{. The equivalence relation* is defined in the same way as before. In [12], we
definedcoherent setsf the subdirect poweR satisfying these conditions, as classes of a certain ipartit
of the set/k]!. We do not need here a precise definition of coherent setaubedf the interval\ < . has
Boolean type then it follows from Lemma 2.7 of [12] that thdnecent sets are equal to the classeg™of

Lemma 4 (Lemma 2.6, [12]) Let R be a subdirect power off and the structureH is subdirectly irre-
ducible. Let alsqu be its monolith andBy, ..., B, p-classes such thaR N (By x ... x B) # J. Let
I,..., I, be the coherent sets and
By, = prj, R0 11 B:-
iel;
ThenRN (By x ... x By) = B, x...x By,.

For a congruence: € Con(H), let o denote the congruence & consisting of pair§a, b) of tuples
such that(a[i], b[i]) € o for all i € [k] (it is an easy exercise to check thet is indeed a congruence).

Proposition 10 LetH be a structure with a Mal'tsev polymorphism, et be a maximal chain i€on(H),
let R be akth subdirect power o anda € M. Let alsoBy,..., B, be classes ok, and I, ..., I, the
classes ofiy,, I; = {ij1, ... ik, }. TheneithetR N (B x ... By) = &, or

R/, 0 (Bl/fia X ... X Bk/ﬂa) = Bp, /[l x ... x By, / Il
whereR/, k = {(a[l]/ﬁa,...,a[k]/ﬂa) |a€ R}and By, = pr; RN Hielj B;, and

BI] = {(a?wiﬂ,i]& ((I), cee 7¢ij1,ijk-(a)) | a € B]/K/a}

Proof: The relationR/ Kk can be treated as a subdirect poweV-Qf,i ;- Then the proposition follows
straightforwardly from Lemmas 2.6 and 2.7 of [12], and alsorf Proposmon 8(3),(4). O

If a structure’H with a Mal'tsev polymorphism omits affine type, then we caragib even stronger
rectangularity-type condition. Recall that in this case¢bngruence lattice 6f is distributive. A Mal'tsev
algebra Alg(H) in our case) generating a variety, in which every algebraéadsstributive congruence
lattice is calledarithmetical Arithmetical algebras are exhaustively studied. We waé uhe following
result [52] describing the structure of relations invatiaith respect to such algebras.

Proposition 11 Let D be a subdirect product ofq,...,A;. ThenD can be uniquely determined by the
thick mappingsy;; for i, j € [k]. More preciselya € D if and only if (a[i], a[j]) € ¢;; forall i, j € [k].

Corollary 2 If H is a structure with a Mal'tsev polymorphism omitting affigpe then#CSP(H) is poly-
nomial time equivalent tg¢tCSP(H’), where’ is a relational structure with the same universeZdsall
relational symbols of which are binary and interpreted askimappings of.

In [12], we used the algebraic terminologi:is a subdirect product of subdirectly irreducible Mal'ts#gebras.
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4 Necessary condition for tractability

In this section we prove two more necessary conditions fwa¢tability. Both of them follow from Propo-
sition 5, but they allow us to design an algorithm for #CSP.

If the algebra corresponding to the structdfedoes not omit the affine type, then we have a stronger
necessary condition for the tractability #fCSP (H).

Proposition 12 If H is congruence singular then for any congruendes. « < 3 € Con(H) such that
a < [ has affine type, any-ary relation R € def(H) and any sequenced,,..., A, and By,..., B,
of a-classes such that;, B; belong to the samg-class ¢ € [n]), if R1 = RN (A1 x ... x 4,) # &,
Ry =RnN (Bl X ... X Bn) #* J, then|R1/5n| = |R2/5n|

We make use of some basics of commutator theory in congruerckilar varieties (see the seminal
book [31]). LetA be a Mal'tsev algebra and, 3,+ € Con(A). The congruence centralizes modulo~,
denoted”(«, 5; ), if, for any (n-ary) term operatiorf, any(u, v) € a and any(ai,b1),. .., {(an—1,bp—1) €

B,

<f(u7a1>' . aan—1)>f(u7 bl?' . 7bn—1)> SHe'
— <f(v7a17"'aan—l)af(’U»bl?"'7bn—1)>6’7-

The smallest congruenegesuch thatC'(«, 3; ) is called thecommutatorof «, 3, denotede, 53].

Proposition 13 ([31]) Let A be a Mal'tsev algebra and, 3, € Con(A). Then
() [a, 8] = [B, of;
(2) if @ < g and this interval has affine type if and only{ff, 5] < «;

() ifa < gand[3, 8] < a, there is a congruence of 3 (which is considered as a subalgebraof) such
that the sef{((a,b), (c,d)) | (a,b), (c,d) € a} is aclass of.

