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Abstract. Partition functions, also known as homomorphism functions, form a rich family
of graph invariants that contain combinatorial invariants such as the number of k-colorings or the
number of independent sets of a graph and also the partition functions of certain “spin glass” models
of statistical physics such as the Ising model. Building on earlier work by Dyer and Greenhill [Random
Structures Algorithms, 17 (2000), pp. 260–289] and Bulatov and Grohe [Theoret. Comput. Sci., 348
(2005), pp. 148–186], we completely classify the computational complexity of partition functions.
Our main result is a dichotomy theorem stating that every partition function is either computable in
polynomial time or #P-complete. Partition functions are described by symmetric matrices with real
entries, and we prove that it is decidable in polynomial time in terms of the matrix whether a given
partition function is in polynomial time or #P-complete. While in general it is very complicated to
give an explicit algebraic or combinatorial description of the tractable cases, for partition functions
described by Hadamard matrices (these turn out to be central in our proofs) we obtain a simple
algebraic tractability criterion, which says that the tractable cases are those “representable” by a
quadratic polynomial over the field F2.
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1. Introduction. We study the complexity of a family of graph invariants known
as partition functions or homomorphism functions (see, for example, [12, 20, 21]).
Many natural graph invariants can be expressed as homomorphism functions, among
them the number of k-colorings, the number of independent sets, and the number of
nowhere-zero k-flows of a graph. The functions also appear as the partition functions
of certain “spin-glass” models of statistical physics, such as the Ising model or the
q-state Potts model.

Let A ∈ R
m×m be a symmetric real matrix with entries Ai,j . The partition

function ZA associates with every graph G = (V,E) the real number

ZA(G) =
∑

ξ:V→[m]

∏
{u,v}∈E

Aξ(u),ξ(v).

We refer to the row and column indices of the matrix, which are elements of [m] :=
{1, . . . ,m}, as spins. We use the term configuration to refer to a mapping ξ : V → [m]
assigning a spin to each vertex of the graph. To avoid difficulties with models of real
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number computation, throughout this paper we restrict our attention to algebraic
numbers.1 Let RA denote the set of algebraic real numbers.

Our main result is a dichotomy theorem stating that for every symmetric matrix
A ∈ R

m×m
A

the partition function ZA is either computable in polynomial time or #P-
hard. This extends earlier results by Dyer and Greenhill [8], who proved the dichotomy
for 0-1 matrices, and Bulatov and Grohe [6], who proved it for nonnegative matrices.
Therefore, in this paper we are mainly interested in matrices with both positive and
negative entries.

Motivation. The main motivation for this work is understanding the complex-
ity of computation for problems within #P (and problems reducible to #P) and in
particular understanding the boundary between tractable and intractable. An easy
modification of Ladner’s theorem [17] shows that there is no clean boundary between
tractable and intractable within the whole of #P in the sense that, if FP (the class
of polynomial-time computable functions) is unequal to #P, then there is an infinite
hierarchy in between. However, partition functions present a wide class of problems,
containing many natural and interesting examples, for which dichotomy theorems do
hold.

Examples. In the following, let G = (V,E) be a graph with N vertices. Consider
the matrices

S =

(
0 1
1 1

)
and C3 =

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠ .

It is not hard to see that ZS(G) is the number of independent sets of a graph G and
ZC3(G) is the number of 3-colorings of G. More generally, if A is the adjacency matrix
of a graph H , then ZA(G) is the number of homomorphisms from G to H . Here we
allow H to have loops and parallel edges; the entry Ai,j in the adjacency matrix is
the number of edges from vertex i to vertex j.

Let us turn to matrices with negative entries. Consider

(1.1) H2 =

(
1 1
1 −1

)
.

Then 1
2ZH2(G)+2N−1 is the number of induced subgraphs of G with an even number

of edges. Hence up to a simple transformation, ZH2 counts induced subgraphs with
an even number of edges. To see this, observe that for every configuration ξ : V → [2]
the term

∏
{u,v}∈E Aξ(u),ξ(v) is 1 if the subgraph of G induced by ξ−1(2) has an even

number of edges and −1 otherwise. Note that H2 is the simplest nontrivial Hadamard
matrix. Hadamard matrices will play a central role in this paper. Another simple
example is the matrix

U =

(
1 −1

−1 1

)
.

It is a nice exercise to verify that for connected G the number ZU (G) is 2N if G is
Eulerian and 0 otherwise.

1There is a problem with the treatment of real numbers in [6], but all results stated in [6] are valid
for algebraic real numbers. We use a standard representation of algebraic numbers by polynomials
and standard Turing machines as our underlying model of computation. See [9, 23] for a more
detailed discussion of this issue.
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A less obvious example of a counting function that can be expressed in terms of a
partition function is the number of nowhere-zero k-flows of a graph. It can be shown
that the number of nowhere-zero k-flows of a graph G with N vertices is k−N ·ZFk

(G),
where Fk is the k× k matrix with (k− 1)’s on the diagonal and −1’s everywhere else.
This is a special case of a more general connection between partition functions for
matrices A with diagonal entries d and off diagonal entries c and certain values of the
Tutte polynomial. This well-known connection can be derived by establishing certain
contraction-deletion identities for the partition functions. For example, it follows from
[24, equation (3.5.4)] and [22, equations (2.26) and (2.9)].

Complexity. Like the complexity of graph polynomials [2, 14, 16, 19] and con-
straint satisfaction problems [1, 3, 4, 5, 10, 13, 15], which are both closely related
to our partition functions, the complexity of partition functions has already received
quite a bit of attention. Dyer and Greenhill [8] studied the complexity of counting
homomorphisms from a given graph G to a fixed graph H without parallel edges.
(Homomorphisms from G to H are also known as H-colorings of G.) They proved
that the problem is in polynomial time if every connected component of H is either
a complete graph with a loop at every vertex or a complete bipartite graph, and the
problem is #P-hard otherwise. The two polynomial-time cases are very easy to see;
in both cases, a trivial algorithm suffices. The interesting thing about the result of
Dyer and Greenhill is that they manage to show that the problem is #P-hard in every
other case. Note that this result gives a complete classification of the complexity of
computing ZA for symmetric 0-1 matrices A since every such matrix can be viewed
as the adjacency matrix of an undirected graph H . Bulatov and Grohe [6] extended
this result to symmetric nonnegative matrices. To state the result, it is convenient
to introduce the notion of a block of a matrix A. To define the blocks of A, it is
best to view A as the adjacency matrix of a graph with weighted edges; then each
nonbipartite connected component of this graph corresponds to one block, and each
bipartite connected component corresponds to two blocks. A formal definition will
be given below. Bulatov and Grohe [6] proved that computing the function ZA is in
polynomial time if the row rank of every block of A is 1 and #P -hard otherwise. Their
theorem is stated formally below. The problem for matrices with negative entries was
left open. In particular, Bulatov and Grohe asked for the complexity of the partition
function ZH2 for the matrix H2 introduced in (1.1). Note that H2 is a matrix with one
block of row rank 2. As we shall see, ZH2 is computable in polynomial time. Hence
the complexity classification of Bulatov and Grohe does not extend to matrices with
negative entries. Nevertheless, we obtain a dichotomy, and this is our main result.

