CS 880: Complexity of Counting Problems

02/16/2012

Lecture 8: Universal Algebra

Instructor: Jin-Yi Cai

Scribe: Chetan Rao

1 Introduction

In today's lecture, we will look more closely into *Universal Algebra* and the properties of invariants (Inv) and polymorphisms (PoI). We shall also look at a few key theorems that will help prove dichotomy in the following lectures.

A universal algebra is an algebraic system consists of a structure $\mathcal{A} = (A, \Gamma)$ where A is the domain set (finite) and Γ is a set of relations on A with finite arity (Γ can be infinite). Let \mathcal{F} be a set of functions.

To better understand the relation between Pol and Inv, we need the concept of Galoiscorrespondence between sets \mathcal{F} and Γ .

Definition 1 (Galois correspondence). A Galois-correspondence between sets A and B is a pair (σ, τ) of mappings between the power sets $\mathcal{P}(A)$ and $\mathcal{P}(B)$:

$$\sigma: \mathcal{P}(A) \to \mathcal{P}(B), and \tau: \mathcal{P}(B) \to \mathcal{P}(A)$$

 σ and τ must satisfy the following conditions. For all $X, X' \subseteq A$ and all $Y, Y' \subseteq B$,

- 1. $X \subseteq X' \to \sigma(X) \supseteq \sigma(X')$, and $Y \subseteq Y' \to \tau(Y) \supseteq \tau(Y')$
- 2. $X \subseteq \tau \sigma(X)$, and $Y \subseteq \sigma \tau(Y)$

Applying the Pol operator on Γ , we get a set of functions that commute with Γ i.e. Pol(Γ). On the other hand, if we apply the Inv operator on \mathcal{F} , we get a set of relations that commute with \mathcal{F} i.e. $Inv(\mathcal{F})$. It is easy to see that Pol and Inv satisfy property 1 of Galois-correspondence by their definitions as any subset of relations cannot decrease the number of functions that commute (and vice-versa). In other words, the double application of correspondence mapping is no smaller in size in set containment relation.

If we set $\mathcal{F} = \mathsf{Pol}(\Gamma)$, then we can see that Γ commutes with every function in $\mathsf{Pol}(\Gamma)$ which, in turn, commutes with every relation in $\mathsf{Inv}(\mathsf{Pol}(\Gamma))$. Hence, $\Gamma \subseteq \mathsf{Inv}(\mathsf{Pol}(\Gamma))$ as pictured in figure 1. We can similarly prove that $\mathcal{F} \subseteq \mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$. Thus, we show that ($\mathsf{Pol}, \mathsf{Inv}$) form a Galois-correspondence between \mathcal{F} and Γ .

Lemma 1. Let the pair (σ, τ) be a Galois-correspondence between the sets A and B. Then $\sigma\tau\sigma = \sigma$ and $\tau\sigma\tau = \tau$.

Figure 1: [1] The operators Pol and Inv on the set of functions (operations) O_k and set of relations R_k .

Proof. Let $X \subseteq A$. By property 2 of Galois-correspondence, $X \subseteq \tau \sigma(X)$. By property 1, if we apply σ , it gives us $\sigma(X) \supseteq \sigma \tau \sigma(X)$. By applying property 2, we also have $\sigma(X) \subseteq \sigma(\tau \sigma(X))$. Therefore, $\sigma \tau \sigma(X) = \sigma(X)$. The second part of the claim can be proved similarly.

Hence, we can see that $\mathsf{Pol}(\Gamma) = \mathsf{Pol}(\mathsf{Inv}(\mathsf{Pol}(\Gamma)))$ and $\mathsf{Inv}(\mathcal{F}) = \mathsf{Inv}(\mathsf{Pol}(\mathsf{Inv}(\mathcal{F})))$. In other words, going forward twice makes the set no smaller and going forward thrice is equivalent to once. This is depicted in figure 2.

Figure 2: Sequence of Pol, Inv, Pol operators applied on Γ .

2 Properties of Pol and Inv

In this section, we look at certain important properties of Pol and Inv.