Proof: (of Proposition 12.) By switching to the quatient structatg¢ ; we may assume thdtis the
equality relation. To prove Proposition 12 we consider theversal algebra\ = (H;Pol(H)) and the
subalgebra of A™ with the universeR. Thus we consideR as a subalgebra @f™.

CLAIM 1. For the algebr®, 5", "] < o".

Let f be a g-ary) term operation of\, and let(u,v) € 5" and(a;,b;),...,(ax_1,bg_1) € ™. If
<f(ll, ag,... aak’—l)v f(ll, bla o 7bk’—1)> €a” then(f(u[z], aj [2]> oo >ak’—1[i])> f(ll[’L 7b1[2.]> o 7bk’—1[Z])> S
a for eachi € [n]. SinceC(g, 5; o), this implies(f(v[i],ai[i],...,ax_1[i]), f(V[i],b1[i], ..., br_1][i])) €

a foreachi € [n]. Thus(f(v,ai,...,ax_1), f(v,b1,...,br_1)) € a".

We treat the congrueng@” as a subalgebra @?2; let us denote it byC. Let A, ..., A; be thea”-
classes of and|A;| = ¢;. By Proposition 13 there is a congrueng®f C such that the seb of pairs of
the form(a,b), a,b € B and(a,b) € o™ Lety’ = vV a?". The setD is a class ofy’.

CLAIM 2. Every classs of v/ is the union(A; x A1) U. ..U (A x A,y)) for a certain bijective mapping
¢ : [k] — [k]; and for one of the classesis the identity mapping.
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Sincea?™ C «/,if A; x AjNE # @ then4; x A; C E. Suppose that there afa,b), (c,d) € E
such thata, c) € o, but(b,d) ¢ o". Asa?®” C +/, we may assuma = c. Let us considety’ as a 4-ary
relation onB. Let alsof be a Mal'tsev operation af. Then we have

a a b b a a b b
abb| | a , b aal| | Db ,

f aad| | d €~ and f aad]|] | d €7
a d d a b a a b

which implies thatb,d) € «™, a contradiction.

Let also’ denote the congrueneg® x 3. Itis not hard to see that v 3’ = 5" x " andy' A 3’ =
a x o™,

Clearly, every class af™ x o™ is the direct product of two classés , Ry of a™. Therefore, its size is
|R1| - | R2|. Thus, the first two rows of the matrik/(+/, 5’) look as follows

(3 8 8

bloay lalpey - el )

If #CSP(R) C #CSP(H) is not #P-complete, then these two rows are proportionat,ith
SR U

loy Loy Loy
Forany: € {1,...,k}, letm be such thap™ (i) = i. Since

ti gs@(i) @1_1(1)

oy Loy Lomg

9

14

we havel? = Co@ilo—1(:)- As this holds for every andy(i) = 7 for noi, we conclude that; = ¢; for any
pair i, j from the same orbit op. Finally, for each pait, j € {1,...,k}, there is a row inV/ (', ') of the
form ( G1lyy Lolyey - Lilyu ) suchthaty(i) = j. By what was proved abové; = /;. ]

We will also need another corollary from Proposition 5. L&be ak-dimensional array, that is a collec-
tion of numbersI'[iy, ..., i) indexed by tuplesgii, . ..,ix), wherel < i, < my. The arrayl” has rank 1,
denotedrank(T") = 1, if for each? € [k], and anyiy, ..., ip—1,%041, -« ks J1s- -+ J0—1, o415 - - - 5 Jk With
iu, Ju € [Mmy), We have

T[ilw .. 7i£—17 17i£+17 cee JZk] . o T[ila cee 7i£—17m€7i£+17 cee JZk]

Tty Je—1, 1, Jes1, -5 Jk) Tty Jo—1, M0, Jog1s-- -5 Jk)

It is not hard to see that this condition can equivalently x@ressed as follows: for eache [k] there are
numberstf, ..., ¢!, such that

Tlir,... i) =t} ...t .

Now let R be a relation pp-definable in a structdrewith a Mal'tsev polymorphism, and let, . . . , vk
be congruences oR such that for each € [k]

Y VA AYicI A A AR =Y LV (1)
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LetalsoC be aclass of =1 V...V, and letA? . .. 7Afm be the classes af from C. The condition (1)
means that for anyy, . . . , i, the setAZl1 N...N Af’k is a nonempty class g¢f = v; A ... A v, and any two
classes of this form are different. We considér-dimensional arrap (C'; v1, . . . , v, ), where

M(C;’}/l,...,’yk)[il,...,ik] = ‘Azll ﬂﬂAf’U

Proposition 14 Let~, ...,y be congruences of a structuté that has a Mal’'tsev polymorphism, let them
satisfy the condition (1), and let' be a class ofy; V ...V 4. Then,rank(M(C;aq,...,a;) = 1 or
#CSP(H) is #P-complete.

