
CS 880: Complexity of Counting Problems 02/16/2012

Lecture 8: Universal Algebra

Instructor: Jin-Yi Cai Scribe: Chetan Rao

1 Introduction

In today’s lecture, we will look more closely into Universal Algebra and the properties of
invariants (Inv) and polymorphisms (Pol). We shall also look at a few key theorems that will
help prove dichotomy in the following lectures.

A universal algebra is an algebraic system consists of a structure A = (A, Γ) where A is
the domain set (finite) and Γ is a set of relations on A with finite arity (Γ can be infinite).
Let F be a set of functions.

To better understand the relation between Pol and Inv, we need the concept of Galois-
correspondence between sets F and Γ.

Definition 1 (Galois correspondence). A Galois-correspondence between sets A and B is a
pair (σ, τ) of mappings between the power sets P(A) and P(B):

σ : P(A) → P(B), and τ : P(B) → P(A)

σ and τ must satisfy the following conditions. For all X, X
′

⊆ A and all Y, Y
′

⊆ B,

1. X ⊆ X
′

→ σ(X) ⊇ σ(X
′

), and Y ⊆ Y
′

→ τ(Y ) ⊇ τ(Y
′

)

2. X ⊆ τσ(X), and Y ⊆ στ(Y )

Applying the Pol operator on Γ, we get a set of functions that commute with Γ i.e.
Pol(Γ). On the other hand, if we apply the Inv operator on F , we get a set of relations
that commute with F i.e. Inv(F). It is easy to see that Pol and Inv satisfy property 1
of Galois-correspondence by their definitions as any subset of relations cannot decrease the
number of functions that commute (and vice-versa). In other words, the double application
of correspondence mapping is no smaller in size in set containment relation.

If we set F = Pol(Γ), then we can see that Γ commutes with every function in Pol(Γ)
which, in turn, commutes with every relation in Inv(Pol(Γ)). Hence, Γ ⊆ Inv(Pol(Γ)) as
pictured in figure 1. We can similarly prove that F ⊆ Pol(Inv(F)). Thus, we show that
(Pol, Inv) form a Galois-correspondence between F and Γ.

Lemma 1. Let the pair (σ, τ) be a Galois-correspondence between the sets A and B. Then
στσ = σ and τστ = τ .
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Figure 1: [1] The operators Pol and Inv on the set of functions (operations) Ok and set of
relations Rk.

Proof. Let X ⊆ A. By property 2 of Galois-correspondence, X ⊆ τσ(X). By property 1,
if we apply σ, it gives us σ(X) ⊇ στσ(X). By applying property 2, we also have σ(X) ⊆
σ(τσ(X)). Therefore, στσ(X) = σ(X). The second part of the claim can be proved similarly.

Hence, we can see that Pol(Γ) = Pol(Inv(Pol(Γ))) and Inv(F) = Inv(Pol(Inv(F))). In other
words, going forward twice makes the set no smaller and going forward thrice is equivalent
to once. This is depicted in figure 2.
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Figure 2: Sequence of Pol, Inv, Pol operators applied on Γ.

2 Properties of Pol and Inv

In this section, we look at certain important properties of Pol and Inv.

2.1 Inv(F)

Given a set of functions F , its invariant Inv(F) has the following properties:
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1. Closed under ∧: Let P, Q ∈ Inv(F) on Ar and N = [a1, a2, . . . , an] where ai is a column
vector of length r and ai ∈ P ∧ Q, then for all functions f ∈ F , the following holds:
b = f→(N) ∈ P ∧ Q.

N = [a1 a2 . . . an]
f

−→ b

a1,1 a2,1 . . . an,1
f

−→ b1

a1,2 a2,2 . . . an,2
f

−→ b2
...

...
...

...
...

...

a1,r a2,r . . . an,r
f

−→ br

∈ ∈ ∈ ∈
P ∧ Q P ∧ Q P ∧ Q P ∧ Q

2. Closed under ∃: Let P ∈ Inv(F) on Ar(r ≥ 2) and Q ⊆ Ar−1 s.t. Q = ∃xP i.e.
Q(x1, x2, . . . , xr−1) = ∃xrP (x1, x2, . . . , xr).