2.1 $Inv(\mathcal{F})$

Given a set of functions \mathcal{F} , its invariant $Inv(\mathcal{F})$ has the following properties:

1. <u>Closed under \wedge </u>: Let $P, Q \in \mathsf{Inv}(\mathcal{F})$ on A^r and $N = [\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_n}]$ where $\mathbf{a_i}$ is a column vector of length r and $\mathbf{a_i} \in P \land Q$, then for all functions $f \in \mathcal{F}$, the following holds: $b = f_{\rightarrow}(N) \in P \land Q$.

$$N = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \dots & \mathbf{a_n} \end{bmatrix} \xrightarrow{f} \mathbf{b}$$

$$a_{1,1} & a_{2,1} & \dots & a_{n,1} \xrightarrow{f} \mathbf{b_1}$$

$$a_{1,2} & a_{2,2} & \dots & a_{n,2} \xrightarrow{f} \mathbf{b_2}$$

$$\vdots & \vdots & \vdots & \vdots & \vdots \\ a_{1,r} & a_{2,r} & \dots & a_{n,r} \xrightarrow{f} \mathbf{b_r}$$

$$\in \mathbf{c} \in \mathbf{c}$$

$$P \land Q \quad P \land Q \quad P \land Q$$

2. <u>Closed under</u> \exists : Let $P \in \mathsf{Inv}(\mathcal{F})$ on $A^r(r \ge 2)$ and $Q \subseteq A^{r-1}$ s.t. $Q = \exists xP$ i.e. $Q(x_1, x_2, \ldots, x_{r-1}) = \exists x_r P(x_1, x_2, \ldots, x_r).$

$$\widehat{N} = \mathbf{x_1} = \begin{bmatrix} x_{1,1} & \dots & x_{n,1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,2} & \dots & x_{n,2} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,2} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_2} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_3} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_4} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_5} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r-1} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_2 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1 \qquad \mathbf{x_6} = \begin{bmatrix} x_{1,r} & \dots & x_{n,r-1} \end{bmatrix} \xrightarrow{f} b_1$$

- 3. Closed under Π (permutation): Let $P \in \mathsf{Inv}(\mathcal{F})$ on A^r and Π be a permutation s.t. $\overline{Q(x_1, x_2, \ldots, x_r)} = P(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(r)})$, then $Q = \Pi P \in \mathsf{Inv}(\mathcal{F})$.
- 4. Closed under direct product: Let $P \in \mathsf{Inv}(\mathcal{F})$ on A^r and $A \times P$ be a cartesian product. Then for all $P \in \mathsf{Inv}(\mathcal{F})$, $A \times P \in \mathsf{Inv}(\mathcal{F})$. This property combined with arity-2 EQUALITY gates $(=_2)$ gives rise to the next property:
- 5. Closed under R (repetition): Let $P \in \mathsf{Inv}(\mathcal{F})$ on A^r and R be a repetition s.t. $R.P = \frac{1}{\{(x_1, x_1, x_2, \dots, x_r) | (x_1, x_2, \dots, x_r) \in P\}}$, then $R.P \in \mathsf{Inv}(\mathcal{F})$.

The set of relations satisfying these properties is called a 'clone'.

2.2 $\operatorname{Pol}(\Gamma)$

Given a set of relations Γ , it's polymorphism $\mathsf{Pol}(\Gamma)$ has the following properties:

- 1. Closed under composition (\circ): Let f and g be two polymorphisms (of arity-n over Γ) and N_i be matrices for $i \in \{1, 2, ..., n\}$ which have column vectors $\in \mathsf{Pol}(\Gamma)$. Then, $\forall i, f_{\rightarrow}(N_i) \in \mathsf{Pol}(\Gamma)$ and hence, $(g \circ f)_{\rightarrow}(\mathbf{N}) = g_{\rightarrow}(f_{\rightarrow}(N_1), f_{\rightarrow}(N_2), ..., f_{\rightarrow}(N_n)) \in \mathsf{Pol}(\Gamma)$.
- 2. Closed under projection: Let f be a polymorphism over $R \in \Gamma$. Then, any such $\overline{f_i(x_1, \ldots, x_n)} = x_i$ is a polymorphism as f_i is just selecting one of the columns that are already known to be in $R \in \Gamma$.