Proof: We consider the congruencesandg; = yiA.. . Avi—1AYit1/A. . .Avk. To simplify the notation
we assume = k. If #CSP(H) is not #P-complete thernk(M (C; vy, Bx)) = 1. Let A}, ..., A}, be the

classes ofy; from C'. The classes o, have the formﬁl}1 Nn...N Afk‘_ll, the classes ofy A ), are the classes
of y1 A ... A vg. Therefore every row oM (C; yy, 5k ) is equal to

(M(Ca’ylv 77’6)[2.17“‘ aik’—bl]?"' 7M(C;717"' 77’6)[,5.17"' aik’—lvmk’])

for someiy, ..., ix_1. Sincerank(M (C; vk, Bx)) = 1, we get
M(Ciyt, i ik ] MG i ikt
M(C;’ylv s 77’6)[]'17 cee ajk—lv 1] M(C7’717 s a’yk’)[jlv s 7jk—lamk]
The corollary is proved. O

An important example of a collection of congruences satigfythe condition (1) is the following. Let
a € M, and letly,. .., I be the classes of,. A congruencey; is defined as follows{a, b) € ~; if and
only if (a[i], b[i]) € a~ fori € I; and(ali], b[i]) € o™ otherwise.

5 Algorithms: prerequisites

5.1 Decision CSPs over a Mal'tsev algebra.

If a relational structuré{ has a Mal’tsev polymorphism, then the decision CSP with ¢énepiate’H can be
solved in polynomial time [7, 13]. Here we shall use the athon presented in [13]. This algorithm builts
a sort of a succinct (polynomial size) representation fergét of all solutions.

Let n be a positive integer, |el/ be a finite set, lea, b ben-ary tuples and leti, a, b) be any element
in [n] x H%. We say tha{a, b) witnessegi, a, b) if pri;_yja = prj_yb, afi] = a, andbli] = b. We also
say thata andb witness(i, a, b) meaning thata, b) witnessegi, a, b).

Let R be anyn-ary relation onH. The signatureof R, Sigr C [n] x H?, is defined to be the set
containing all thoséi, a, b) € [n] x H? witnessed by tuples iR, that is

Sigp = {(i,a,b) € [n] x H? : 3a,b € R such thata, b) witnesseg, a, b)}.

Note that in our notatiornti, a,b) € Sigp if and only if (a,b) belongs to the relatioi; computed for the
relationpry; R (see Section 3.3.1). In particular, for aiya,b) € Sigp and anya € pr; R with afi] = a
the tupleb such thaprj;_;)b = prj;_;ja andb[i] = 1 also belongs ter; 2.

A subsetR’ of R is called arepresentatiorof R if Sigp, = Sigp. If furthermore,|R'| < 2|Sigp| thenR
is called acompactrepresentation oR. Observe that every relatioR has compact representations.
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Let H be a relational structure arfld C H™ for somen. By (R’);; we denote the relatiogeneratedby
R’, that is, the smallest relatioR definable in{ and such thaR’ C R. SinceH is usually clear from the
context we shall omit this subscript. The key lemma prove[d 8] states that if? is a relation definable in
a relational structure with a Mal'tsev polymorphism, aRdis a representation @&, then(R’) = R. Given
an instance; of the constraint satisfaction proble@SP(H), m = |G|, the set of all solution® (G, H) to
this problem can be thought of as anary definable relation ifi{. The algorithm presented in [13] finds a
compact representation of this set.

We will need to know unary and binary projections of the rielatd(G, H), that is, sets of the form
Vg = {e(9) | v € 2(G,H)} for g € G andyyy, = {(¢(9).p(h)) | ¢ € (G, H)} for g,h € G. Itis
not hard to see (see also [13]) thatfif is a compact representation ®{G, 1), thent,, v, , are equal to
(pr,R') and(pr, , R'). Therefore, we may assume that we have a precomputed tabl@treach subset of
‘H, and for each subset &f x H shows the unary or binary relation generated by this subsetgvery time
we need to find), or v, ;, using a compact representati®, we just find the corresponding projection of
R’ and look up the table.

If there is no complexity restriction imposed, as in the cafgerecomputation, the relation generated by

some set) C H" can be computed by employing a standard methodclet{a,,...,a,,}. First, find all
m-ary polymorphisms of{. This can be done using thedicator problem[42]. Next, include into{@) all
tuples that can be representedf&a, .. ., a,,) for anm-ary polymorphismf.

