CS 880: Complexity of Counting Problems

Lecture 9: Geiger's Theorem

Instructor: Jin-Yi Cai

Last time we proved the following two theorems:
Theorem 1 If \mathcal{F} is closed (under composition, but technically also projection), then $\operatorname{Pol} \operatorname{Inv} \mathcal{F}=\mathcal{F}$. Recall we assume all this is on a finite domain set.

Theorem 2 (Extending Partial Polymorphisms) Every partial polymorphism of a clone (\wedge, \exists, append, repeat, and permutation) can be extended to a full polymorphism. Being partial means that the it has to hold only when the function is defined for every row in the table.

1 Geiger's Theorem

Today we will focus on the following theorem:
Theorem 3 (Geiger's Theorem)

$$
\begin{equation*}
\langle\Gamma\rangle=\operatorname{Inv} \operatorname{Pol}(\Gamma) \tag{1}
\end{equation*}
$$

Recall the (straightforward) fact that $\mathrm{Pol} \Gamma=\mathrm{Pol}\langle\Gamma\rangle$. This completes the foundation of the Bulatov et al. theory of polymorphisms in this context.

Proof. Proof What do we want? We want, for any relation $Q \notin\langle\Gamma\rangle$, a polymorphism f of Γ such that $Q \notin \operatorname{Inv} f$. Note that this is the main reason we wanted theorem 2, because it suffices now to have a partial polymorphism of Γ that does not commute with Q. This is basically providing a witness, a table, that it does not commute. Also note that it is enough to show that the right-hand side of theorem 3 is no bigger-we already know that it must be at least as big.

Now we introduce a crucial construction:

$$
\begin{equation*}
P=\bigcap_{P^{\prime} \in\langle\Gamma\rangle, P^{\prime} \supseteq Q} P^{\prime} \tag{2}
\end{equation*}
$$

which is nonempty (since A^{n} is there) and a finite intersection (because it is over relations of arity n over a finite domain set). As $P \in\langle\Gamma\rangle$ (because $\langle\Gamma\rangle$ is closed under intersection), we essentially have a minimal containment. Hence $P \neq Q$, and therefore $\exists t \in P-Q$. We list all tuples of Q of arity n in a table. Consider the table:

$$
\begin{equation*}
N=[(\vdots) \in Q \ldots(\vdots) \in Q] \stackrel{f}{\rightarrow} t \notin Q . \tag{3}
\end{equation*}
$$

If f were a partial polymorphism of Γ, this would be a witness we want for Q. So if we can define f just on this (a partial polymorphism) then we're done.

Here is a problem: what if there are 2 identical rows in the table N ? We can address this by defining the set of tuples $Q^{\prime}=Q$ with "one row erased". The formal meaning of erasing a row is as follows: Say i, j are the indices of the two identical rows. We define Q^{\prime} on $\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, \hat{x_{j}}, \ldots, x_{n}\right)$, so that is on $n-1$ arity.

$$
\begin{equation*}
Q^{\prime}\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, \hat{x_{j}}, \ldots, x_{n}\right)=\exists x_{j}\left[Q\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right) \wedge x_{i}=x_{j}\right] \notin\langle\Gamma\rangle \tag{4}
\end{equation*}
$$

So we establish that $Q^{\prime} \notin\langle\Gamma\rangle$, otherwise we could obtain Q by repeat and permutation operators on Q^{\prime}.
Now we proceed through induction: We claim that since $Q^{\prime} \notin\langle\Gamma\rangle \exists$ a polymorphism g of $\langle\Gamma\rangle$ such that $Q^{\prime} \notin \operatorname{Inv} g$. That means there's a table such that all the columns are in Q^{\prime}, but it produces a tuple not in Q^{\prime}. What does that table look like? The table $\exists N^{\prime}$ consists of a sequence of columns of N after the $j^{\text {th }}$ row
was removed and $g_{\rightarrow}\left(N^{\prime}\right) \notin Q^{\prime}$ (by induction). Therefore $g_{\rightarrow}(N)$ is defined! We just put in that one row with repetition, that being one of the operations we're closed under. But wait: what is our base case?