N̂ = x1 = [x1,1 . . . xn,1]
f

−→ b1

x2 = [x1,2 . . . xn,2]
f

−→ b2
...

...
...

...
...

xr−1 = [x1,r−1 . . . xn,r−1]
f

−→ br−1

∈ ∈ ∈
Q Q Q

∃xr=⇒

x1 = [x1,1 . . . xn,1]
f

−→ b1

x2 = [x1,2 . . . xn,2]
f

−→ b2
...

...
...

...
...

xr−1 = [x1,r−1 . . . xn,r−1]
f

−→ br−1

xr = [x1,r . . . xn,r]
f

−→ br

∈ ∈ ∈
P P P

3. Closed under Π (permutation): Let P ∈ Inv(F) on Ar and Π be a permutation s.t.
Q(x1, x2, . . . , xr) = P (xπ(1), xπ(2), . . . , xπ(r)), then Q = ΠP ∈ Inv(F).

4. Closed under direct product: Let P ∈ Inv(F) on Ar and A×P be a cartesian product.
Then for all P ∈ Inv(F), A × P ∈ Inv(F). This property combined with arity-2
Equality gates (=2) gives rise to the next property:

5. Closed under R (repetition): Let P ∈ Inv(F) on Ar and R be a repetition s.t. R.P =
{(x1, x1, x2, . . . , xr)|(x1, x2, . . . , xr) ∈ P}, then R.P ∈ Inv(F).

The set of relations satisfying these properties is called a ‘clone’.

2.2 Pol(Γ)

Given a set of relations Γ, it’s polymorphism Pol(Γ) has the following properties:
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1. Closed under composition (◦): Let f and g be two polymorphisms (of arity-n over Γ)
and Ni be matrices for i ∈ {1, 2, . . . , n} which have column vectors ∈ Pol(Γ). Then,
∀i, f→(Ni) ∈ Pol(Γ) and hence, (g ◦ f)→(N) = g→(f→(N1), f→(N2), . . . , f→(Nn)) ∈
Pol(Γ).

2. Closed under projection: Let f be a polymorphism over R ∈ Γ. Then, any such
fi(x1, . . . , xn) = xi is a polymorphism as fi is just selecting one of the columns that
are already known to be in R ∈ Γ.

To handle cases where the arity of composed functions are not the same, we can com-
pose such functions to obtain full arity functions. For instance if we want to compute
f(g1(x1, x2), g2(x2, x4), g3(x1, x2, x3)), we can project x1, x2 from (x1, x2, x3, x4) for g1 to ob-
tain an equivalent function with full arity. Similar techniques can be applied to g2 and g3 to
obtain a composition of arity-3 function with arity-4 functions.

Definition 2 (closed system). A closed system of functions on a finite set is a set of functions
that satisfies the above two properties.

3 Geiger’s Theorems

The theorems that follow in this section are from the work by Geiger [2]. We recall the
definition of partial polymorphism before we state the theorems.

Definition 3 (partial polymorphism). A partial function f : Ar → A is a partial polymor-
phism if f is defined for all matrices N such that every column belongs to the relation R ∈ Γ,
then f→(N) ∈ R.

Theorem 1. If Γ is a clone, then any partial polymorphism f of Γ can be extended to a full
polymorphism.

Proof. Let f be a partial polymorphism of Γ of arity-r. We may assume f is not empty as
we can extend any empty f to the idempotent function i.e. (i, i, . . . , i) 7→ i. WLOG, f is
non-empty and not full. If we manage to extend the polymorphism by one more tuple, by
induction we can extend it to the whole set and we are done.

Let r1, r2, . . . , rk and r 6= ri, ∀i ∈ {1, 2, . . . , k} be the tuples on which f is defined. Also,
let

N =





r1

r2

...
rk





Now, we extend the partial function f by fj(r) = j as follows: define fj = f ∪ (fj(r) =
j) ∀j ∈ {1, 2, . . . , |A|}. Now, if we can show that at least one of the fj is a polymorphism,
we are done.
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Claim 1. At least one of the fj’s is a partial polymorphism of Γ.