5.2 Reduction to subdirect powers.

In general, for an instanag of #CSP(H) the sets),, g € G, are subalgebras @i that are not necessarily
equal toH. For us, however, it is much more convenient to deal with #gmeovhenb (G, H) is a subdirect
power of H, that isy, = H for all g € G. We show how to transform the problem so thigtbe 7 for all

g € G. To do this we borrow some methods from the multi-sorted G8&, e.g. [10].

Let Dy,..., D, be the subalgebras @{ (including H itself). We shall assume that along with every
(n-ary) relational symbolR and anyD,,, ..., D, the vocabulary ofH contains a symboR’ such that
R™ = RN (Dy, x ... x D;,). Then we define a relational structug¢*) as follows. The universe of
X(H)is D = Dy x ... x D,; theith component of an elemefte D is denoted byi[i|. For any @-ary)
relation R pp-definable inH we set(ay,...,a,) € x(R) if and only if (a1[i1],...,as[in]) € R, where
D;; = pr;R. In particular, each unary relation gf({) contains all elements db and, therefore, can be
thrown out. For any coordinate positiarof any non-unary relatiol, the setpr;x(R) equalsD. Finally,
to definey () formally we for each relational symbdt we interpret it askX(") = y(R).

For an instancg of #CSP(H), the following algorithm constructs an instangeof #CSP(x(H)).

Algorithm Subdi r ect
INPUT: an instance of #CSP(H)
OuTPUT: an instance;’ of #CSP(x(H)) with the same universe &

Step 1 find a compact representation ®{G, H)

Step 2 foreachg € G find v,

Step 3 for each (n-ary) relational symboFR do

Step 3.1 for eachtuple (g1, ...,9,) € RY do

Step 3.1.1 let R’ be the relational symbol such that
R™ = RN (g, X ... X ¢g,)
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Step 3.1.2 include (g1, ...,g,) into RrY
endfor
endfor
Step 4 output G’

The next easy lemma completes the reduction.

Lemma 5 Letg is an instance ot CSP(H) andG’ an instance of#CSP(x(H)) consructed by algorithm
Subdi rect . Let alsoy, = pr,®(G,H) for g € G. Thend(G’, x(H)) is a subdirect power of(#) and

Dl

2(F" x(H))| = |®(G. H)| - ]| %ol

geG

Proof: Lety € ®(G’, x(H)) be a homomorphism frorg’ to x(#). Let us define a mapping~!(y)
from G to H as follows. (Note thag andG’ have a common universe.) ForE G if ¢(g) = @ andy, = D;
then sety~!(¢)(g) = @li]. By the construction of () and¢’, if we change the value(g) for some
g € G with ¢, = D; to anyb such thab[i] = ali], then the resulting mapping' is still a homomorphism
from G’ to x(H) andx~1(¢’) = x~!(p). Conversely, for any homomorphisth € (G, H), any mapping
¢: G — x(H) such thaty~!(p) = + is @ homomorphism of’ to x(H). This straightforwardly implies
the result. O

5.3 Structure of Mal'tsev instances

Let G be a#CSP(H) instance andG| = m. We shall asuume that the univer§eof G equals tom].
Clearly, the sef (G, H) can be thought of as an-ary relation definable ift{, or as a subalgebra of theth
direct power ofA = Alg(H). By the results of the previous subsection we may assumdithatd (G, H)

is a subdirect power of{. Recall that for a congruengec Con(H) by 6 we denote the congruence Bf
such thatla, b) € 0™ if and only if (a[g], b[g]) € 6 for all ¢ € G. For congruences < v € Con(H) and a
mappingr: G — H/ﬁ, by W/V we denote a mapping froi to H~ defined byrr/,y(g) = w(g)/,y. If g n

is a thick mapping of levet then we treat/zg,h/@ as a mapping that maps classegdb classes ob. We
need some structural propertiesiof

Leta € M. LetalsoA,,..., A; be thex? -classes andy, . .., gx representatives of these classes. Let

7 be an element OR/(a—i-)m; such an element can be thought of as a homomorphismdrem¥{/ -+, but

not all such homomorphisms are elementsfsyf(aJr)m. By CY, ..., C§ we denote the:,-classes from
ﬂ(gu)/)\a foru € [¢].

Lemma 6 Every prime quotient in the intervak", \’| in the congruence lattic€on(R) has Boolean

)l

type, the intervalx*, \] is a distributive lattice isomorphic to the latti@®*! of subsets of &-element set,

and every congruence in this interval can be representegl;ad C [k], defined as follows{a, b) € n; if
and only if(a[i], b[i]) € ko Wheneverl ¢ J and(al[i], bi]) € A\, wheni € J.