Results and outline of the proofs. Our main theorem is the following.
Theorem 1.1 (Dichotomy Theorem). Let A ∈ R

m×m
A

be a symmetric matrix.
Then the function ZA either can be computed in polynomial time or is #P-hard.
Also, there is a polynomial-time computable predicate on symmetric matrices A such
that ZA is computable in polynomial time if the predicate holds, and ZA is #P-hard
otherwise.

Let us call a matrix A tractable if ZA can be computed in polynomial time and
hard if computing ZA is #P-hard. Then the Dichotomy Theorem states that every
symmetric matrix with entries in RA is either tractable or hard. The classification
of matrices into tractable and hard matrices can be made explicit, but is very com-
plicated and does not give any real insights. Very roughly, a matrix A is tractable
if each of its blocks can be written as a tensor product of a positive matrix of row
rank 1 and a tractable Hadamard matrix. Unfortunately, the real classification is not
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that simple, but for now let us focus on tractable Hadamard matrices. Recall that a
Hadamard matrix is a square matrix H with entries from {−1, 1} such that H ·HT is
a diagonal matrix. Let H ∈ {−1, 1}n×n be a symmetric n×n Hadamard matrix with
n = 2k. Let ρ : Fk2 → [n] be a bijective mapping, which we call an index mapping. We
say that a multivariate polynomial h(X1, . . . , Xk, Y1, . . . , Yk) over F2 symmetrically
represents H with respect to ρ if, for all x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ F

k
2 , it

holds that

h(x1, . . . , xk, y1, . . . , yk) = 1 ⇐⇒ Hρ(x),ρ(y) = −1.

For example, the F2-polynomial h2(X1, Y1) = X1 · Y1 symmetrically represents
the matrix H2 with respect to the index mapping ρ(x1) = x1 +1. The F2-polynomial
h4(X1, X2, Y1, Y2) = X1 · Y2 ⊕X2 · Y1 symmetrically represents the matrix

H4 =

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠
with respect to the index mapping ρ(x1, x2) = 2 · x1 + x2 + 1. The qualifier “sym-
metrically” in “symmetrically represents” indicates that the same index mapping is
applied to both x and y. We will need to consider asymmetric representations later.
Note that we can represent a matrix H ∈ {−1, 1}n×n by an F2-polynomial in this way
only if n is a power of 2. In this case, for every index mapping ρ there is a unique
F2-polynomial symmetrically representing h with respect to ρ. We say that H has
a quadratic representation if there is an index mapping ρ and an F2-polynomial h of
degree at most 2 that symmetrically represents H with respect to ρ. Our dichotomy
theorem for Hadamard matrices is as follows.

Theorem 1.2 (complexity classification for Hadamard matrices). A symmetric
Hadamard matrix H is tractable if it has a quadratic representation and hard other-
wise.

Hence, in particular, the matrices H2 and H4 are tractable. The tractability
part of Theorem 1.2 is an easy consequence of the fact that counting the number of
solutions of a quadratic equation over F2 (or any other finite field) is in polynomial
time (see [11, 18]). The following symmetric Hadamard matrix has no quadratic
representation and so is hard:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 −1
1 −1 1 −1 1 −1 1 1
1 1 −1 −1 1 1 −1 1
1 −1 −1 1 1 −1 −1 −1
1 1 1 1 −1 −1 −1 1
1 −1 1 −1 −1 1 −1 −1
1 1 −1 −1 −1 −1 1 −1
−1 1 1 −1 1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The difficulty in proving the hardness part is that the degree of a polynomial
representing a Hadamard matrix is not invariant under the choice of the index map-
ping ρ. However, for normalized Hadamard matrices, that is, Hadamard matrices
whose first row and column consist entirely of +1s, we can show that either they are
hard or they can be written as an iterated tensor product of the two simple Hada-
mard matrices H2 and H4. This gives us a canonical index mapping and hence a
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canonical representation by a quadratic F2-polynomial. Unfortunately, we could not
find a direct reduction from arbitrary to normalized Hadamard matrices. To get a
reduction, we first need to work with a generalization of partition functions. If we
view the matrix A defining a partition function as an edge-weighted graph, then this
is the natural generalization to graphs with edge and vertex weights. Let A ∈ R

m×m
A

be a symmetric matrix and D ∈ R
m×m
A

a diagonal matrix, which may be viewed as
assigning the weight Di,i to each vertex i. We define the partition function ZA,D by

ZA,D(G) =
∑

ξ:V→[m]

∏
{u,v}∈E

Aξ(u),ξ(v) ·
∏
v∈V

Dξ(v),ξ(v)

for every graph G = (V,E). As a matter of fact, we need a further generalization that
takes into account that vertices of even and odd degrees behave differently when it
comes to negative edge weights. For a symmetric matrix A ∈ R

m×m
A

and two diagonal
matrices D,O ∈ R

m×m
A

we let

ZA,D,O(G) =
∑

ξ:V→[m]

∏
{u,v}∈E

Aξ(u),ξ(v) ·
∏
v∈V

deg(v) is even

Dξ(v),ξ(v) ·
∏
v∈V

deg(v) is odd

Oξ(v),ξ(v)

for every graph G = (V,E). We call ZA,D,O the parity-distinguishing partition func-
tion (pdpf) defined by A,D,O. We show that the problem of computing ZA,D,O(G)
is always either polynomial-time solvable or #P-hard, and we call a triple (A,D,O)
tractable or hard accordingly. Obviously, if D = O = Im are identity matrices, then
we have ZA = ZA,D = ZA,D,O.

Returning to the outline of the proof of Theorem 1.2, we can show that, for
every Hadamard matrix H , either H is hard or there is a normalized Hadamard
matrix H ′ and diagonal matrices D′, O′ such that computing ZH is polynomial-time
equivalent to computing ZH′,D′,O′ . Actually, it turns out that we may assume D′ to
be an identity matrix and O′ to be a diagonal matrix with entries 0, 1 only. For the
normalized matrix H ′ we have a canonical index mapping, and we can use this to
represent the matrices D′ and O′ over F2 (in a sense to be explained later). Then we
obtain a tractability criterion that essentially says that (H ′, D′, O′) is tractable if the
representation of H ′ is quadratic and that of O′ is linear in the sense that, under the
canonical index mapping of H ′, the subset of indices for which O′ is 1 forms a linear
subspace. There is no analogous condition on D′ because it is an identity matrix.

