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Lecture 9: Geiger’s Theorem

Instructor: Jin-Yi Cai Scribe: Aaron Gorenstein

Last time we proved the following two theorems:

Theorem 1 If F is closed (under composition, but technically also projection), then Pol Inv F = F . Recall we
assume all this is on a finite domain set.

Theorem 2 (Extending Partial Polymorphisms) Every partial polymorphism of a clone (∧, ∃, append, repeat, and
permutation) can be extended to a full polymorphism. Being partial means that the it has to hold only when the
function is defined for every row in the table.

1 Geiger’s Theorem

Today we will focus on the following theorem:

Theorem 3 (Geiger’s Theorem)
〈Γ〉 = Inv Pol (Γ) (1)

Recall the (straightforward) fact that Pol Γ = Pol 〈Γ〉. This completes the foundation of the Bulatov et
al. theory of polymorphisms in this context.

Proof. Proof What do we want? We want, for any relation Q /∈ 〈Γ〉, a polymorphism f of Γ such that
Q /∈ Inv f . Note that this is the main reason we wanted theorem 2, because it suffices now to have a partial
polymorphism of Γ that does not commute with Q. This is basically providing a witness, a table, that it does
not commute. Also note that it is enough to show that the right-hand side of theorem 3 is no bigger—we
already know that it must be at least as big.

Now we introduce a crucial construction:

P =
⋂

P ′∈〈Γ〉,P ′⊇Q

P ′ (2)

which is nonempty (since An is there) and a finite intersection (because it is over relations of arity n over
a finite domain set). As P ∈ 〈Γ〉 (because 〈Γ〉 is closed under intersection), we essentially have a minimal
containment. Hence P 6= Q, and therefore ∃t ∈ P −Q. We list all tuples of Q of arity n in a table. Consider
the table:

N =
[(

...
)
∈ Q . . .

(
...
)
∈ Q

]
f→ t /∈ Q. (3)

If f were a partial polymorphism of Γ, this would be a witness we want for Q. So if we can define f just on
this (a partial polymorphism) then we’re done.

Here is a problem: what if there are 2 identical rows in the table N? We can address this by defining
the set of tuples Q′ = Q with “one row erased”. The formal meaning of erasing a row is as follows: Say i, j
are the indices of the two identical rows. We define Q′ on (x1, x2, . . . , xi, . . . , x̂j , . . . , xn), so that is on n− 1
arity.

Q′(x1, x2, . . . , xi, . . . , x̂j , . . . , xn) = ∃xj [Q(x1, . . . , xi, . . . , xj , . . . , xn) ∧ xi = xj ] /∈ 〈Γ〉 (4)

So we establish that Q′ /∈ 〈Γ〉, otherwise we could obtain Q by repeat and permutation operators on Q′.
Now we proceed through induction: We claim that since Q′ /∈ 〈Γ〉∃ a polymorphism g of 〈Γ〉 such that

Q′ /∈ Inv g. That means there’s a table such that all the columns are in Q′, but it produces a tuple not in
Q′. What does that table look like? The table ∃N ′ consists of a sequence of columns of N after the jth row
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was removed and g→(N ′) /∈ Q′ (by induction). Therefore g→(N) is defined! We just put in that one row
with repetition, that being one of the operations we’re closed under. But wait: what is our base case?

Our induction is on arity n. At the base case, n = 1, there are no repeated rows. Our base case is
this: suppose N has no identical rows. Now we define our f as on every row to produce t. So f→(N) = t.
That’s the only definition of f . It is a partial function! All that remains now is to show that f is a partial
polymorphism. We shall do so with contradiction.

Let P1 be a relation in 〈Γ〉 such that f /∈ Inv (P1). Say P1 is of minimal arity—clearly there is such a
minimal. Then ∃N1 such that f→(N1) is defined and the columns of N1 are in P1 and f→(N1) /∈ P1. We
first argue that there are no repeated rows: if there are, then let P2 = ∃xj(P1 ∧ xi = xj). Then we say that
N2 is a table for P2, where N2 is just N1 with the jth row removed. So then f→(N2) is defined, P2 ∈ 〈Γ〉,
N2 ⊆ P2, but f→(N2) /∈ P2. That contradicts our claim of minimal arity, so we know that any minimal
example has no repeated rows.

We’ve defined f on N with no repeated rows, and we have a counter-example. So our witness is some
rows of N , maybe under permutation or deletion. So N1 has no repeated rows and f→(N1) is defined, but
f is only defined on rows of N . We conclude: N1 consists of some subsets of rows of N , possibly permuted.