Proof: We consider the chain of congruence < n < 10y < ... < 1y = Aa- First, we show
that this chain is maximal. Note that as the quotient ., < 71, vv+1} IS Projective tor, < myt1.
Therefore it suffices to show that the quotients of the faffh< 7, are prime. To simplify the notation we
assumey = 1. By replacingR with R/Hg we also assume that, = A.
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Letk)' < 6 < ;. Then, (a) for anya,b) € 6, alg] = b[g] forall g ¢ A;, and, (b) by Proposition 10,
alg1] = blg1] if and only ifa = b. Sincex]' < 6 < 1, there argla, b) € 6 such thata # b. This means
thata[g1] # b[g1]. ASka < Ao, fOor any(a,b) € A, there are(a’, b’) € 0 with a’[g1] = a,b’[g1] = b. By
(b) this implies§ = n;. It is also easy to check thédtdoes not centralize itself modulg that implies that
the quotients’ < n; has Boolean type.

We have proved that the chakf’ < m1 < g2y < ... < 1y = Ao is maximal, and, by Lemma 2,
each of its prime quotients has Boolean type. Now, in a madaltice every prime quotient is perspective
to one of quotients of any maximal chain. Thus we concludedtery prime quotient from the interval has
Boolean type.

Finally, by Lemma 6.6 of [37], this implies that this intehia a distributive lattice. Since the congru-
encesyy, ..., n, areatomsof this lattice, and); v ... v n, = A\, every elemend# of this interval can be
represented in the form

0= \/ T = NJ

ueJ
for someJ C [k]. O

Lemma 7 For any choice of,, € [s.], u € [k], there is an element € R/, m such that for eachu € [k],
and eacty € A,
e(g) = @Z’gu,g/ﬂi(czi)-

Proof: If we chooseB,; = 7(g)/, , thenm witnesses thak N (By x ... By,) # <. As the coherent
sets ofR are equal tod, . . ., Ag, by Proposition 10, we have that

R/ kN (Bi/,, % ... X Bi/y ) =Ba, /Ml x ... x By, /4],

whereBa, = pry, RN [[,ca, By, and for anyg, h € A, we havepr, , Ba, = tgn N (By x By). The
result follows. m

Lemma 8 There isJ C [k] such that for anyr, an element frorﬂ%/(a+)m, there arei,, u € [k] — J, with
iy € [s,] satisfying the following conditions. Every homomorphisrm R/(a—)m with Q/(a-i-)m = 7 can
be represented as follows: there agfor v € J with i, € [s,] such thato(g,) € C}* for u € [k] and, for
anyg € Ay, u € [k], we have

o(g) =m(g) N Tﬁgu,g/fgi(cﬁ)-

Conversely, for any choice df; ... ,Ci the mappinge defined in this way is an eIementh/(a—)m,
ando/,+ = .

Proof: Observe that in the congruence lattiCen(R) we haver,I™ A (™)™ = (o)™ andkyI™ <
Kal™ V (@)™ < AT, By Lemma 65,0 V (o)™ = n; for someJ C [k]. This means that there aig,
u € [k] — J, with i,, € [s,], such that for any € R/(a—)m, with o/ + = m, we haveo(g,) € C}! for
u€ k] —J.

Takep € R/(a—)m with o/ + = 7. Clearly, g/ﬂa belongs tOR/FLalm’ and by what we showed above
0(gu) € C} foru € [k] — J. Then the first part of the lemma follows from Lemma 7.
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To prove the converse statement, let us denotejthelass containingr by D. Sincex™ and (o)™
permute, for any:"-classC' C D and any(at)™-classC’, the intersectio”’ N C” is nonempty. Therefore,
foranyy € R/ng such thatp(g,) = Cy' foru € [k] — J, there isp € R/(a—)m such thap/,. = ¢ and
0/ o+ = m thatiso(g) = p(g) N 7(g). Together with Lemma 6 this implies the result. O

Let J C [k] be the set defined in Lemma 8 fare M and thex},-classesAy, . .., Ax. A congruence
Yu, u € J is defined as follows{a, b) € v, if and only if (a[i], b[i]) € o™ fori € A, U, ¢p— s Av, and
(ali],b[i]) € o otherwise.

Lemma 9 The congruences,, u € J, satisfy the condition (1).

Proof: Without loss of generality we assurde= {1, ..., q}. First, observe thaj; A... Ay, = (™)™
andy; V...Vy, = (o)™ Since(a™)™V (ko)™ = 17, (7)™ A(ka)™ = (o)™, and the lattic&€on(R) is
modular, the interval§ o)™, (a*)™] and[(k4)™, 1] are isomorpic, where an isomorphism can be defined
by ¢(z) = xV (ko)™. Therefore we may considgk, . .., 3, instead ofyy, ..., v,, whereg, = v,V (ko)™
and(a,b) € 3, if and only if (a[i], bli]) € ko fori € Ay UU,ep—s 4o and(ali], b[i]) € A, otherwise.
We also may assume that = A. To simplify the notation we prove the condition (1) fioe= 1.