For the proof of the Dichotomy Theorem, Theorem 1.1, we actually need an
extension of Theorem 1.2 that states a dichotomy for parity-distinguishing partition
functions ZA,D,O, where A is a “bipartization” of a Hadamard matrix (this notion will
be defined later). The proof sketched above can be generalized to give this extension.
Then to prove the Dichotomy Theorem, we first reduce the problem of computing
ZA to the problem of computing ZC for the connected components C of A. The
next step is to eliminate duplicate rows and columns in the matrix, which can be
done at the price of introducing vertex weights. Using the classification theorem for
nonnegative matrices and some gadgetry, from there we get the desired reduction to
parity-distinguishing partition functions for bipartizations of Hadamard matrices.

Let us finally mention that our proof shows that the Dichotomy Theorem holds
not only for simple partition functions ZA but also for vertex-weighted and parity-
distinguishing partition functions.

Preliminaries. Let A ∈ R
m×n
A

be an (m × n)-matrix. The entries of A are
denoted by Ai,j . The ith row of A is denoted by Ai,∗ and the jth column by A∗,j . By
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abs(A) we denote the matrix obtained from A by taking the absolute value of each
entry in A.

Let Im be the m × m identity matrix and, for every Λ ⊆ [m], let Im;Λ be the
m×m matrix that is all zero except that Ij,j = 1 for j ∈ Λ.

The Hadamard product C of two m×n matrices A and B, written C = A ◦B, is
them×n componentwise product in which Ci,j = Ai,jBi,j . −A denotes the Hadamard
product of A and the matrix in which every entry is −1.

We write 〈u, v〉 to denote the inner product (or dot product) of two vectors in R
n
A
.

Recall that the tensor product (or Kronecker product) of an r × s matrix B and
a t× u matrix C is an rt × su matrix B ⊗ C. For k ∈ [r], i ∈ [t], � ∈ [s], and j ∈ [u],
we have (B ⊗ C)(k−1)t+i,(�−1)u+j = Bk,�Ci,j . It is sometimes useful to think of the
product in terms of rs “blocks” or “tiles” of size t× u.

B ⊗ C =

⎛⎜⎝ B11C . . . B1sC
...

. . .
...

Br1C . . . BrsC

⎞⎟⎠ .

For index sets I ⊆ [m], J ⊆ [n], we let AI,J be the (|I|×|J |)-submatrix with entries
Ai,j for i ∈ I, j ∈ J . The matrixA is indecomposable if there are no index sets I ⊆ [m],
J ⊆ [n] such that (I, J) �= (∅, ∅), (I, J) �= ([m], [n]), and Ai,j = 0 for all (i, j) ∈(
([m] \ I)× J

)
∪
(
I × ([n] \ J)

)
. Note that, in particular, an indecomposable matrix

has at least one nonzero entry. The blocks of a matrix are the maximal indecomposable
submatrices. For every symmetric matrix A ∈ R

n×n we can define a graph G with
vertex set [n] and edge set

{
{i, j}

∣∣ Ai,j �= 0
}
. We call the matrix A bipartite if the

graph G is bipartite. We call A connected if the graph G is connected. The connected
components of A are the maximal submatrices AC,C such that G[C], the subgraph
of G induced by C ⊆ [n], is a connected component. If the connected component
G[C] is not bipartite, then AC,C is a block of A. If the connected component G[C] is

bipartite and contains an edge, then AC,C has the form ( 0
BT

B
0 ), where B is a block

of A. Furthermore, all blocks of A arise from connected components in this way.
For two counting problems f and g, we write f ≤ g if there is a polynomial time

Turing reduction from f to g. If f ≤ g and g ≤ f hold, we write f ≡ g. For a
symmetric matrix A and diagonal matrices D,O of the same size, EVAL(A,D,O)
(EVAL(A,D), EVAL(A)) denotes the problem of computing ZA,D,O(G) (ZA,D(G),
ZA(G), resp.) for an input graph G (which need not be a simple graph; it may have
loops and/or multiedges).

We can now formally state the result of Bulatov and Grohe that we use.
Theorem 1.3 (Bulatov and Grohe). Let A be a symmetric matrix with nonneg-

ative entries in RA.
(1) If A is connected and not bipartite, then EVAL(A) is in polynomial time if

the row rank of A is at most 1; otherwise EVAL(A) is #P-hard.
(2) If A is connected and bipartite, then EVAL(A) is in polynomial time if the

row rank of A is at most 2; otherwise EVAL(A) is #P-hard.
(3) If A is not connected, then EVAL(A) is in polynomial time if each of its con-

nected components satisfies the corresponding condition stated in (1) or (2);
otherwise EVAL(A) is #P-hard.

2. Hadamard matrices. The main focus of this section is on proving Theo-
rem 2.2 below which is a strengthened version of Theorem 1.2. Suppose that H is an
n × n Hadamard matrix (which is not necessarily symmetric) and that ΛR and ΛC
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are subsets of [n]. It will be useful to work with the bipartization M,Λ of H , ΛR, and
ΛC which we define as follows. Let m = 2n, and let M be the m×m matrix defined
by the following equations for i, j ∈ [n]: Mi,j = 0, Mi,n+j = Hi,j , Mn+i,j = Hj,i, and
Mn+i,n+j = 0. The matrix M can be broken into four “tiles” as follows:

M =

(
0 H
HT 0

)
.

Let Λ = ΛR ∪ {n + j | j ∈ ΛC}. Note that the matrix Im;Λ can be decomposed
naturally in terms of the tiles In;ΛR and In;ΛC :

Im;Λ =

(
In;ΛR 0
0 In;ΛC

)
.

We identify a set of conditions on H , ΛR, and ΛC that determine whether or not
the problem EVAL(M, Im, Im;Λ) can be computed in polynomial time. We will
see how this implies Theorem 1.2. The reason that we work with the problem
EVAL(M, Im, Im;Λ) is that M is a symmetric matrix, whereas H is not necessar-
ily symmetric. If H is symmetric and ΛR = ΛC , then essentially the same set of
conditions determines whether or not the problem EVAL(H, In, In;ΛR) can be com-
puted in polynomial time. The only extra condition that we need for this is that our
representation (defined below) is consistent on the rows and columns of H . Therefore,
we add this stipulation in the conditions that we develop below.

The group condition. For an n× n matrix H and a row index l ∈ [n], let

G(H, l) := {Hi,∗ ◦Hl,∗ | i ∈ [n]} ∪ {−Hi,∗ ◦Hl,∗ | i ∈ [n]} .

The group condition for H is as follows:
(CG) For all l ∈ [n], both G(H, l) = G(H, 1) and G(HT , l) = G(HT , 1).
The group condition gets its name from the fact that the condition implies that

G(H, l) is an Abelian group (see Lemma 7.1). As all elements of this group have order
2, the group condition gives us some information about the order of such matrices, as
the following lemma (which we prove later in section 7) shows.

Lemma 2.1. Let H be an n × n Hadamard matrix. If H satisfies (GC), then
n = 2k for some integer k.

Note than in general, the number of rows and columns of a Hadamard matrix
need not be a power of 2. For example, there are 12× 12 Hadamard matrices.