To handle cases where the arity of composed functions are not the same, we can compose such functions to obtain full arity functions. For instance if we want to compute $f(g_1(x_1, x_2), g_2(x_2, x_4), g_3(x_1, x_2, x_3))$, we can project x_1, x_2 from (x_1, x_2, x_3, x_4) for g_1 to obtain an equivalent function with full arity. Similar techniques can be applied to g_2 and g_3 to obtain a composition of arity-3 function with arity-4 functions.

Definition 2 (closed system). A closed system of functions on a finite set is a set of functions that satisfies the above two properties.

3 Geiger's Theorems

The theorems that follow in this section are from the work by Geiger [2]. We recall the definition of partial polymorphism before we state the theorems.

Definition 3 (partial polymorphism). A partial function $f : A^r \to A$ is a partial polymorphism if f is defined for all matrices N such that every column belongs to the relation $R \in \Gamma$, then $f_{\to}(N) \in R$.

Theorem 1. If Γ is a clone, then any partial polymorphism f of Γ can be extended to a full polymorphism.

Proof. Let f be a partial polymorphism of Γ of arity-r. We may assume f is not empty as we can extend any empty f to the idempotent function i.e. $(i, i, \ldots, i) \mapsto i$. WLOG, f is non-empty and not full. If we manage to extend the polymorphism by one more tuple, by induction we can extend it to the whole set and we are done.

Let $\mathbf{r_1}, \mathbf{r_2}, \ldots, \mathbf{r_k}$ and $\mathbf{r} \neq \mathbf{r_i}, \forall i \in \{1, 2, \ldots, k\}$ be the tuples on which f is defined. Also, let

$$N = \begin{pmatrix} \mathbf{r_1} \\ \mathbf{r_2} \\ \vdots \\ \mathbf{r_k} \end{pmatrix}$$

Now, we extend the partial function f by $f_j(\mathbf{r}) = j$ as follows: define $f_j = f \cup (f_j(\mathbf{r}) = j)$ $\forall j \in \{1, 2, ..., |A|\}$. Now, if we can show that at least one of the f_j is a polymorphism, we are done.

Claim 1. At least one of the f_j 's is a partial polymorphism of Γ .

Proof. We prove this claim by contradiction. Let's assume that none of the f_j 's are partial polymorphisms of $\Gamma, \forall j \in \{1, 2, ..., |A|\}$. This means that for every j, we have a relation $R_j \in \Gamma$ and a matrix N_j such that -

$$N_{j} = \begin{bmatrix} n_{1,1}^{j} & \dots & n_{1,r}^{j} \\ n_{2,1}^{j} & \dots & n_{2,r}^{j} \\ \vdots & \vdots & \vdots \\ n_{n,1}^{j} & \dots & n_{n,r}^{j} \end{bmatrix} \xrightarrow{f_{j \rightarrow}(N_{j})} \mathbf{b}_{\mathbf{j}} \notin R_{j} \quad \forall j \in \{1, 2, \dots, |A|\}$$
$$\underset{\substack{ \in \\ R_{j} \\ \end{array}}{\overset{ \qquad }{\longrightarrow}} R_{j}$$

Also, it cannot be the case where f_j is not defined on the rows as this will not result in an invalidation. Hence, the rows of N_j are among $\mathbf{r_1}, \mathbf{r_2}, \ldots, \mathbf{r_k}, \mathbf{r}$. Now, let us suppose that there are two equal rows s and t. In this case, we can define a relation R'_j such that $R'_j(x_1, \ldots, x_s, \ldots, x_t, \ldots, x_n) = \exists x_t(R_j(x_1, \ldots, x_s, \ldots, x_t, \ldots, x_n) \land (x_s = x_t))$. Since Γ is a clone, we can always find such a minimal arity relation R'_j .

Hence $\forall j, \exists R_j \in \Gamma$ of minimal arity such that -

- 1. N_j has no repeated rows.
- 2. N_j must have row **r**.
- 3. For some j, N_j has at least 2 rows.

