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Lecture 7: General Dichotomy

Instructor: Jin-Yi Cai Scribe: Chetan Rao

1 Introduction

In today’s lecture, we will see a more general version of dichotomy theorem. In the previ-
ous lectures, we concentrated mainly on two techniques - Holographic transformation and
interpolation. In particular, we proved the following dichotomy of single ternary signatures
-

Holant∗([x0, x1, x2, x3]) (1)

Instead of moving on and continuing to a full dichotomy of Holant∗(F) (where F is an
arbitrary set of functions), we branch to another topic in counting complexity which involves
algebraic techniques that we have not seen in the earlier lectures.

Before we move on, we’ll look into how holographic transformations are used to establish
dichotomy for a set of signatures Holant(F). For instance, consider the 2-3 regular bipartite
graph (G = (U, V, E) where deg(u ∈ U) = 2 and deg(v ∈ V ) = 3) case:

Holant∗([y0, y1, y2]|[x0, x1, x2, x3])

The main idea is to transform this form to Holant∗([1, 0, 1]|[x
′

0, x
′

1, x
′

2, x
′

3]) where [1,0,1] is
the Equality function of arity 2 (=2). The Equality is absorbed on the LHS and reduces
it to the case described in (1).

Exercise 1. Determine conditions under which the above holographic transformation is pos-
sible -

Holant∗([y0, y1, y2]|[x0, x1, x2, x3]) =⇒ Holant∗([1, 0, 1]|[x
′

0, x
′

1, x
′

2, x
′

3])

Exercise 2. Prove a dichotomy for Holant∗([y0, y1, y2]|[a, 1, 0, 0]) for any a.

Once we complete it for the 2-3 case, we can extend it further to a single function
f = [x0, x1, x2, . . . , xn] of arity n > 3 and to set of functions F .

The sub-signatures are obtained by the following unary functions - [0, 1] or [1, 0] akin to
the constant 1 or 0 functions respectively i.e. if the external inputs to the unary functions
are 1 or 0 respectively, they accept.

For example, if we have a signature of [x0, x1, . . . , xn] and append 1 to it, it becomes a
[x1, x2, . . . , xn] signature as the weight increases by 1. On the other hand, if we append 0,
we get [x0, x1, . . . , xn−1]. This way, we can construct arbitrary sub-signatures and obtain a
restricted set of arity 3 sub-signatures for which we know the dichotomy.

However, there is still a problem in the case of arity 2 signatures (which are ‘promiscu-
ous’). We must ensure that the sub-signatures are of the same type to obtain the general
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dichotomy for all kinds of functions. The idea behind this is to glue the sub-signatures to-
gether with arity 2 sub-signatures and argue that they don’t mix up. Once we have this, we
can generalize it to the whole class by a similar argument.

Furthermore, in the Fibonacci signatures, there is a parameter (a, b) which could lead to
two different families and hence it is to be proved that this is not the case.

axk + bxk+1 − axk+2 = 0

In this case of generalized equality [a, 0, 0, . . . , b], if a = 0, then b is non-zero which in turn
sets all the middle elements of the sub-signatures ([t, 0, . . . , 0]) as 0. This would imply that
they are degenerate (rank < 2) and make them tractable.

2 Holantc Dichotomy

Earlier, in the previous lectures we dealt with Holant∗(F) which consists of a set of sym-
metric signatures F along with a set of unary relations U . Here, instead of considering
arbitrary unary signatures, we build on the classification of Holant∗(F) use just two of
them {[1, 0], [0, 1]} and arrive at the following dichotomy for Holantc(F)(= Holant(F ∪
{[1, 0], [0, 1]})) -

Theorem 1 (Holantc dichotomy). Given any set of symmetric signatures F which con-
tains [0,1] and [1,0], we can construct a non-degenerate symmetric ternary signature X =
[x0, x1, x2, x3], except in the following two trivial cases:

1. Any non-degenerate signature in F is of arity at most 2;

2. In F , all unary signatures are of form [x, 0] or [0, x]; all binary signatures are of form
[x, 0, y] or [0, x, 0]; and all signatures of arity greater than 2 are of the form [x, 0, . . . , y].

Building upon this are works on real symmetric functions [2] and arity k Equality (=k),
assymetric function [3].

Now, we move on to the paper by Bulatov and Dalmau [1] that proceeds towards a
dichotomy for the counting CSP (Constraint Satisfaction Problem).

3 Dichotomy Theorem for Counting CSP

A Constraint Satisfaction Problem (CSP) is as follows: given a set of variables, a set of values
that can be taken by the variables, and a set of constraints specifying some restrictions on the
values that can be taken simultaneously by some variables, determine the if any assignment
of values to variables that satisfy all the constraints. The Counting CSP (#CSP) counts the
number of such possible satisfying assignments.

The model considered here is a bipartite graph G = ((U, V ); E) where U contains the set
of all variables and V contains the constraints from the relation set.
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A famous conjecture that gives a dichotomy for the decision version of CSP states that
for every constraint set, CSP is either in P or NP-complete. Schaefer provides a dichotomy
for a restricted version of CSP with 2 domain variables (0-1). Bulatov extends this result to
3 variables.

3.1 Definitions

Let A be a finite set (domain) and R ⊆ Ar be an r-ary (r ≥ 1) relation.

Definition 1. The counting constraint satisfation problem (#CSP) is the combinatorial
functional problem with

Input: a triple (V ; A; C) where V is a finite set of variables that take values in a finite
domain A, C is a finite set of constraints. Each constraint C ∈ C is a pair (s, ρ) where

• s = (v1, v2, . . . , vmC
) is a tuple of variables of length mC , called the constraint scope;

• ρ is an mC-ary relation on A called the contraint relation.