The representability conditions. We describe Hadamard matrices H satisfying
(GC) by F2-polynomials. By Lemma 2.1 these matrices have order n = 2k. We extend
our notion of “symmetric representation”: Let ρR : Fk2 → [n] and ρC : Fk2 → [n] be
index mappings (i.e., bijective mappings) andX = (X1, . . . , Xk) and Y = (Y1, . . . , Yk).
A polynomial h(X,Y ) over F2 represents H with respect to ρR and ρC if for all
x,y ∈ F

k
2 it holds that

h(x,y) = 1 ⇐⇒ HρR(x),ρC(y) = −1.

So a symmetric representation is just a representation with ρR = ρC . We say that
the set ΛR is linear with respect to ρR if there is a linear subvectorspace LR ⊆ F

k
2

such that ρR(LR) = ΛR. Note that, if ΛR is linear, then |ΛR| = 2l for some l ≤ k.
We may therefore define a coordinatization of ΛR (with respect to ρR) as a linear
map φR : Fl2 → F

k
2 such that φR(Fl2) = LR, that is, ΛR is just the image of the
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concatenated mapping ρR ◦ φR. We define the notion of linearity of ΛC with respect
to ρC and the coordinatization of ΛC with respect to ρC similarly. For a permutation
π ∈ Sk we use the shorthand Xπ · Y :=

⊕k
i=1Xπ(i) · Yi.

The following conditions stipulate the representability (R) of H by F2-polynomi-
als, the linearity (L) of the sets ΛR and ΛC , and the appropriate degree restrictions
on the associated polynomials (D).

(R) There are index mappings ρR : Fk2 → [n] and ρC : Fk2 → [n] and a permutation
π ∈ Sk such that (with respect to ρR and ρC) the matrix H is represented
by a polynomial of the form

(2.1) h(X,Y ) = Xπ · Y ⊕ gR(X)⊕ gC(Y ).

Moreover, if ΛR is nonempty, then ρR(0) ∈ ΛR. Similarly, if ΛC is nonempty,
then ρC(0) ∈ ΛC . Finally, if H is symmetric and ΛR = ΛC , then gR = gC

and ρR = ρC .
(L) ΛR and ΛC are linear with respect to ρR and ρC , respectively.
(D) Either ΛR is empty or there is a coordinatization φR of ΛR with respect to

ρR such that the polynomial gR ◦ φR has degree at most 2. Similarly, either
ΛC is empty or there is a coordinatization φC of ΛC with respect to ρC such
that the polynomial gC ◦φC has degree at most 2. Finally, if H is symmetric
and ΛR = ΛC is nonempty, then φR = φC .

Actually, it turns out that condition (D) is invariant under the choice of the coordi-
natizations φR, φC . However, the conditions are not invariant under the choice of the
representation ρR, ρC , and this is a major source of technical problems.

Before we can apply the conditions (R), (L), and (D), we deal with one technical
issue. Let H be an n × n Hadamard matrix, and let ΛR,ΛC ⊆ [n] be subsets of
indices. Let M,Λ be the bipartization of H , ΛR, and ΛC .

If H is symmetric and ΛR = ΛC , then we say that H is positive for ΛR (and ΛC)
if there is an entry Hi,i = +1 such that i ∈ ΛR or ΛR = ∅. In the remaining case (if
H is not symmetric or ΛR �= ΛC), we say that H is positive for ΛR and ΛC if there is
an entry Hi,j = +1 such that

1. i ∈ ΛR or ΛR = ∅, and
2. j ∈ ΛC or ΛC = ∅.

Note that, if H is not positive for ΛR and ΛC , then −H is positive for ΛR and ΛC .
Since ZM,Im,Im;Λ(G) = (−1)|E(G)|Z−M,Im,Im;Λ(G), the problems EVAL(M, Im, Im;Λ)
and EVAL(−M, Im, Im;Λ) have equivalent complexity, so we lose no generality by
restricting our attention to the positive case, which is helpful for a technical reason.

We can now state the theorem which is proved in this section.
Theorem 2.2. Let H be an n × n Hadamard matrix, and let ΛR,ΛC ⊆ [n] be

subsets of indices. Let M,Λ be the bipartization of H, ΛR, and ΛC , and let m = 2n. If
H is positive for ΛR and ΛC , then EVAL(M, Im, Im;Λ) is polynomial-time computable
if and only if H, ΛR, and ΛC satisfy the group condition (GC) and conditions (R),
(L), and (D). Otherwise EVAL(M, Im, Im;Λ) is #P-hard. If H is not positive for
ΛR and ΛC , then EVAL(M, Im, Im;Λ) is polynomial-time computable if and only if
−H, ΛR, and ΛC satisfy the group condition (GC) and conditions (R), (L), and (D).
Otherwise EVAL(M, Im, Im;Λ) is #P-hard. There is a polynomial-time algorithm that
takes input H, ΛR, and ΛC and decides whether EVAL(M, Im, Im;Λ) is polynomial-
time computable or #P-hard.

The theorem is proved using a sequence of lemmas. Proof sketches of these lemmas
will be given in this section, and full proofs will be given later in section 7.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3344 L. GOLDBERG, M. GROHE, M. JERRUM, AND M. THURLEY

Lemma 2.3 (Group Condition Lemma). Let H be an n×n Hadamard matrix and
let ΛR,ΛC ⊆ [n] be subsets of indices. LetM,Λ be the bipartization of H, ΛR, and ΛC ,
and let m = 2n. If H does not satisfy (GC), then EVAL(M, Im, Im;Λ) is #P-hard.
There is a polynomial-time algorithm that determines whether H satisfies (GC).

Proof sketch. For any integer p and a symmetric nonnegative matrix C [p], which
depends upon H , the proof uses gadgetry to transform an input to EVAL(C [p]) into
an input to EVAL(M, Im, Im;Λ). The fact that H does not satisfy (GC) is used to
show that, as long as p is sufficiently large with respect to M , then C [p] has a block
of rank greater than one. By Theorem 1.3 (due to Bulatov and Grohe), EVAL(C [p])
is #P-hard, so EVAL(M, Im, Im;Λ) is #P-hard.

Lemma 2.4 (Polynomial Representation Lemma). Let H be an n×n Hadamard
matrix and ΛR,ΛC ⊆ [n] subsets of indices. Suppose that H satisfies (GC) and that
H is positive for ΛR and ΛC. Then the representability condition (R) is satisfied, and
there is a polynomial-time algorithm that computes the representation.

Proof sketch. The representation is constructed inductively. First, permutations
are used to transform H into a normalized matrix Ĥ, that is, a Hadamard matrix Ĥ
whose first row and column consist entirely of +1s, which still satisfies (GC). We then
show that there is a permutation of Ĥ which can be expressed as the tensor product
of a simple Hadamard matrix (either H2 or H4) and a smaller normalized symmetric
Hadamard matrix H ′. By induction, we construct a representation for H ′ and use
this to construct a representation for the normalized matrix Ĥ of the form Xπ ·Y for
a permutation π ∈ Sk. We use this to construct a representation for H .

