
CS 880: Complexity of Counting Problems 2/2/2012

Lecture 4: Baby Dichotomy Theorem - Part 2

Instructor: Jin-Yi Cai Scribe: Tyson Williams

In this lecture, we complete are first dichotomy theorem by completing the hardness
proof, which is broken into two parts based on the roots of the characteristic polynomial
of a second order recurrence relations. After more discussion about the tractable cases, we
introduce the framework for our next dichotomy.

1 Recap

Last time we set off to prove our first dichotomy theorem for a restricted case.

Theorem 1 (Theorem 8.3 in [2]). Every counting problem Holant([x0, x1, x2] | [y0, y1, y2, y3]),
where [x0, x1, x2] and [y0, y1, y2, y3] are Boolean signatures, is either

• in P,

• #P-complete but solvable in P for planar graphs, or

• #P-complete even for planar graphs.

There is a reason why we choose Holant([x0, x1, x2] | [y0, y1, y2, y3]) for the first Holant
dichotomy. It is because signatures of arity 3 are the smallest arity that can be #P-hard. If
all signatures are at most arity 2, then the connected components in the allowed graphs are
just cycles or paths, both of which have simple polynomial time algorithms. Then, putting
an arity 2 signature in between all of the arity 3 signatures naturally follows from the fact
that want to do holographic transformations.

2 Proving Hardness

2.1 Case 1: Distinct Roots

There are two cases in the hardness proof, and they depend on the roots of the characteristic
polynomial of second order recurrence relation defined by the entries of [y0, y1, y2, y3]. If the
roots are distinct, then there exists α1, α2, β1, and β2 such that yi = α3−i

1 αi
2 +β3−i

1 βi
2. Under
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a holographic transformation,

[y0, y1, y2, y3] =

[
α1

α2

]⊗3

+

[
β1

β2

]⊗3

=

[
α1 β1

α2 β2

]⊗3
([

1
0

]⊗3

+

[
0
1

]⊗3
)

=

[
α1 β1

α2 β2

]⊗3

[1, 0, 0, 1]T ,

our arity 3 signature [y0, y1, y2, y3] is just [1, 0, 0, 1], the equality signature on three bits. With
[1, 0, 0, 1] on the right, if we had [0, 1, 1] on the left, this problem would be #P-hard as it is
#VertexCover. So, we prove #P-hardness by reducing #VertexCover to our problem.
The first step is the holographic transformation from above, which is just a constant time
reduction! The action on the left side is

[0, 1, 1]

([
α1 β1

α2 β2

]−1
)⊗2

= [a0, a1, a2].

Now the yi’s are Boolean by assumption, but these ai’s could be complex numbers.
We want to interpolation any [g0, g1, g2] on the left side using an oracle for our problem

Holant([x0, x1, x2] | [y0, y1, y2, y3]), which by our constant time holographic reduction, is
equivalent to an oracle for the problem Holant([a0, a1, a2] | [1, 0, 0, 1]).

Consider the gadget construction in sections 7 and 8 of [2].1 Given that we want to
interpolate an arity two signature, this is about the simplest thing one can do. This is in
stark contrast gadget constructions in the theory of NP-completeness, where the gadgets
require some thought.2

2.1.1 Holant([0, 1, 0] | [0, 1, 1, 0])

Here is one example of a problem that we prove is #P-hard. This problem Holant([0, 1, 0] |
[0, 1, 1, 0]) is also a problem in the Ising model from physics known as an “ice” problem.
The reason for this is that it models the possible configurations that water molecules can
be in when they freeze. The molecules/vertices (of degree 3) have the Not-All-Equal
signature. The bonds/edges (of degree 2) also have the Not-All-Equal signature, but
it is better thought of as orientation of the edge. Valiant showed [3] that this problem is
solvable in polynomial time using holographic algorithms with matchgates. We show that
this problem is #P-hard over general (i.e. (2,3)-bipartite but not necessarily planar) graphs.

We have already proved that Holant([1, 0, 1] | [0, 1, 1, 0]) is hard, so our goal is to inter-
polate all signatures (on the left) of the form [a, b, a].

1A more complete version [1] titled “Holographic Reduction, Interpolation and Hardness” was handed
out in class and is also available on the class website. In this version, see Figures 2 and 4.

2See section 10 of [1] for more on this point.
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Theorem 2 (Theorem 6.1 of [1]). Holant([1, 0, 1] | [0, 1, 1, 0]) can be used to interpolate all
signatures of the form [a, b, a].

