
CS 880: Complexity of Counting Problems February 23, 2012

Lecture 10: Reduction and Dyer-Richerby

Instructor: Jin-Yi Cai Scribe: Aaron Gorenstein

1 Simulating an Existential Quantifier

We begin with a reduction. Let Γ be a finite set of relations on the finite set A. Say that there exists

P (x0, . . . , xk) ∈ Γ, Q(x1, . . . , xk) = ∃x0P (x0, x1, . . . , xk). (1)

Note the k is constant here. We will prove the following lemma:

Lemma 1
#CSP (Γ ∪ {Q}) ≤T #CSP (Γ). (2)

This has the corollary:

Corollary 1
#CSP (〈Γ〉) ≡T #CSP (Γ). (3)

Recall that 〈Γ〉 is technically infinite, so we really mean that every finite subset is equivalent to the RHS.
One direction of the equivalence is easy, and the other direction follows from our reduction.

Simulating the Existential. Given an instance of #CSP (Γ∪{Q}), say that Q is used n times. This n, unlike
k, is part of the input. Let’s first try to replace Q with P . Understand that Q, being a relation, can be seen
as the set of tuples:

Q = {−→a1,
−→a2, . . . ,

−→at} (4)

where t is finite (a combination of finite domain and fixed arity). So consider the tuple −→a1: what does that
mean for P? It really means that −→a1 may have up to some `1 extensions, and −→a2 has `2 extensions, and so
on.

From our original (Q-containing) instance I we can make I ′ without any Q, and we can Turing-reduce:
if we know the number of solutions to I ′ (or multiple variations), we can compute the number of solutions
to I, achieving our goal. We can start by considering that for every P , there’s some −→ai that satisfies it, plus
`i extensions, but that is exponentially many cases to consider!

The trick we use is to define N(s1, s2, . . . , st) where s1, s2, . . . , st ≥ 0, and
∑

si = n. This refers to the
cardinality of solutions to I where, of the n occurrences of Q, exactly s1 are satisfied by a1, s2 by a2, and
so on. So we avoid caring about the order, and you see this value is quite useful. We have seen this trick
before! The number of solutions to I, our goal, can be defined in terms of N :

I =
∑

Pt
i=1 si=n,

s1,s2,...,st≥0

N(s1, s2, . . . , st) (5)

This does not have exponentially many terms! There are
(
n+t−1

t−1

)
terms, and recall that t is constant, so

that is polynomial.
For every solution, P has a superset of the satisfying assignments for Q. This is for every Q that we

have replaced with P . So for each of these P satisfied by −→ai , there are `i many extensions. Thus we know
the number of solutions for such an I ′ is∑

s1,s2,...,st

N(s1, s2, . . . , st)`s1
1 `s2

2 . . . `st
t . (6)

1

This comes about by replacing every instance of Q by P . We know the number of extensions, and the value
we really want to know about is N(·). Note that if every tuple has exactly one extension, we’re done! But
of course we can’t assume that, and we currently do not have enough information to infer N(·).

What we do now is construct duplicate copies of I ′. In particular, we make m duplicates, where Im means
each Q constraint is replaced by P with m different free variables. For example, if we had Q(x3, x1, x1, x7),
we make m duplicates of P , in the following form: P (yi, x3, x1, x1, x7). Note that each yi is used exactly
once: so there are m times the number of Q clauses we’re replacing! The number of satisfying solutions to
Im is: ∑

N(s1, s2, . . . , st)(`s1
1 `s2

2 . . . `st
t)m (7)

Note how the core value, the N(·) value, is independent of m.
We can set this up as a linear system, writing it as

∑
−→s x−→s · (αs)m and noting this is a value we know

due to our Turing reduction. The unknowns in this system are the x values, by which we mean the N(·)
value. But this then becomes a Vandermonde system! There is the question if every row is distinct, but
even if some are the same we can combine the associated xs and continue: our goal is to compute the sum
of the x values, so adding a few “earlier” does not harm our outcome.

2 Proof by Dyer-Richerby

This proof relates how the Malt’sev polymorphism relates to rectangularity and its connection to congruency.
In the big picture: This will sew up our clone theorem, with the idea being that if you don’t have a Malt’sev
polymorphism, you get something #P -hard, like INDSET to ANTICHAIN. In the future we will discuss this
in the context of graph homomorphisms: there the Malt’sev is iff, not just if, in terms of tractability. Then
we will return to #CSP .

The theorem, that there is a Malt’sev polymorphism if and only if the relational clone is congruence-
permutable, is already known to be true in Universal Algebra, but it is usually stated in an infinite setting.
It involves constructions of the (arbitrary, possibly infinite) direct product, and sub-algebra, homomorphism
constructions. It can be carefully checked that the corresponding finite version also holds, by the standard
(but long chain of) proofs from Universal Algebra. But we will present a direct proof by Dyer-Richerby for
the finite case.

We begin by defining rectangularity.

Definition 1 (Rectangularity) A relation R is expressed as R ⊆ Ak+`, for k, ` expressing an arbitrary partition of
R’s arity. The relation R is rectangular if:

(−→a ,
−→
b) ∈ R

(
−→
b ,−→c) ∈ R

(
−→
b ,
−→
d) ∈ R =⇒ (−→a ,

−→
d)

Consider this visualization:
a c
b d

Essentially the “rows” are the tuples, and they are partitioned into (−→a ,−→c) and (
−→
b ,
−→
d). Rectangularity says that if

we draw one diagonal line and still have a valid tuple, then the other diagonal must also be a valid tuple. We will
call Γ rectangular if every R ∈ 〈Γ〉 is rectangular.