Lemma 2.5 (Linearity Lemma). Let H be an n × n Hadamard matrix and
ΛR,ΛC ⊆ [n] subsets of indices. Let M,Λ be the bipartization of H, ΛR, and
ΛC, and let m = 2n. Suppose that (GC) and (R) are satisfied. Then the prob-
lem EVAL(M, Im, Im;Λ) is #P-hard unless the linearity condition (L) holds. There
is a polynomial-time algorithm that determines whether (L) holds.

Proof sketch. For a symmetric nonnegative matrix C, which depends upon H ,
the proof uses gadgetry to transform an input to EVAL(C, Im, Im;Λ) into an input of
EVAL(M, Im, Im;Λ). By (R), there are bijective index mappings ρR : Fk2 → [n] and
ρC : Fk2 → [n] and a permutation π ∈ Sk such that (with respect to ρR and ρC) the
matrix H is represented by a polynomial of the appropriate form, according to (2.1).
Let τR be the inverse of ρR and τC be the inverse of ρC . Let LC = τC(ΛC) and
LR = τR(ΛR). We show that either EVAL(C, Im, Im;Λ) is #P-hard or (L) is satisfied.
In particular, the assumption that EVAL(C, Im, Im;Λ). is not #P-hard means that its
blocks all have rank 1 by Theorem 1.3 (due to Bulatov and Grohe). We use this fact
to show that LR is a linear subspace of ΛR and that LC is a linear subspace of ΛC .
To show that LR is a linear subspace of ΛR, we use LR to construct an appropriate
linear subspace and compare Fourier coefficients to see that it is, in fact, LR itself.

Lemma 2.6 (Degree Lemma). Let H be an n×n Hadamard matrix and ΛR,ΛC ⊆
[n] subsets of indices. LetM,Λ be the bipartization of H, ΛR, and ΛC, and let m = 2n.
Suppose that (GC), (R), and (L) are satisfied. Then EVAL(M, Im, Im;Λ) is #P-hard
unless the degree condition (D) holds. There is a polynomial-time algorithm that
determines whether (D) holds.

Proof sketch. For any (even) integer p and a symmetric nonnegative matrix C [p],
which depends upon H , the proof uses gadgetry to transform an input to EVAL(C [p])
into an input to EVAL(M, Im, Im;Λ). Using the representation of H , a coordinati-
zation φR with respect to ΛR, and a coordinatization φC with respect to ΛC , some

of the entries C
[p]
a,b of the matrix C [p] may be expressed as sums, over elements in
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F
�
2, for some �, of appropriate powers of −1. We study properties of polynomials
g(X1, . . . , Xk) ∈ F2[X1, . . . , Xk], discovering that the number of roots of a certain
polynomial gα,β,γ(X1, . . . , Xk), which is derived from g(X1, . . . , Xk), depends upon
the degree of g. From this we can show that if (D) does not hold, then there is an
even p such that EVAL(C [p]) is #P-hard.

Proof of Theorem 2.2. By the equivalence of the problems EVAL(M, Im, Im;Λ)
and EVAL(−M, Im, Im;Λ) we can assume that H is positive for ΛR and ΛC . The
hardness part follows directly from the lemmas above. We shall give the proof for the
tractability part. Given H , ΛR, and ΛC satisfying (GC), (R), (L), and (D), we shall
show how to compute ZM,Im,Im;Λ(G) for an input graph G in polynomial time.

Note first that ZM,Im,Im;Λ(G) = 0 unless G is bipartite. If G has connected
components G1, . . .Gc, then

ZM,Im,Im;Λ(G) =
c∏
i=1

ZM,Im,Im;Λ(Gi).

Therefore, it suffices to give the proof for connected bipartite graphs. Let G = (V,E)
be such a graph with vertex bipartition U ∪̇W = V . Let Vo ⊆ V be the set of odd-
degree vertices in G and let Uo = W ∩ Vo and Wo = W ∩ Vo be the corresponding
subsets of U and W . Let Ue = U \ Uo and We =W \Wo. We have

ZM,Im,Im;Λ(G) =
∑

ξ:V→[m]

∏
{u,w}∈E

Mξ(u),ξ(w)

∏
v∈Vo

(Im;Λ)ξ(v),ξ(v)

=
∑

ξ:V→[m]
ξ(Vo)⊆Λ

∏
{u,w}∈E

Mξ(u),ξ(w).

As G is bipartite and connected, this sum splits into ZM,Im,Im;Λ(G) = Z→ + Z← for
values

Z→ =
∑

ξ:U→[n]

ξ(Uo)⊆ΛR

∑
ζ:W→[n]

ζ(Wo)⊆ΛC

∏
{u,w}∈E
u∈U

Hξ(u),ζ(w)

and

Z← =
∑

ξ:U→[n]

ξ(Uo)⊆ΛC

∑
ζ:W→[n]

ζ(Wo)⊆ΛR

∏
{u,w}∈E
u∈U

Hζ(w),ξ(u).

We will show how to compute Z→. The computation of the value Z← is similar.
Fix configurations ξ : U → [n] and ζ : W → [n], and let ρR, ρC be the index

mappings and h the F2-polynomial representing H , as given in condition (R). Let
τR be the inverse of ρR, and let τC be the inverse of ρC . Let LR = τR(ΛR) and
LC = τC(ΛC). Then ξ and ζ induce a configuration ς : V → F

k
2 defined by

ς(v) :=

{
τR(ξ(v)) if v ∈ U,
τC(ζ(v)) if v ∈ W,

which implies for all u ∈ U , w ∈ W that h(ς(u), ς(w)) = 1 if and only if Hξ(u),ζ(w) =
−1. Let φR and φC be coordinatizations of ΛR and ΛC with respect to ρR and ρC
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satisfying (L) and (D). We can simplify

Z→ =
∑

ξ:U→[n]

ξ(Uo)⊆ΛR

∑
ζ:W→[n]

ζ(Wo)⊆ΛC

∏
{u,w}∈E
u∈U

(−1)h(τ
R(ξ(u)),τC(ζ(w)))

=
∑

ς:V→F
k
2

ς(Uo)⊆LR

ς(Wo)⊆LC

(−1)
⊕

{u,w}∈E:u∈U h(ς(u),ς(w)).

Define, for a ∈ F2, sets

(2.2) sa :=

∣∣∣∣∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩ς : V → F

k
2 | ς(Uo) ⊆ LR, ς(Wo) ⊆ LC ,

⊕
{u,w}∈E
u∈U

h(ς(u), ς(w)) = a

⎫⎪⎪⎬⎪⎪⎭
∣∣∣∣∣∣∣∣ .

Then Z→ = s0− s1. Therefore, it remains to show how to compute the values sa.
Define, for each v ∈ V , a tuple Xv = (Xv

1 , . . . , X
v
k ) and let hG be the F2-polynomial

(2.3) hG :=
⊕

{u,w}∈E
u∈U

h(Xu, Xw) =
⊕

{u,w}∈E
u∈U

(Xu)π ·Xw⊕
⊕
u∈Uo

gR(Xu)⊕
⊕
w∈Wo

gC(Xw).