Proof. The proof uses the gadget is Figure 2 of [1]. In the general case, the entries in the
signature of Ni = [ai, bi, ci] can be expressed by the entries in the signature of Ni−1. For this
problem, the symmetry forces ai = ci. Thus,[

ai

bi

]
=

[
2 2
2 3

] [
ai−1

bi−1

]
,

and one can verify that this matrix satisfies the three conditions that are sufficient for
interpolation to succeed that we previously discussed for 2-by-2 matrixes.

2.1.2 Holant([1, 1, 0] | [1, 1, 1, 0])

The previous example was #P-hard over general graphs, but not planar graphs. This problem
Holant([1, 1, 0] | [1, 1, 1, 0]) is #P-hard even over planar graphs. This time, the proof uses
Gadget 1 in Figure 3, which gives the recursive relationai

bi
ci

 =

7191 12618 5535
3816 6723 2961
2025 3582 1584

ai−1

bi−1

ci−1

 .
Now we must check that this 3-by-3 matrix satisfies sufficient conditions for interpolation

to succeed. Let the matrix that defines the recursive relation be A. Then three conditions
are

1. detA 6= 0,

2.

ab

bb
cb

 is not orthogonal to any row eigenvector of A, and

3. ∀(i, j, k) 6= (i′, j′, k′) with i+ j + k = 0, αiβjγk 6= αi′βj′
γk′

, where α, β, and γ are the
eigenvalues of A.

Since detA 6= 0, αβγ 6= 0, so we can divide one side by the other and rewrite condition 3 as
∀(i, j, z) ∈ Z3 − {(0, 0, 0)} with i+ j + k = n, αiβjγk 6= 1. This is a lattice condition.

Recall that we defined the
(

n+2
2

)
-by-

(
n+2

2

)
matrix B̃⊗n. We think of the rows being indexed

by an element of κ = {0i1j2k | i+j+k = n} and the columns by s where 1 ≤ s ≤
(

n+2
2

)
. The

entry at (0i1j2k, s) is (αiβjγk)s, so it will have full rank is the lattice condition is satisfied.
We were able to find an algorithm that runs in polynomial time in the size of the matrix

that defines the recursive gadget relation and determines if the matrix satisfies the lattice
condition.
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Lemma 1 (Lemma 5.1 in [1]). Let f(x) ∈ Q[x] with roots α, β, and γ. It is decidable in
polynomial time whether any non-trivial solutions to αiβjγk = 1 exists, and if so, find all
solutions using a short basis of the lattice.

However, we decided against using it in our proof. Instead, we came up with a sufficient
condition.

Lemma 2 (Lemma 5.1 in [1]). Let f(x) ∈ Q[x] with roots α, β, and γ. If f is irreducible
except the form x3 + c for some c ∈ Q, there are no non-trivial solutions to αiβjγk = 1.

The characteristic polynomial of our gadget construction is x3 − 15498x2 + 419904x −
19683, and one can check that it is indeed irreducible.

At this point, it seems somewhat ridiculous that we are allowed to use such a large gadget
in a #P-hardness reduction. If P 6= #P, then computing the matrix of a recursive gadget
construction with e edge truly requires 2(e) steps. Since e does not depend on the problem,
this is a constant!3

2.2 Case 2: Double Root

The other case, the characteristic polynomial of second order recurrence relation defined by
the entries of [y0, y1, y2, y3] has a double root. Then there exists A 6= 0 and B such that
yi = Aiαi−1 + Bαi (if A = 0, then the signature is degenerate, which makes the problem
easy). In this case, we do a holographic transformation by

M =

[
1 B−1

3

α A+ B−1
3
α

]
,

which sends [y0, y1, y2, y3] to [1, 1, 0, 0]. Just as in our paper, we state this transformation
with discussing the background, except to say that its selection if informed by an underlying
signature theory of holographic algorithms.

What if the signature on the left side was [1, 0, 1]? What problem is Holant([1, 0, 1] |
[1, 1, 0, 0])? The arity 2 signature is equality, so we think of the vertices of degree 2 as edges
and we are either picking or not picking these edges. On the right, the vertices (of degree
3) demand that at most one of their incident edges should be selected. This problem counts
the number of (general) matchings. Since this problem is #P-hard even for planar 3-regular
graphs, we can do similar gadget constructions to those above to prove #P-hardness for the
problems in this double root case.

3 More on Tractability

In this section, we prepare for our next dichotomy theorem by extending the range of the
cases that we already know to be tractable.

3See section 10 of [1] for more on this point.
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Recall that a symmetric signature f = [f0, f1, · · · , fn] is Fibonacci if fk+2 = fk+1 + fk for
0 ≤ k ≤ n− 2. The characteristic polynomial of this recurrence relation is x2 − x− 1 with
roots

φ =
1 +
√

5

2
and φ =

1−
√

5

2
.

Then we can express fk as

fk = a

(
1
φ

)⊗n

+ b

(
1

φ

)⊗n

.