By Lemma 8,(a,b) €
betay if and only if pry,ua . 0,048 = PTA,UA,1U..UAL Py PTAsUL. 4,8 PTAy0..4,P € Pra,u..4, D, and
(afi], bli]) € Ao fori € AyU... A,. Similarly, (a,b) € B2 A...Afgifand only ifpry a,pry, b € pry, D,
(ali], b[i]) € Ao fori € Ay, andpry, 4,8 =Dpra,u 4, b € Pra,y. a,D.

Takea,b € D such that(a,b) € A} anda[i] = bi] fori € A,; U... U A, and definec to be the
tuple withc[i] = a[é] if i € A; andc[i] = b[i]if i € Ay U...U A;. ByLemma8c € D and(a,c) € 3,
(c,b) € Bo A... A By Thus(c,b) € v V (Ba A... ABy). O

6 Algorithms: computing the number of solutions

6.1 The algorithm

Suppose that{ is congruence singular. Lét be an instance oft CSP(H). A mappingr: G — H/y for
6 € Con(H) will be called amapping of leveb. For a mappingr of level 6, by ®(G, H, ) we denote
the set of all homomorphisms € ®(G,H) with o/y = 7. We recursively compute numbers of the form
|®(G,H, )| for the instances and mappingsr of level o™, a € M. We assume that the univeréeof
G is [m]. If 7 is a mapping of level then|®(G, H,7)| = |®(G,H)|, and if 7 is a mapping of leveDd
then|®(G,H, )| = 1. Leta € M and letr be a mapping fronj to +/ ,+. We show how to reduce
computing the numbée® (G, H, 7)| to computing numbergb(G, H, p)| for certain o, mappings frony to
H/(a 1)t

Let Ay, ..., A, be thex? -classes angl, . . . , g; their representatives. Lét., ... ,C¢ bethex,-classes
from ﬂ(gu)//\a, the \,-class containing elements fromig,, ), for u € [k]. LetJ C [k] andiy, u € [k] — J,
with i,, € [s,] be the set corresponding t0", andx,-classes corresponding toas in Lemma 8. Without
loss of generality we assumke= [g]. The next statement follows straightforwardly from Lemma 8
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Proposition 15 For any g-tuple s such thats[u] € [m,], the mappingos: G — H/,~, where for each
g€ Ay, u€lq]

0s(9) = { Ggng(BY,y) N7(g), ifu<q

wgmg(BZL) Nm(g), ifu>gq.
is @ homomorphism froi to +/ -

It is not hard to see that se®(G, H, os) are the classes of the congruenee )™ on the relation
®(G,H, ). Clearly,(a™ )™ =~y N...N~, Where(a,b) € v, if and only if (a[g], b[g]) € o~ if g € A,
org € Ag41U...U A, and(afg], blg]) € o™ otherwise. By Lemma 9 the congruenegs. . . , v, satisfy
condition (1).

Let T'(m) denote ag-dimensionals; x ... x s, array such that its entry indexed Byis equal to
|®(G,H, 0s)|. By Proposition 147 () has rank 1, that is, there are numbgfs. .., ¢ such that

_ 41 q
[R(G, H, 08) = tgpyy - -- - tag-

These numberﬁj'. can be found as follows. Fix a tupte By s! we denote the tuple, all entries of which
are equal to the corresponding entries oéxcept for theth entry that is equal to. Then set

(G, 0,)]

th=|®(G,H, and ti—=—_— %
S A A e

forie {2,...,q}.

Now, as the numbers of the fort;ﬁ are known, we have

BG,H,m) =Y ®(GH,00) =Y ity

_ 1 2 q 1 2 q
= t1< > tsm-...-ts[q]) +...+tsl< > tsm-...-ts[q}>
s[2],...,s[q]

q My

= .=]]> %

7j=11=1
that can be computed easily.
Finally, we make use of the following implication of Proptosn 12.
CorOIIary 3 LetQ € q)(gv H7 7T)/(o[_)m‘ and 01,02 € q)(ga Ha Q) Then|q)(g7 H7 Ql)| = |q)(g7 Ha Q2)|

Then for any mapping < @(Q,H,w)/(a—)m and any mapping’ € ®(G, H, 9)/((a —1)+)m. We
have| (G, H, 0)| = |®(G, M. )| - |2(G. . 0)/ (o — 1)*+)m|- The numbet® (G, M, 0)/(,, _ 1)+| can be
found using algorithnuni f or mfrom the next subsection.