Here the second equality follows from the definition of the polynomial h given in
condition (R) and the fact that the terms gR(Xu) and gC(Xw) in the definition of h
appear exactly deg(u) and deg(w) many times in hG. Therefore, these terms cancel
for all even degree vertices.

Let var(hG) denote the set of variables in hG, and for mappings χ : var(hG) → F2

we use the expression χ(Xv) := (χ(Xv
1 ), . . . , χ(X

v
k )) as shorthand and define the F2-

sum hG(χ) :=
⊕
{u,w}∈E:u∈U h(χ(X

u), χ(Xw)). We find that sa can be expressed
by

(2.4) sa =

∣∣∣∣{χ : var(hG) → F2 | χ(Xu) ∈ LR for all u ∈ Uo,
χ(Xw) ∈ LC for all w ∈Wo,

h(χ) = a)

}∣∣∣∣ .
By (2.4) we are interested only in those assignments χ of the variables of hG

which satisfy χ(Xu) ∈ LR and χ(Xw) ∈ LC for all u ∈ Uo and w ∈ Wo. With

|ΛR| = 2�
R

and |ΛC | = 2�
C

for some appropriate �R, �C , we introduce variable vectors
Y u = (Y u1 , . . . , Y

u
�R) and Zw = (Zw1 , . . . , Z

w
�C) for all u ∈ Uo and w ∈ Wo. If u ∈ Uo

or w ∈ Wo, then we can express the term (Xu)π · Xw in hG in terms of these new
variables. In particular, recall that φR and φC are coordinatizations of ΛR and ΛC

with respect to ρR and ρC satisfying (L) and (D). Let

h′′G =
⊕

{u,w}∈E
u∈Uo,w∈Wo

(φR(Y u))π · φC(Zw)⊕
⊕

{u,w}∈E
u∈Ue,w∈We

(Xu)π ·Xw

⊕
⊕

{u,w}∈E
u∈Ue,w∈Wo

(Xu)π · φC(Zw)⊕
⊕

{u,w}∈E
u∈Uo,w∈We

(φR(Y u))π ·Xw.

Let

(2.5) h′G = h′′G ⊕
⊕
u∈Uo

gR(φR(Y u))⊕
⊕
w∈Wo

gC(φC(Zw)).
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We therefore have

(2.6) sa = |{χ : var(h′G) → F2 | h′G(χ) = a)}| .

By condition (D), the polynomials gR ◦ φR and gC ◦ φC are of degree at most 2,
and therefore h′G is a polynomial of degree at most 2. Furthermore, we have expressed
sa as the number of solutions to a polynomial equation over F2. Therefore, the proof
now follows by the following well-known fact.

Fact 2.7. The number of solutions to polynomial equations of degree at most 2
over F2 can be computed in polynomial time.

This is a direct consequence of Theorems 6.30 and 6.32 in [18] (see also [11]).

3. The general case. In this section we will prove Theorem 1.1. Before we can
give the proof some further results have to be derived, which will then enable us to
extend Theorems 1.2 and 2.2. It will be convenient to focus on connected components.
This is expressed by the following lemma, which will be proved later in section 8.

Lemma 3.1. Let A be a symmetric real-valued matrix with components A1, . . . , Ac.
Then the following hold:

(1) If EVAL(Ai) is #P-hard for some i ∈ [c], then EVAL(A) is #P-hard.
(2) If EVAL(Ai) is PTIME computable for all i ∈ [c], then EVAL(A) is PTIME

computable.
Recall that for each connected symmetric matrix A there is a block B such that

either A = B or, up to permutation of the rows and columns, A = ( 0
BT

B
0 ). We

call B the block underlying A. For such connected A we furthermore see that either
the evaluation problem is #P-hard or we can reduce it to the evaluation problem on
bipartizations of Hadamard matrices. This is expressed in the following lemma, which
will be proved later in section 8.

Lemma 3.2. Suppose that A is a symmetric connected matrix. Then either
EVAL(A) is #P-hard or the following hold.

(1) If A is not bipartite, then there is a symmetric r× r Hadamard matrix H and
a set ΛR ⊆ [r] such that

EVAL(A) ≡ EVAL(H, Ir, Ir;ΛR).

(2) If A is bipartite, then there is an r×r Hadamard matrix H, sets ΛR,ΛC ⊆ [r],
and a bipartization M,Λ of H, ΛR, and ΛC such that

EVAL(A) ≡ EVAL(M, I2r , I2r;Λ).

Furthermore, it can be decided in time polynomial in the size of A which of the
three alternatives (#P-hardness, (1), or (2)) holds.

We are now able to prove the main theorem.
Proof of Theorem 1.1. Given a symmetric matrix A ∈ R

m×m
A

, by Lemma 3.1
we may assume that the matrix A is connected. By Lemma 3.2, Theorem 2.2, and
Corollary 7.14 the problem EVAL(A) is either polynomial-time computable or #P-
hard. The existence of a polynomial time algorithm for deciding which of the two
possibilities holds, given a matrix A, follows directly by these results.

4. Outline of the paper. The rest of the paper is organized as follows. Sec-
tion 5 describes some generalizations of the partition function evaluation problem,
including related work and open problems. The remaining sections contain the proofs
of the lemmas which have been stated without proof. In particular, section 6 develops
some technical tools which we will use. Section 7 proves the lemmas that are stated
in section 2. Finally, section 8 proves the lemmas that are stated in section 3.
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5. Related work. There are several natural directions in which the work in
this paper could be extended. First, the matrix A could be extended to include
algebraic complex numbers and not merely algebraic real numbers. This extension
has been carried out, subsequent to this paper, in an impressive 111-page paper by
Cai, Chen, and Lu [7]. The work could also be extended by allowing the matrix A
to be asymmetric. A recent breakthrough by Bulatov [4] establishes the existence of
a dichotomy theorem for counting satisfying assignments in constraint satisfaction.
This implies that a dichotomy exists for the case in which A is a 0-1 matrix (which is
not necessarily symmetric)—in this case computing the partition function corresponds
to counting homomorphisms to a directed graph, in particular to the directed graph
with adjacency matrix A. Bulatov’s dichotomy is not known to be effective in the
sense that it is not known to be decidable given a matrix A whether it is tractable
or not. An effective dichotomy was given by Dyer, Goldberg, and Paterson [10] for
the special case in which the directed graph with adjacency matrix A is acyclic but
no effective dichotomy is currently known for the case of general 0-1 matrices A. A
generalization of Bulatov and Grohe’s dichotomy for symmetric nonnegative matrices
to symmetric nonnegative functions of arbitrary arity was given recently by Dyer,
Goldberg, and Jerrum [9]. However, nothing is known about how to handle functions
of larger arity in the presence of mixed signs.