Take those rows, and say they’re the first l rows, 1 ≤ l ≤ n. We define the following relation:

P1 ×An−l. (5)

In other words, just those l entries, and the anything else we’d like. So we have an n-arity relation in 〈Γ〉.
Certainly this contains Q, we are more permissive than before. So P1 × An−l ⊇ Q. So this must contain
the minimal such relation, namely P , so P1 × An−l ⊃ P 3 t. Contradiction! We know t cannot be in
P1 ×An−l.

2 Roadmap

Our next goal is to show that #CSP (Γ) ≡T #CSP (〈Γ〉). We can implement conjunction (∧) really easily,
but simulating the existential quantifier will be complex. There we try to say, for Q(

→
y ) = ∃xP (x,

→
y ).

One direction of the equivalence is obvious, we’re really trying to show that #CSP (Γ) ≥T #CSP (〈Γ〉).
We will do this with replacement by induction, one at a time.

This will ultimately show:

#CSP (Γ) ≡T #CSP (〈Γ〉)↔ Pol 〈Γ〉 = Γ. (6)

This raises the question: what qualities in the polymorphism world characterize tractability? We will get
the partial result that the Malt’sev Polymorphism is a necessary condition for tractability, it must be that
m(x, y, z) ∈ Pol Γ.

Such a polymorphism is equivalent to saying it is “congruence permutable”, there’s an equivalence relation
in 〈Γ〉 that becomes a predicate you can use to express equivalence in some way.

The idea is that it defines the congruence pair of α and β:

α ◦ β = {(a, c)|∃b(a, b) ∈ α, (b, c) ∈ β} = β ◦ α. (7)

As on exercise, show that saying α ◦ β = β ◦ α is the same as saying α ◦ β ⊆ β ◦ α.

3 The Incompressible Cleverness of M.P.

Recall: we define a ternary relation:

P = {(x, y, z)|(x, y) ∈ α, (y, z) ∈ β} ∈ 〈Γ〉 (8)
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And given
a
b
c
→

c
?
a

(9)

we want to find a value for ? such that (a, b) ∈ α, (c, ?) ∈ α and (b, c) ∈ β, (?, a) ∈ β.
We exploit the equivalence relation from the Malt’sev polymorphism!

a a c→ c
a b c→ d
a c c→ a

(10)

By the Malt’sev polynomial, all 4 of these columns must be in P . Critically, there must exist that useful d.
We will show that it is iff and equivalent to a quality called “rectangularity” (Dyer-Richerby).

3.1 A Glimpse of Rectangularity

Consider huge tuples, and sub-tuples (a, c) (so combined they are a single valid 100-tuple, for example), and
another (b, d). We want to say that if:

(a, c) ∈ R

(a, d) ∈ R

(b, d) ∈ R

then we can conclude that (b, c) ∈ R as well. If you draw these out, they look like a rectangle, hence the
name. If all relations in the clone are rectangular, we call it strongly rectangular.

This property has a strong affinity with congruence. Think in terms of a graph: the quality is if they are
a path that shares a tail. Then we have an equivalence relation! We can define α as

α = {(x, y), (x, z)|(x, y) ∈ R, (x, z) ∈ R} (11)

which means “share tail”, and we can similarly define β for “share head”. See that (a, c), (b, d) are in the
composition of α, β.

4 Using Malt’sev

The main theorem of Bulatov is that the existence of the Malt’sev polymorphism is necessary for tractability.
(Technically we say for not-#P-hardness, because if P=#P the first statement becomes nonsense.)

Bulatov conjectured that it was also sufficient, but found a counter-example.

4.1 Using Malt’sev

We will sketch how the lack of a Malt’sev polymorphism causes hardness. If 〈Γ〉 does not have a Malt’sev
polymorphism, then there must exist two congruences α, β such that α ◦ β 6= β ◦ α. In turn that means
∃(a, b, c)s.t. (a, b) ∈ α, (b, c) ∈ β, but there is no b′ such that (a, b′) ∈ β, (b′, c) ∈ α.

We then know that (a, c) ∈ α◦β, but (c, a) /∈ α◦β. That relation, [∃(a, c) ∈ R, (c, a) /∈ R] is reflexive but
not symmetric. What’s the simplest embodiment of such a relation? Expressing the relation as a look-up
matrix:

T =
(

1 1
0 1

)
. (12)
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That is a graph homomorphism! Not only that, but it is for partial order on {0, 1}. Flipping the diagonal
gets independent set. Consider adding to each edge this situation: u→ v ← w, so we put T and TT . Their
product is (

1 1
1 2

)
. (13)

By “thickening” (adding identical, repeated edges) we power each element in the matrix. This causes the 2
to blow up to such a degree that we “notice” and can mod out that value. Thus we can count vertex covers!
Or independent sets, as the case may be.
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