Our induction is on arity n. At the base case, $n=1$, there are no repeated rows. Our base case is this: suppose N has no identical rows. Now we define our f as on every row to produce t. So $f_{\rightarrow}(N)=t$. That's the only definition of f. It is a partial function! All that remains now is to show that f is a partial polymorphism. We shall do so with contradiction.

Let P_{1} be a relation in $\langle\Gamma\rangle$ such that $f \notin \operatorname{Inv}\left(P_{1}\right)$. Say P_{1} is of minimal arity-clearly there is such a minimal. Then $\exists N_{1}$ such that $f_{\rightarrow}\left(N_{1}\right)$ is defined and the columns of N_{1} are in P_{1} and $f_{\rightarrow}\left(N_{1}\right) \notin P_{1}$. We first argue that there are no repeated rows: if there are, then let $P_{2}=\exists x_{j}\left(P_{1} \wedge x_{i}=x_{j}\right)$. Then we say that N_{2} is a table for P_{2}, where N_{2} is just N_{1} with the $j^{\text {th }}$ row removed. So then $f_{\rightarrow}\left(N_{2}\right)$ is defined, $P_{2} \in\langle\Gamma\rangle$, $N_{2} \subseteq P_{2}$, but $f_{\rightarrow}\left(N_{2}\right) \notin P_{2}$. That contradicts our claim of minimal arity, so we know that any minimal example has no repeated rows.

We've defined f on N with no repeated rows, and we have a counter-example. So our witness is some rows of N, maybe under permutation or deletion. So N_{1} has no repeated rows and $f_{\rightarrow}\left(N_{1}\right)$ is defined, but f is only defined on rows of N. We conclude: N_{1} consists of some subsets of rows of N, possibly permuted.

Take those rows, and say they're the first l rows, $1 \leq l \leq n$. We define the following relation:

$$
\begin{equation*}
P_{1} \times A^{n-l} \tag{5}
\end{equation*}
$$

In other words, just those l entries, and the anything else we'd like. So we have an n-arity relation in $\langle\Gamma\rangle$. Certainly this contains Q, we are more permissive than before. So $P_{1} \times A^{n-l} \supseteq Q$. So this must contain the minimal such relation, namely P, so $P_{1} \times A^{n-l} \supset P \ni t$. Contradiction! We know t cannot be in $P_{1} \times A^{n-l}$.

2 Roadmap

Our next goal is to show that $\# C S P(\Gamma) \equiv_{T} \# C S P(\langle\Gamma\rangle)$. We can implement conjunction (\wedge) really easily, but simulating the existential quantifier will be complex. There we try to say, for $Q(\vec{y})=\exists x P(x, \vec{y})$.

One direction of the equivalence is obvious, we're really trying to show that $\# C S P(\Gamma) \geq_{T} \# C S P(\langle\Gamma\rangle)$. We will do this with replacement by induction, one at a time.

This will ultimately show:

$$
\begin{equation*}
\# C S P(\Gamma) \equiv_{T} \# C S P(\langle\Gamma\rangle) \leftrightarrow \operatorname{Pol}\langle\Gamma\rangle=\Gamma . \tag{6}
\end{equation*}
$$

This raises the question: what qualities in the polymorphism world characterize tractability? We will get the partial result that the Malt'sev Polymorphism is a necessary condition for tractability, it must be that $m(x, y, z) \in \operatorname{Pol} \Gamma$.

Such a polymorphism is equivalent to saying it is "congruence permutable", there's an equivalence relation in $\langle\Gamma\rangle$ that becomes a predicate you can use to express equivalence in some way.

The idea is that it defines the congruence pair of α and β :

$$
\begin{equation*}
\alpha \circ \beta=\{(a, c) \mid \exists b(a, b) \in \alpha,(b, c) \in \beta\}=\beta \circ \alpha . \tag{7}
\end{equation*}
$$

As on exercise, show that saying $\alpha \circ \beta=\beta \circ \alpha$ is the same as saying $\alpha \circ \beta \subseteq \beta \circ \alpha$.