6. Technical tools.

6.1. Stretchings and thickenings. We introduce some fundamental relations
which will be used in most of our reductions. Let G = (V,E) be a graph. The s-
stretch of G is the graph SsG obtained from G by replacing each edge by a path on
s edges. The t-thickening of G is the graph TtG obtained from G by replacing each
edge by t parallel edges. Let A(t) denote the matrix obtained from A by taking each
of its entries to the power of t.

Lemma 6.1 (see [8]). For a symmetric matrix A ∈ R
m×m
A

and a diagonal m×m
matrix D we have, for all s, t ∈ N,

EVAL(A(DA)s−1, D) ≤ EVAL(A,D) and EVAL(A(t), D) ≤ EVAL(A,D).

These reducibilities hold as

ZA(DA)s−1,D(G) = ZA,D(SsG) and ZA(t),D(G) = ZA,D(TtG).

6.1.1. Twin reduction. We need some extensions of Lemma 3.5 in [8]. For a
symmetric m×m matrix A we say that two rows Ai,∗ and Aj,∗ are twins if and only
if Ai,∗ = Aj,∗. This induces an equivalence relation on the rows (and by symmetry
on the columns) of A. Let I1, . . . , In be a partition of the row indices of A according
to this relation. The twin-resolvent of A is the matrix defined, for all i, j ∈ [n], by

T (A)i,j := Aμ,ν for some μ ∈ Ii, ν ∈ Ij .

The definition of the classes Ii implies that Aμ,ν = Aμ′,ν′ for all μ, μ′ ∈ Ii, and
ν, ν′ ∈ Ij and therefore the matrix T (A) is well defined.

The above definition furthermore gives rise to a mapping τ : [m] → [n] defined
by μ ∈ Iτ(μ); that is, τ maps μ ∈ [m] to the class Ij it is contained in. Therefore,
we have T (A)τ(i),τ(j) = Ai,j for all i, j ∈ [m]. We call τ the twin-resolution mapping
of A.
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Lemma 6.2 (Twin Reduction Lemma). Let A be a symmetric m×m matrix and
D a diagonal m×m matrix of vertex weights. Let I1, . . . , In be a partition of the row
indices of A according to the twin-relation. Then

ZA,D(G) = ZT (A),Δ(G) for all graphs G,

where Δ is a diagonal n× n matrix defined by Δi,i =
∑

ν∈Ii Dν,ν for all i ∈ [n].
Proof. Let τ be the twin-resolution mapping of A. Then

ZA,D(G) =
∑

ξ:V→[m]

∏
{u,v}∈E

Aξ(u),ξ(v)
∏
v∈V

Dξ(v),ξ(v)

=
∑

ξ:V→[m]

∏
{u,v}∈E

T (A)τ◦ξ(u),τ◦ξ(v)
∏
v∈V

Dξ(v),ξ(v),

where the second equality follows from the definition of τ . As for all ξ : V → [m] we
have τ ◦ ξ : V → [n], we can partition the ξ into classes according to their images
under concatenation with τ , and we obtain

ZA,D(G) =
∑

ψ:V→[n]

∑
ξ:V→[m]
τ◦ξ=ψ

∏
{u,v}∈E

T (A)ψ(u),ψ(v)
∏
v∈V

Dξ(v),ξ(v)

=
∑

ψ:V→[n]

∏
{u,v}∈E

T (A)ψ(u),ψ(v)

⎛⎜⎜⎝ ∑
ξ:V→[m]
τ◦ξ=ψ

∏
v∈V

Dξ(v),ξ(v)

⎞⎟⎟⎠ .

Fix some ψ : V → [n]. For ξ : V → [m] we have τ ◦ ξ = ψ if and only if ψ−1({i}) =
ξ−1(Ii) for all i ∈ [n]. Define Vi := ψ−1({i}) for all i ∈ [n] which yields a partition of
V . Thus ∑

ξ:V→[m]
τ◦ξ=ψ

∏
v∈V

Dξ(v),ξ(v) =
∑

ξ:V→[m]
∀ i∈[n]: ξ(Vi)⊆Ii

∏
v∈V

Dξ(v),ξ(v)

=

n∏
i=1

∑
ξi:Vi→Ii

∏
v∈Vi

Dξ(v),ξ(v)

=

n∏
i=1

∏
v∈Vi

∑
ν∈Ii

Dν,ν

=
∏
v∈V

Δψ(v),ψ(v).

Hence

ZA,D(G) =
∑

ψ:V→[n]

∏
{u,v}∈E

T (A)ψ(u),ψ(v)
∏
v∈V

Δψ(v),ψ(v) = ZT (A),Δ(G).

6.2. Basic tractability and #P-hardness. The following lemma is a straight-
forward extension of Theorem 6 in [6].

Lemma 6.3. Let A ∈ R
m×m
A

be a symmetric matrix and D a diagonal m × m
matrix. If each component of A either has row rank 1 or is bipartite and has rank 2,
then EVAL(A,D) is polynomial-time computable.
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Proof. Let G = (V,E) be a given graph with components G1, . . . , Gc and let
A1, . . . , Al be the components ofA andD1, . . . , Dl the submatrices ofD corresponding
to these components. Then

ZA,D(G) =
c∏
i=1

l∑
j=1

ZAj ,Dj (Gi).

Therefore the proof follows straightforwardly from the special case of connected G
and A. Assume therefore that both G and A are connected.

We will prove the following claim, which holds for directed graphs.
Claim 1. Let Bm×m be a (not necessarily symmetric) matrix of row rank 1 and

D′ a diagonal matrix. Then for every directed graph G the value

Z∗B,D′(G) =
∑

ξ:V→[m]

∏
(u,v)∈E

Bξ(u),ξ(v)
∏
v∈V

D′ξ(v),ξ(v)

can be computed in polynomial time.
Proof. Let G = (V,E) be a directed graph and for every vertex v ∈ V denote

by outdeg(v) and indeg(v) the number of outgoing and incoming edges incident with
v. There are vectors a, b ∈ R

m
A

such that B = abT . Then, for every configuration
ξ : V → [m], ∏

(u,v)∈E
Bξ(u),ξ(v) =

∏
(u,v)∈E

aξ(u)bξ(v) =
∏
v∈V

a
outdeg(v)
ξ(v) b

indeg(v)
ξ(v) ,

and therefore

Z∗B,D′(G) =
∑

ξ:V→[m]

∏
(u,v)∈E

Bξ(u),ξ(v)
∏
v∈V

D′ξ(v),ξ(v)

=
∑

ξ:V→[m]

∏
v∈V

a
outdeg(v)
ξ(v) b

indeg(v)
ξ(v) D′ξ(v),ξ(v)

=
∏
v∈V

m∑
i=1

a
outdeg(v)
i b

indeg(v)
i D′i,i.

The terms in the last line can be evaluated in polynomial time. This completes the
proof of the claim.

With this claim we are now able to prove the lemma. Recall that A is connected
and symmetric. If A is nonbipartite, then A has rank 1. For a given connected graph
G let G′ be a directed graph obtained from G by orienting its edges arbitrarily. We
have ZA,D(G) = Z∗A,D(G

′), and the value Z∗A,D(G
′) can be computed by Claim 1.