6.2 Uniform counting CSPs

Leta € M, w be a mapping of levek—, and o be a mapping of levela — 1)*. We need a method to find

the number
|®(G,H,7)|

|®(G,H,0)|
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We consider first the case whén — 1)* is the equality relation. In this case the required number ca
be found by algorithm WIFORM using a compact representatidt! of ®(G,H, ). Note also that such
a representation can be found by the same algorithm fromdpBlied to the instancg’ with the same
universe ag; and additional unary constraintsg) imposed on eacly € G. We shall assume that for
each f.-ary) relational symboR from the vocabulary of{, and any sef{iy,...,ix} € [n], the vocabulary
of H also contains &-ary relational symbopr; ;1R interpreted a$)r{i1,...,ik}RH' For an instancg
of #CSP(H) andg € G we denote byg, the relational structure with universé — {g} and such that
(91,..-,9,) € RY for some relational symbaoR andg;, = ... = g;, = g and the rest of its entries
are different fromg we exclude this tuple fronk9, and include the tupler,; g, .., (91, -, gn) iNtO
DPri i1,y BY?. Recall that we assun@ = [m)].

Algorithm Uni f or m

INPUT: an compact representatid®l’ of &(G, H,w), w € @(Q,H)/ﬁm, BRA

OuTPUT: the cardinality of®(G, H, )

Step 1 setN :=1,5:=R",andG := G

Step 2 for g =mto 1do

Step 2.1 let# be a congruence 6 such that{a,b) € 6 if and only if
(g,a,b) € Sigg; sinceA < 6 < /3,6 is uniform overA; let w be the
size of its classes

Step2.2 setN:=N - w

Step 2.3 setS := pry,_;;S andG := G,

endfor
Step 3 output N

The correctness of algorithm NUFORM follows from the rectangularity ofS), and the observation
that the congruence constructed on Step 2.1 can be defined as follofusd) € 6 if and only if there is
a € pry,_q)(S) such that(a, a) € (S) and(a,b) € (5), that isw is the number of possible extensions of a
tuple frompry,_1)(S).

Observe that if we know the signature of the relatie(, 7, =)/ ,m we still can use algorithrani f or m
for we can conside® (G, H, )/ ,m as a relation ort/ . Therefore the problem we are facing now is to
find the signature of this relation. Unfortunately, it is rt¢ar at all how to obtain this signature using the
signature or a compact representationdgt;, , 7), nor we can use the algorithm from [13] to compute
the signature o®(G, /. ), since in generab(G, H/ ., 7) # ®(G,H,n)/m. Instead, to compute each
member of the required signature we find a compact represamiaf a certain modified problem using the
algorithm from [13].

More specifically, we first find thé-signatureof the relation®(G, H, 7). Letn be a positive integer,
let H be a finite set, lefl be an equivalence relation di, let a, b be n-ary tuples and leti, a, b) be any
element inn] x H?. We say thata, b) §-witnessesi, a, b) if (a[j], b[j]) € 0 for eachj < i, a[i] = a, and
a'[i] = b. Let R be anyn-ary relation onH. The@-signature ofR, 6Sigy C [n] x H?, is defined to be the
set containing all thos@, a, b) € [n] x H? §-witnessed by tuples iR, that is

0Sigr = {(i,a,b) € [n] x H* : Ja,b € R such that(a, b) §-witnessegi, a, b)}.

We shall assume that for each subalgeBraf H the vocabulary ofH contains a unary relational
symbol Rp such thatR};,‘ = B. Letg be an instance offCSP(H), letgi,...,gr € G, and letBy, ..., By
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Algorithm 6- Si gnat ure
INPUT: an instanc& of #CSP(H), and a congruence
a € Con(H)
OuTPUT: thef-signature ofd (G, H, )
Step 1 find a compact representation &G, H, )
Step 2 setS := & (thed-signature ofd(G, H, 7))
Step 3 for each (i,a,b) € {1,...,m} x H? do
Step 3.1 if there isa € R’ such that[i] = a then do
Step 3.1.1 find a compact representatidil’ of ®(G’, H, )
where
¢ =G U {{gr. @) /g).. ... (g1, (ali — 1)/g)})
Step3.1.2 if b€ (pr;R") then S := SU{(i,a,b)}
endif
endfor
Step 5 return S

be subalgebras dft. By G U {{(g1, B1),- .., {9k, Bx)} we denote the relational structure with the same
universe ag7, and such that the interpretation of every relational sym®o¢ {Rp,,...,Rp,} equals
RY while the interpretation ofip, equaIsR%j U {gj}. Thus, the elements,, ..., g; are forced to be
mapped taB, ..., B respectively. It is easy to see that the algorithySIGNATURE finds thed-signature

of ®(G,’H, ). The signature ofdb(G,H,r)/pm can then be found by replacing eatha,b) € S by

(i,a/g,b/g).

