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1 When is a ternary signature hard?

Assume we have f = [x0, x1, x2, x3]. The Holant
∗(f) is hard unless one of the following holds:

1. ∃(a, b) ̸= 0, ax0 + bx1 − ax2 = 0, and ax0 + bx1 − ax2 = 0.

2. x0 + x2 = 0, and x1 + x3 = 0.

Since

(
x0 x1 x2

x1 x2 x3

)a
b
c

 has a 1-dimension solution, we can get a recurrence relation

going normally or backwards. Thus depending on if it has double roots, we have three cases

1. xk = α3−k
1 αk

2 + β3−k
1 βk

2 , where

(
α1 β1

α2 β2

)
is non-singular.

2. xk = ckαk−1 + dαk, where c ̸= 0 because it’s non-degenerate.

3. The reversal of case 2.

1.1 Case 1

In this case, we have X = [x0, x1, x2, x3] =

(
α1

α2

)⊗3

+

(
β1

β2

)⊗3

. Let M =

(
α1 β1

α2 β2

)
, then

X = M⊗3(=3). Thus Holant(=2 ∪U | M⊗3(=3) ∪ U) = Holant((=2 M⊗2) ∪ U | (=3) ∪ U),
and we kind of stuck.

Now let’s check the two tractable conditions, not satisfying condition 1 implies α1β1 +
α2β2 ̸= 0 and condition 2 implies α2

1 + α2
2 ̸= 0. Then we the holographic transformation

under a complex-orthogonal matrix

T =
1√

α2
1 + α2

2

(
α1 α2

−α2 α1

)

Thus Holant∗(=2| X) = Holant∗

(
=2|

(
1
0

)⊗3

+

(
β1

β2

)⊗3
)
, and β1β2 ̸= 2. Here we are

renaming the β’s.
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The Vertex-Cover problem is hard even on 3-regular graphs. In the Holant language, it

is Holant([0, 1, 1] | [1, 0, 0, 1]. Now let M =

(
1 β1

0 β2

)
, we have

Holant([0, 1, 1] | [1, 0, 0, 1]) = Holant

(
[0, 1, 1](M−1)⊗2 |

(
1
0

)⊗3

+

(
β1

β2

)⊗3
)

On the left is in fact [0, 1, 1](M−1)⊗2 = 1
β2 [0, β2, 1− 2β1].

Thus, if we can construct the binary signature on the left, the problem is hard. Now we
construct the gadget by linearly connecting three arity-3 nodes and each connected with a
unary signature. The two unary on either side is the same, call it [t0, t1] and the middle one
different, [s0, s1]. We want this gadget to be [0, β2, 1 − 2β1]. This is not hard to compute
and we in fact have two degrees of freedom here. Thus it will succeed on most of the cases.

The exception cases are as follows:

1. β1 = 1, β2 = ±i.

2. β1 = −1
2
, β2 = ± i√

2
.

3. β1 =
1
2
, β2 = ± i

2
.

4. β1 =
1
2
, β2 = ± i√

2
.

Now we consider another hard problem to start with, that is, the Independent-Set prob-
lem on 3-regular graphs. In the Holant language it is Holant([1, 1, 0] | [1, 0, 0, 1]). By the
same argument, we need to construct [β2, 1 − β1, β

2
1 − 2β1]. In case 1, it is equality and is

for free. In case 2, we want to construct a different gadget with only two nodes and one
unary signature used. It will cover case 2. For case 3 and 4 we apply a transformation of

M =

(
−i −

√
2√

2 −i

)
or

(
i −

√
2√

2 i

)
, and it can be covered as well.

1.2 Case 2

Similarly, for case 2, not satisfying condition 1 implies α ̸= ±i, and condition 2 gives nothing
other than c ̸= 0.

Now let T =

(
1 d−1

3

α c+ d−1
3
α

)
. Claim T⊗3


1
1
0
0

 = X. This expression is from previous

works about matchgates.
Then we do the QR decomposition of T . So T = QR where Q is symmetric and or-

thogonal. Q = 1√
1+α2

(
1 α
α −1

)
. QT = R =

(
r1 r2
0 r3

)
. So Holant∗(X) = Holant∗(Q⊗3X).

But

Q⊗3X = R⊗3

((
1
0

)⊗3

+

[(
1
0

)⊗2

⊗
(
0
1

)
+ · · ·+

(
0
1

)
⊗
(
1
0

)⊗2
])
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It is easily verified that the last two entries of this signature are 0. The expression is in fact

[∗, r21r3, 0, 0]. We can normalize it and get, say, [v, 1, 0, 0]. Now we do one more

(
1 v−1

3

0 1

)
and we are done.
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