Property 2 follows from the definition of the partial polymorphism f because otherwise the table would prove that f is not a partial polymorphism. Property 3 also holds because if it does not, then all the matrices N_j have only row \mathbf{r} . Let the first component of \mathbf{r} be i. Then consider the table N_i for R_i . This $i \in R_i$. But then $f_i(\mathbf{r}) = i \in R_i$, a contradiction. Hence some N_j has at least two rows.

From these matrices, we can construct a new matrix N^* by stacking each matrix N_j on top of each other and pulling out the common row **r** from every N_j :

$$\overline{N} = \begin{bmatrix} & & & = \mathbf{r} \\ N_1 & & \\ N_2 & & \\ \vdots & & \\ N_{|A|} \end{bmatrix} \neq \phi$$

Since the clone Γ is closed under conjunction and extension, a new relation R can be defined which says that the corresponding subsets of coordinates are in the relation R_j , for $j \in \{1, 2, \ldots, |A|\}$.

Then a new relation R^* , using existential quantifier on the first row, can be defined, such that N^* is a table for it $(R^* \in \langle \Gamma \rangle)$.

Then f is defined on the rows of N^* , and would produce a tuple $\in R^*$. By definition of R^* , this means there is some $i \in A$ such that f_i commutes with the table \overline{N} . But then looking at only the corresponding subset of coordinates for R_i , this is a contradiction to the statement that f_i does not commute with N_i . Therefore, $f_{\rightarrow}(N^*) \in R$ and hence for some j, f_j is a partial polymorphism.

Thus, we show that every partial polymorphism can be extended by one more and this concludes the theorem. $\hfill \Box$

Theorem 2. If \mathcal{F} is a closed system (under composition and projection), then $Inv(\mathcal{F})$ is a clone and $Pol(Inv(\mathcal{F})) = \mathcal{F}$.

Proof. From the Galois-correspondence, we know that $\mathcal{F} \subseteq \mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$. We need to show that the other way holds true if \mathcal{F} is closed. Thus, it is enough to prove that given any function $g \notin \mathcal{F}$, there is a relation $R \in \mathsf{Inv}(\mathcal{F})$ such that g does not commute with R.

Let g be a function with arity-r. Now, we list all the $|A|^n$ tuples for which g is defined. Let this be represented by matrix N. Let $g_{\rightarrow}(N)$ be the set of corresponding relations.

We now extend the matrix N by appending non-repetitive columns generated by applying $f(\forall f \in \mathcal{F})$ to each sequence (possible repetition of coordinates) of rows. This eventually terminates as the number of columns in the extended matrix (N') are bounded (by size $|A|^n$). Let all such columns define the relation R. If we show that g does not commute with this relation, we are done.

Claim 2. $g \notin \mathcal{F}$ does not commute with $R \in Inv(\mathcal{F})$ (constructed above).

Proof. If g commutes with relation R, then g should produce an element of $R \in \mathsf{Inv}(\mathcal{F})$ on it's application on any column in the extended matrix N'. However, note that every column in N' is a composition of functions in \mathcal{F} . Since \mathcal{F} is a closed system, any composition of functions in it will produce a function $f \in \mathcal{F}$. Thus, this forces $g \in \mathcal{F}$ if g commutes with R and hence contradicts the assumption that $g \notin \mathcal{F}$.

Thus, we prove that $\mathsf{Pol}(\mathsf{Inv}(\mathcal{F})) \subseteq \mathcal{F}$ and hence $\mathsf{Pol}(\mathsf{Inv}(\mathcal{F})) = \mathcal{F}$ for a closed system \mathcal{F} . Also note that $\mathsf{Inv}(\mathcal{F})$ is a clone.

Theorem 3. If Γ is a clone, $Inv(Pol(\Gamma)) = \Gamma$. In general, for all Γ , $Inv(Pol(\Gamma)) = \langle \Gamma \rangle$

The proof of this theorem will be done in the next lecture.

References

[1] A. Krokhin, A. Bulatov, and P. Jeavons, *Structural Theory of Automata, Semigroups, and Universal Algebra*, Proceedings of the NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra, Montreal, Canada, 2003.

 [2] David Geiger, Closed systems of functions and predicates., Pacific J. Math. Volume 27, Number 1 (1968), 95-100.