What do you think we should do next? A holographic transformation of course.

fk = a

(
1
φ

)⊗n

+ b

(
1

φ

)⊗n

=

[
1 1

φ φ

]⊗n
(
a

(
1
0

)⊗n

+ b

(
0
1

)⊗n
)
.

We call signatures of the form [a, 0, . . . , 0, b] generalized equality because they still enforce
that all bits should be equal but contribute a factor of a or b (instead of 1) when all bits
agree.

Let F ib be the set of signatures that satisfy the Fibonacci recurrence relation. If we do
the inverse of M to F , then they are all transformed to generalized equality signatures. On
the left, we can assume there is a binary equality signature [1, 0, 1]. Transforming [1, 0, 1] by
M gives another generalized equality signature! When we first discovered this, we did not
stop to understand why this happened. We now know that this is because M has one of the
two properties of an orthogonal matrix. Namely, the inner product of the columns is zero.

More generally, for any

[
a b
c d

]
that is an orthogonal matrix,

(1, 0, 0, 1) =
(
(1, 0)⊗2 + (0, 1)⊗2

) [a b
c d

]
= (a, b)⊗2 + (c, d)⊗2

= (a2, ab, ab, b2) + (c2, cd, cd, d2)

= (a2 + c2, ab+ cd, ab+ cd, b2 + d2)

= (1, 0, 0, 1).

Notice that this also provides an alternate proof of the tractability of F , since the set
of a set of generalized equality signatures is tractable. Of the exponentially many terms in
the Holant sum, there are only two that could possibly be nonzero, the all 0’s and the 1’s.
With this understanding, we can get a closed form (in terms of the first two entries of the
signatures and four entries in the transformation matrix) for what signatures are realizable
by a signature in F ib under a holographic transformation.
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Theorem 3. A symmetric signature [x0, x1, . . . , xn] is realizable under a holographic trans-
formation from F ib iff ∃a, b, c such that

b2 − 4ac 6= 0 and axk + bxk+1 + ck+1 = 0

for all 0 ≤ k ≤ n− 2.

However, the real question is when you have two sets of signatures and want to know
if they are simultaneously realizable as signatures in F ib under that same holographic
transformation.

Theorem 4 (Theorem 2.4 of [1]). Let G and R be sets of symmetric signatures. Then there
exists a holographic transformation from Holant(G | R) to Holant(F ib) if ∃a, b, c such that
b2 − 4ac 6= 0 and the following two conditions are satisfied:

1. for any Ri = [x
(i)
0 , · · · , x

(i)
ni ] and k = 0, 1, . . . , ni, ax

(i)
k + bx

(i)
k+1 + cx

(i)
k+2 = 0

2. for any Gj = [y
(j)
0 , · · · , y(j)

mi ] and k = 0, 1, . . . ,mi, ay
(j)
` − by

(j)
`+1 + cy

(j)
`+2 = 0

If a = −c = 0, then the signatures are of the form [∗, 0, . . . , 0, ∗], which is not in F ib or
generalized F ib (which we define shortly). Otherwise, if a = −c 6= 0, then both expressions
become the same and we can normalize a to 1 and get xk+2 = mxk+1 + xk for any m. We
call signatures with this form generalized Fibonacci. Under the assumption a = −c = 1, the
exceptional case is b2 − 4ac = m2 + 4 = 0, so m = ±2i. However, we still have the following
theorem.

Theorem 5. All generalized Fibonacci signatures are tractable (i.e. tractable ∀m ∈ C).

Proof. The proof can go in one of two ways. First, you can say that generalized Fibonacci
signatures capture everything except when m = ±2i. This for this exceptional case, there
exists an algorithm (that we have not discussed) that can handle these two special points.

Alternatively, you can say that everything is either covered by generalized Fibonacci
signatures or generalized equality signatures.

4 Next Dichotomy

Our next dichotomy will be for Holant∗(F) with any set of symmetric signatures F . The
star denotes the fact that in addition to the signatures in F , inputs are also allowed to use
any [a, b] from the set of unary functions U . Thus, Holant∗(F) = Holant(F ∪ U). Allowing
inputs to use functions not explicitly allowed is actually quite natural, since this is precisely
what happens in # CSP(F).

In the CSP framework, there is a bipartite graph with constraints on vertices in one partite
set and assignments to the vertices in the other partite set (with edges connecting a constraint
vertex to a variable vertex if the constraint using the variable). From the perspective of the
Holant framework, the assignments are the edges, so it is as if the variables vertices have
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equality functions (with arity equal to their degree). Let EQ = {=k| k > 0} be the set of
equality functions. Then

Holant(EQ∪F) = # CSP(F) = Holant(EQ | F).
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