Complexity. Observe that the problem of finding the numpbe(G, H, 7)| reduces to finding; +. . . + s,
numbers of the form® (G, H, o)|, wherep: G — H/(a — 1)+ and solving the same number of uniform

problems. Clearlyk < |G| = m, s; < |H| = a, and|M| < @?. If the uniform problem can be solved in
time p(m) then the overall time complexity of the algorithm(ismp(m))“Q.

7 #H-COLORING

Theorem 3 yields a complete classification of #P-completentynomial time solvable #-COLORING
problems. However, it is difficult to express the criteridated in the theorem in terms of (di)graphs. By
[27], an (undirected) grapH gives rise to a polynomial time solvabld#CoOLORING problem if and only

if every connected component &f is either trivial, or a complete bipartite graph, or a contlgraph with
loops at all vertices. In [14], we observed that an undiégraph satisfies this condition if and only if it is
invariant under a Mal’tsev operation.

In this section we compare the classification result from, P9 for directed acyclic graphs (DAGs
for short) with Theorem 3. We show that every congruencewargDAG satisfies thé.ovasz-goodness
condition introduced in [28, 29]. The two conditions mustdogiivalent, however, the converse implication
probably uses some nontrivial properties of DAGs and is ndldfeeult to prove.

A DAG H = (V,E) is calledlayered V' can be partitioned into subsets, ..., V; such that for any
(v,w) € E we havev € V;, w € Vjq; foraceratini < (. Letv € V;, w € V}, i < j. ThenH,,
denotes the subgraph &f induced by the vertices such that there is a path fromto ; similarly, H.,,
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denotes the subgraph &f induced by the vertices such that there is a path and framo w; and H,,, =
H,. N H,,. The vertex set of the grapH,, H,,,, whereH,,, = (V, E) andH,,,, = (V', E'), is the set
(VNV) x (V'nV))u...u(VNnV;) x (V' nV;)), apair((v,v'), (w,w')) is an edge if and only
if (v,w) € Eand(v,w') € E'. Itis proved in [28] thatH,, H,,, has only one connected component
that spans all layers fromto j. If such main connected components of graphs H,./,, andH ., H ., are
isomorphic then we writed,, H,,,, = H,;H.p. Finally a layered graph is said to h@vasz-goodf for
any0 <i < j</{+1landanys,z’ €V, y,y € V;wehaveH,,H,, = HyyH,,.

The key lemma for this result is a special case of the resulidwasz [48] that we cite in our notation.

Lemma 10 If |®(G, Hy)| = |®(G, Hs)| for all graphsG then graphsH, H, are isomorphic.

We show that ifH is congruence singular theé® (G, H,, H,,)| = |®(G, Hyyy Hyry)| for anyz, o’ €
Vi, ¥,y € Vj;, and any graphG. This implies thatH,,H,, and H,, H,, are isomorphic, and so
H, H,, = Hy,yH,. We use an observation made in [28] tha{G, H1 H>)| = |®(G, Hy)|- |®(G, Ha)|.
If G = (W, F) is not layered then®(G, HyyH,,y )| = |®(G, Hyy Hyryy)| = 0. Let Wy, W denote the set
of vertices on the highest and on the lowest layer§ ofespectively. As we knové (G, H) is a relation pp-
definable inH. Now letn; , 72 be congruences @ (G, H) such thatp, ¢') € n;,i = 1,2, iff p(v) = ¢'(v)
for all v € W;. Itis not hard to see that sets of the forh),, are classes of, sets of the formH,,,, are
classes ofjye, and sets of the forn#,,,, are classes af; A 72. SinceH is congruence singular, we have
rank(M (n1,12)) = k wherek is the number of classes in V 72. Hence

|<I)(G7 Hmy)| |(I)(G>sz’)|

=0,
‘(I)(G7Hw’y)‘ ‘q)(G:Hw’y’”

or®(G, Hyy), (G, Hyyy ) or ®(G, Hyyy ), ®(G, Hyyy) are in different classes ofi V 7. In the latter case
either|®(G, Hyry)| = [®(G, Hyy )| = 001 |®(G, Hyy)| = |®(G, Hyryy )| = 0. The result follows.

Observe that in this argument congruence singularity isl irse very restricted way: Only projective
congruences of only those subalgebras of direct powefs thfat are representable in the fod{G, H).

8 Concluding remarks

The result obtained in the paper is rather general. It iretuas particular case the results of [18, 27, 22,
28, 29, 44]. However, those results are stated in terms dfcpéar problems, and deriving them from
Theorem 3 requires extra research. We also should notertlsaiie cases, e.g., [27], the #P-completeness
results obtained for particular problems are stronger thase which follow from our result. For instance,
#P-complete #-COLORING problems in the case of undirected graphs remain #P-coepletn when
restricted to inputs of bounded degree.

A major question left unanswered is how to check if a giveatrehal structure is congruence singular.
This problem may turn out to be even undecidable.
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