Proof. We prove this claim by contradiction. Let’s assume that none of the fj’s are partial
polymorphisms of Γ, ∀j ∈ {1, 2, . . . , |A|}. This means that for every j, we have a relation
Rj ∈ Γ and a matrix Nj such that -

Nj =





nj
1,1 . . . nj

1,r

nj
2,1 . . . nj

2,r
...

...
...

nj
n,1 . . . nj

n,r





∈ · · · ∈
Rj Rj

fj
→

(Nj)
−→ bj /∈ Rj ∀j ∈ {1, 2, . . . , |A|}

Also, it cannot be the case where fj is not defined on the rows as this will not result
in an invalidation. Hence, the rows of Nj are among r1, r2, . . . , rk, r. Now, let us suppose
that there are two equal rows s and t. In this case, we can define a relation R

′

j such that

R
′

j(x1, . . . , xs, . . . , xt, . . . , xn) = ∃xt(Rj(x1, . . . , xs, . . . , xt, . . . , xn) ∧ (xs = xt)). Since Γ is a

clone, we can always find such a minimal arity relation R
′

j.
Hence ∀j, ∃Rj ∈ Γ of minimal arity such that -

1. Nj has no repeated rows.
2. Nj must have row r.
3. For some j, Nj has at least 2 rows.

Property 2 follows from the definition of the partial polymorphism f because otherwise the
table would prove that f is not a partial polymorphism. Property 3 also holds because if it
does not, then all the matrices Nj have only row r. Let the first component of r be i. Then
consider the table Ni for Ri. This i ∈ Ri. But then fi(r) = i ∈ Ri, a contradiction. Hence
some Nj has at least two rows.

From these matrices, we can construct a new matrix N∗ by stacking each matrix Nj on
top of each other and pulling out the common row r from every Nj :

N =





= r

N∗





N1

N2

...

N|A|






6= φ





Since the clone Γ is closed under conjunction and extension, a new relation R can be
defined which says that the corresponding subsets of coordinates are in the relation Rj, for
j ∈ {1, 2, . . . , |A|}.
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Then a new relation R∗, using existential quantifier on the first row, can be defined, such
that N∗ is a table for it (R∗ ∈ 〈Γ〉).

Then f is defined on the rows of N∗, and would produce a tuple ∈ R∗. By definition
of R∗, this means there is some i ∈ A such that fi commutes with the table N . But then
looking at only the corresponding subset of coordinates for Ri, this is a contradiction to the
statement that fi does not commute with Ni. Therefore, f→(N∗) ∈ R and hence for some
j, fj is a partial polymorphism.

Thus, we show that every partial polymorphism can be extended by one more and this
concludes the theorem.

Theorem 2. If F is a closed system (under composition and projection), then Inv(F) is a
clone and Pol(Inv(F)) = F .

Proof. From the Galois-correspondence, we know that F ⊆ Pol(Inv(F)). We need to show
that the other way holds true if F is closed. Thus, it is enough to prove that given any
function g /∈ F , there is a relation R ∈ Inv(F) such that g does not commute with R.

Let g be a function with arity-r. Now, we list all the |A|n tuples for which g is defined.
Let this be represented by matrix N . Let g→(N) be the set of corresponding relations.

We now extend the matrix N by appending non-repetitive columns generated by applying
f(∀f ∈ F) to each sequence (possible repetition of coordinates) of rows. This eventually
terminates as the number of columns in the extended matrix (N

′

) are bounded (by size |A|n).
Let all such columns define the relation R. If we show that g does not commute with this
relation, we are done.

Claim 2. g /∈ F does not commute with R ∈ Inv(F) (constructed above).

Proof. If g commutes with relation R, then g should produce an element of R ∈ Inv(F) on
it’s application on any column in the extended matrix N

′

. However, note that every column
in N

′

is a composition of functions in F . Since F is a closed system, any composition of
functions in it will produce a function f ∈ F . Thus, this forces g ∈ F if g commutes with R
and hence contradicts the assumption that g /∈ F .

Thus, we prove that Pol(Inv(F)) ⊆ F and hence Pol(Inv(F)) = F for a closed system F .
Also note that Inv(F) is a clone.

Theorem 3. If Γ is a clone, Inv(Pol(Γ)) = Γ. In general, for all Γ, Inv(Pol(Γ)) = 〈Γ〉

The proof of this theorem will be done in the next lecture.
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