Objective: compute the number of solutions, i.e. functions f , from V to A such that
for each constraint (s, ρ) ∈ C, the tuple (f(v1), f(v2), . . . , f(vm)) belongs to ρ.

Example:[#k-SAT] An instance of the #k-SAT problem is specified by giving a propositional
logic formula in k-CNF, and asking how many assignments satisfy it. The domain of variable
values A = {0, 1}. Let the variables and clause (constraint) be as follows -

(x̄1 ∨ x2 ∨ x3 ∨ x4 ∨ x̄5)

The corresponding set of relations on A that satisfy the above constraint is defined by
Γ = {a|a ∈ {0, 1}5 − {(1, 0, 0, 0, 1)}}. The corresponding counting problem is referred by
#CSP(Γ). ⊠

Definition 2 (constraint language Γ). #CSP(Γ) is called tractable if for every finite Γ0 ⊆ Γ,
#CSP(Γ0) is in polynomial time.
#CSP(Γ) is #P-Complete if there is a finite set Γ0 ⊆ Γ that is #P-Complete.

Further, we can identify the following equivalence between #CSP and Holant problem:

#CSP(Γ) = Holant(Γ ∪ {=k |k ≥ 1}

3.2 Universal Algebra

A universal algebra is an algebraic system consists of a structure A = (A, Γ) where A is a
set and Γ is a set of relations on A. We are going to deal with finite set A in this lecture.

3



Definition 3 (Polymorphism σ). A polymorphism σ is defined as σ : An → A is a function
of arity n that commutes with every relation R ∈ Γ.

If a column matrix N = (a1,1, a1,2, . . . , a1,r), (a2,1, a2,2, . . . , a2,r), . . . (an,1, an,2, . . . , an,r) ∈
Γ, then the tuple (σ(a1,1, a2,1, . . . , an,1), σ(a1,2, a2,2, . . . , an,2), . . . , σ(a1,r, a2,r, . . . , an,r)) ∈ Γ is
a polymorphism and represented by σ→(N).

Definition 4 (Partial polymorphism f). A partial polymorphism f is defined as f : S ⊆
An → A such that whenever rows are in the domain S, then ∀R ∈ Γ, f→(N) ∈ Γ.

Definition 5 (Mal’tsev polymorphism σM). A Mal’tsev polymorphism σM is defined as
σM : A3 → A such that for all x, y ∈ A, σM (x, x, y) = y and σM(x, y, y) = x.

An example over vector spaces is the ternary operation called Mal’tsev operation σ and
it is defined as σ(x, y, z) = x − y + z.

The class of relations in which these Mal’tsev’s operations become a polymorphism is a
set of all affine linear subspaces V :

V ⊆ S V = {x|Mx = α} M(x − y + z) = α

In this line of work, Creignou and Hermann [4] arrived at the result that if R is not a set
of affine linear subspaces, then #CSP over the boolean domain is #P-Hard. Therefore, the
existence of Mal’tsev polymorphism is key to tractability over the boolean domain and we
arrive at a dichotomy for the boolean domain. The same was conjectured for a 3-element
domain by an earlier work of Bulatov et al. and later proved false.

A few properties to note in #CSP are:

• A permutation of variables is possible i.e. R
′

(x, y, z) = R(y, z, x).

• Equality constraints can be replaced by using same variables for all elements in the
equality.

Now let us get into some formal definitions of universal algebra which will be useful for
the next few lectures - polymorphism and invariant.

For a given constraint language Γ, the set of all operations preserving each relation from
Γ is denoted by Pol Γ (polymorphism). On the other hand, for a given set of functions F ,
the set of all relations invariant under every function from F is denoted by Inv F .

By the definitions of Inv and Pol, we have the following relations:

Γ
Pol
−→F

Inv
−→ Γ

′

and F
Inv
−→ Γ1

Pol
−→ F

′

Γ −→ ⊆−→ Γ
′

F −→⊆−→ F
′

Definition 6 (Clone 〈Γ〉). For a constraint language Γ, the clone 〈Γ〉 consists of equality
(=A) and all relations defined by existential quantifiers, conjunctions, extensions and repiti-
tions of variables over Γ.
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In the following lectures, we will look into a key theorem for clones (〈Γ〉 ≡ Inv(Pol Γ))
based on similar lines. We will also look into the properties satisfied by Inv and Pol. Before
we conclude, we look into the relation between the existence of a Mal’tsev and congruences.
Congruences are equivalence relations that are definable (by conjunctions, permutation on
variables and existential quantifiers).

Suppose that α, β be two binary equivalence relations (congruences). The composition
of the two relations is defined as:

α ◦ β = {(a, c)|∃b : (a, b) ∈ α, (b, c) ∈ β}

The question now is whether the congruences commute. If we are able to show that α ◦ β ⊆
β ◦ α and vice-versa, we can show that they commute. This condition is true in the case of
Mal’tsev operations.

Let (a, c) ∈ α ◦ β. Then there exists a b such that (a, b) ∈ α and (b, c) ∈ β by the
definition of α ◦ β. We also note that (a, a) ∈ α, β and (c, c) ∈ α, β. Next, we can make
use of the equivalence relation from the Mal’tsev polymorphism and arrive at the following
conclusion: (c, a) ∈ α ◦ β which is equivalent to (a, c) ∈ β ◦ α. This is illustrated below -

a a c −→ c

a b c −→ ∗
a c c −→ a

∈ ∈ ∈ ∈
α ◦ β α ◦ β α ◦ β α ◦ β

Thus, we prove that the existence of a Mal’tsev polymorphism is sufficient for the congruences
to commute.
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