3 The Incompressible Cleverness of M.P.

Recall: we define a ternary relation:

$$
\begin{equation*}
P=\{(x, y, z) \mid(x, y) \in \alpha,(y, z) \in \beta\} \in\langle\Gamma\rangle \tag{8}
\end{equation*}
$$

And given

$$
\begin{gather*}
a \\
b \tag{9}\\
c
\end{gathered} \rightarrow \begin{gathered}
c \\
c
\end{gather*} \begin{aligned}
& \star \\
& a
\end{aligned}
$$

we want to find a value for \star such that $(a, b) \in \alpha,(c, \star) \in \alpha$ and $(b, c) \in \beta,(\star, a) \in \beta$.
We exploit the equivalence relation from the Malt'sev polymorphism!

$$
\begin{array}{lll}
a & \underline{a} & c \rightarrow c \\
a & \underline{b} & c \rightarrow d \tag{10}\\
a & \underline{c} & c \rightarrow a
\end{array}
$$

By the Malt'sev polynomial, all 4 of these columns must be in P. Critically, there must exist that useful d. We will show that it is iff and equivalent to a quality called "rectangularity" (Dyer-Richerby).

3.1 A Glimpse of Rectangularity

Consider huge tuples, and sub-tuples (a, c) (so combined they are a single valid 100-tuple, for example), and another (b, d). We want to say that if:

$$
\begin{aligned}
& (a, c) \in R \\
& (a, d) \in R \\
& (b, d) \in R
\end{aligned}
$$

then we can conclude that $(b, c) \in R$ as well. If you draw these out, they look like a rectangle, hence the name. If all relations in the clone are rectangular, we call it strongly rectangular.

This property has a strong affinity with congruence. Think in terms of a graph: the quality is if they are a path that shares a tail. Then we have an equivalence relation! We can define α as

$$
\begin{equation*}
\alpha=\{(x, y),(x, z) \mid(x, y) \in R,(x, z) \in R\} \tag{11}
\end{equation*}
$$

which means "share tail", and we can similarly define β for "share head". See that $(a, c),(b, d)$ are in the composition of α, β.

4 Using Malt'sev

The main theorem of Bulatov is that the existence of the Malt'sev polymorphism is necessary for tractability. (Technically we say for not-\#P-hardness, because if $\mathrm{P}=\# \mathrm{P}$ the first statement becomes nonsense.)

Bulatov conjectured that it was also sufficient, but found a counter-example.

4.1 Using Malt'sev

We will sketch how the lack of a Malt'sev polymorphism causes hardness. If $\langle\Gamma\rangle$ does not have a Malt'sev polymorphism, then there must exist two congruences α, β such that $\alpha \circ \beta \neq \beta \circ \alpha$. In turn that means $\exists(a, b, c) s . t . ~(a, b) \in \alpha,(b, c) \in \beta$, but there is no b^{\prime} such that $\left(a, b^{\prime}\right) \in \beta,\left(b^{\prime}, c\right) \in \alpha$.

We then know that $(a, c) \in \alpha \circ \beta$, but $(c, a) \notin \alpha \circ \beta$. That relation, $[\exists(a, c) \in R,(c, a) \notin R]$ is reflexive but not symmetric. What's the simplest embodiment of such a relation? Expressing the relation as a look-up matrix:

$$
T=\left(\begin{array}{ll}
1 & 1 \tag{12}\\
0 & 1
\end{array}\right)
$$

That is a graph homomorphism! Not only that, but it is for partial order on $\{0,1\}$. Flipping the diagonal gets independent set. Consider adding to each edge this situation: $u \rightarrow v \leftarrow w$, so we put T and T^{T}. Their product is

$$
\left(\begin{array}{ll}
1 & 1 \tag{13}\\
1 & 2
\end{array}\right) .
$$

By "thickening" (adding identical, repeated edges) we power each element in the matrix. This causes the 2 to blow up to such a degree that we "notice" and can mod out that value. Thus we can count vertex covers! Or independent sets, as the case may be.