Now we are ready to state our theorem:

Theorem 1 If Γ (equiv. 〈Γ〉) is rectangular, then there exists a Malt’sev polymorphism of Γ (〈Γ〉).

Proof. We will start by listing all tuples for all relations H in Γ. We list: H1,H2, . . . ,H|Γ|. Each Hi is
a segment, indexed by triples of elements in H. Do not get confused by the fact the elements in H are
themselves also tuples! So each Hi has length |Hi|3.

2

With this listing, we define the relation R as all possible tuples of that form: where the ith segment
(being the slots indexed by triples from Hi) contains only elements from Hi. So the arity, not the size, of
this R is

|Γ|∑
i=1

|Hi|3 · arity(Hi). (8)

We can notate |Hi|3 as `Hi and the arity as rHi . In other words, R = H1 ×H1 . . .H1 ×H2 . . .H2 . . ., where
each i is present the right amount of times.

We highlight 3 entries in R in particular.

−→u1 in index j1, j2, j3 ∈ [`H] has tuple −→xj1
−→u2 in index j1, j2, j3 ∈ [`H] has tuple −→xj2
−→u3 in index j1, j2, j3 ∈ [`H] has tuple −→xj3

In other words, −→ui has, in each slot, the ith tuple that makes up the index for that slot. We can construct
these tuples, because R ∈ 〈Γ〉, and it is conjunction and such.

These three entries help us build this important table. This table is like what we’ve seen in previous
lecture, but with rows instead of columns. There are only going to be three rows: those very tuples we just
defined.

N =

 −→u1−→u2−→u3

 (9)

Note that if there are any two identical columns (here the columns are 3 “tall”), then we can just define
R′ = ∃xj(R ∧ (xi = xj)). Clearly R′ ∈ 〈Γ〉. The table cannot become empty from this. We can define the
corresponding N ′ table.

Now we can assume that N ′ has no two identical columns. We permute the columns of N ′ to make N ′′,
such that for all columns of the form a

a
c

 (10)

are in the front, followed by all columns of the form a
c
c

 (11)

and the the rest of the columns. Note that this division is always possible—the table is nonempty.
We can ensure that there is at least one column in the table corresponding to the parts in (a, a, c)

and (a, c, c). Say that there are two relations H,H ′ ∈ Γ—they can be equal. There are also some tuples,
−→x ∈ H,−→y ∈ H ′ and two locations k, `—again, the tuples could be equal and the indices could also be equal.
And lastly say that xk = a, y` = b for some a 6= b ∈ A. Then somewhere in our table there must be a triple
(column-wise) of the form (a, a, a), and by symmetry (b, b, b). Because these are distinct, they would not be
combined in our N ′ step, and so we can say the first is in our first kind of tuple in N ′′, and the second our
second kind.

If such a difference does not exist, then every single relation still in N ′ must be on the same element a,
so that the relation has this point on which it is true. In that case it is trivially rectangular and can easily
define the Malt’sev:

m =

(a, a, a) = a

(b, c, c) = b

(b, b, c) = c

. (12)

3

For the remaining cases we can define it arbitrarily.
Now we can define relation and corresponding table N ′′′ to take away the “other stuff” off of R′′. We’re

just using projection, so we are still in the clone. The only thing in N ′′′ are the triples of the form either
(10) or (11).

Now we use our rectangularity hypothesis: R′′′ is rectangular, so if we have the situation

−→a → −→c
−→
b →

−→
d

−→a →
−→
d

means that (
−→
b → −→c) must also exist. As (

−→
b ,−→c) ∈ R′′′, so ∃(

−→
b ,−→c , ?, . . . , ?) ∈ R′′. Observe that we

transitioned from R′′′ to R′′. We will ultimately get all the way back to R.
Now we are ready to define our Malt’sev polymorphism, which will be f : A3 → A. We’ll define in every

column of N ′′ the image in the corresponding entry as −→v . So −→v = (
−→
b ,−→c , ?, . . . , ?) ∈ R′′. Note that N ′′ is

really the same as N ′. Is this function well defined? The triples making our input are all distinct, so there’s
no inconsistency. While not every triple has to occur in N ′, we know that so far we can have a well-defined
Malt’sev operation.

We define the operation:

∀(a, b, c) ∈ N3f(a, b, c) =

{
c if b = a

a otherwise
. (13)

So for all (a, a, b) or (a, b, b) that are in the table we are well-defined, and now for those not in the table we
still work.

This reassures us that it is a Malt’sev operation, but it remains to be shown that it is a polymorphism.
Fortunately, that just follows from our construction. Consider a segment of N referring to relation H.

A particular column:

 a1

a2

a3

, well, the f(·) application on that will of course return something in R.

The (
−→
b ,−→c) ∈ R′′ because of rectangularity, and we can reverse-construct that back into R. If f is a

polymorphism, it must be that f(i, j, k) looks at an index and produces something in R, so it must be in
H.

4