Otherwise, if A is bipartite, then we have (up to permutation of the rows/columns
of A)

A =

(
0 B
BT 0

)
for a block B of rank 1. Let A′ be the matrix

A′ =

(
0 B
0 0

)
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which has rank 1 because B has rank 1. Note, furthermore, that ZA,D(G) = 0 unless
G is bipartite. Assume therefore that G = (U,W,E) is a bipartite graph and let the
graphs GUW , GWU be obtained from G by directing all edges from U to W (W to U ,
resp.). Then

ZA,D(G) = ZA′,D(GUW ) + ZA′,D(GWU ),

and the terms of the right-hand side are polynomial-time computable by Claim 1.
The following #P-hardness result will be the basis of all our proofs of intractabil-

ity.
Lemma 6.4. Given a symmetric matrix A of order n and diagonal n×n matrices

D,O such that D is a nonsingular matrix of nonnegative integers, if abs(A) contains
a block of row rank at least 2, then EVAL(A,D,O) is #P-hard.

Proof. Observe that by 2-thickening we have EVAL(A(2), D) ≤ EVAL(A,D,O).
We can form a matrix A′ from A(2) by introducing twins according to D, that is, doing
the inverse operation of Lemma 6.2. More precisely, let ni := Di,i for all i ∈ [n] and
define m :=

∑n
i=1 ni. To define the m×m matrix A′ we consider its row and column

indices as pairs and define

(6.1) A′(κ,i),(λ,j) := A
(2)
κ,λ for all κ, λ ∈ [n], i ∈ nκ, j ∈ nλ.

By the definition of A′ we see that application of the Twin Reduction Lemma,
Lemma 6.2, to A′ yields

ZA′(G) = ZA(2),D(G) for every graph G,

and thus EVAL(A′) ≡ EVAL(A(2), D). By (6.1) the matrix A′ contains a block of row
rank at least 2 if and only if A(2) does, which in turn is the case if and only if abs(A)
contains such a block. The proof now follows from Theorem 1.3 (due to Bulatov and
Grohe).

6.3. Interpolation lemma. In the next chapters we will make extensive use
of the following lemma, which is an analogue of the interpolation technique used, for
example, in [8].

Lemma 6.5. Let x1, . . . , xn ∈ R>0 be pairwise distinct and let P and N be two
finite multisets of real numbers with |P| = |N | = n. Then the following are equivalent:

(1) P = N .
(2) There is an ordering of the elements in P and N such that, for some infinite

increasing sequence {p}, we have∑
ai∈P

xpi ai =
∑
bi∈N

xpi bi.

Proof. The forward direction is trivial. Hence, assume that (2) holds but not (1).
With the given ordering of P and N we have P = {a1, . . . , an} and N = {b1, . . . , bn}.
We may assume that there is no i ∈ [n] such that ai = bi because, otherwise, we might
delete this pair from P and N . Hence, let k ∈ [n] be such that xk = maxi∈[n] xi.
Assume without loss of generality that ak > bk; then, for a constant c �= 0 and for
every p in the sequence,

0 =
∑
ai∈P

xpi ai −
∑
bi∈N

xpi bi = xpk(ak − bk) +
∑

i∈[n]\{k}
xpi (ai − bi)

⇐⇒ 0 = c+
∑

i∈[n]\{k}

(
xi
xk

)p
(ai − bi).
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By limp→∞
∑

i∈[n]\{k}(
xi

xk
)p(ai − bi) = 0, this yields a contradiction.

Lemma 6.6. Let x1, . . . , xn ∈ R>0 be pairwise distinct and let a = (a1, . . . , an) ∈
R
n and b = (b1, . . . , bn) ∈ R

n. If a �= b, then there is a p0 ∈ N such that the equation

n∑
i=1

xpi ai =
n∑
i=1

xpi bi

does not hold for any p ≥ p0.

Proof. We will prove the following. For each I ⊆ [n] there is a pI ∈ N such that
for all p ≥ pI , if

(6.2)
∑
i∈I

xpi (ai − bi) = 0,

then ai = bi for all i ∈ I. We will give the proof by induction on the cardinality of I.
For empty I there is nothing to be shown. Assume therefore that I �= ∅, let k ∈ I be
such that xk = maxi∈I xi, and define I ′ = I \ {k}.

Claim 2. There is a pk ∈ N such that for all p ≥ pk, if (6.2) is satisfied, then
ak = bk.

Proof. Assume for contradiction that ak �= bk but (6.2) holds for all p ∈ N. This
implies

(6.3) 0 = (ak − bk) +
∑
i∈I′

(
xi
xk

)p
(ai − bi).

As i ∈ I ′ with ai = bi do not contribute to the above sum, we may further assume
that ai �= bi for all i ∈ I ′. If I ′ = ∅, we already have a contradiction. If otherwise
I ′ �= ∅, let k′ be such that xk′ = maxi∈I′ xi. We find that∣∣∣∣∣∑

i∈I′

(
xi
xk

)p
(ai − bi)

∣∣∣∣∣ ≤
(
xk′

xk

)p∑
i∈I′

|ai − bi|.

In particular, (6.3) does not hold if (xk′
xk

)p
∑

i∈I′ |ai−bi| < |ak−bk|, which, as xk > xk′ ,
is the case for all

p >
log |ak − bk| − log

∑
i∈I′ |ai − bi|

(log xk′ − log xk)
,

in contradiction to our assumption.

By the induction hypothesis there is a pI′ such that for all p ≥ pI′ ,∑
i∈I′

xpi (ai − bi) = 0

implies ai = bi for all i ∈ I ′. Let pk be defined as in Claim 2. Then the proof follows
with pI = max{pk, pI′}.
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7. The proofs for section 2.

7.1. Notation and preliminaries. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
R
n, by 〈x, y〉 we denote the inner product

∑n
i=1 xiyi of x and y. It may be a source

of confusion that we work over two different fields, R and F2. Addition in F2 is
denoted by ⊕, and for α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ F

k
2 , α · β is the dot

product
⊕k

i=1 αiβi. Similarly, for π ∈ Sk, απ · β denotes
⊕k

i=1 απ(i)βi. α⊕ β denotes

the element (α1 ⊕ β1, . . . , αk ⊕ βk) in F
k
2 . Also, for π ∈ Sk, απ ⊕ β denotes the

element (απ(1) ⊕ β1, . . . , απ(k) ⊕ βk). Similar notation applies to variables, so if X =

(X1, . . . , Xk) and Y = (Y1, . . . , Yk), then Xπ · Y denotes
⊕k

i=1Xπ(i)Yi. For I ⊆ [k],
let X \ I be the tuple containing, in order, all variables in {X1, . . . , Xk} other than
those with indices in I. For example, X \ {2, 3} denotes the tuple (X1, X4, . . . , Xk).

7.2. The group condition.
Lemma 7.1. Let H be an n × n Hadamard matrix. If H satisfies (GC), then

G(H, 1) forms an Abelian group under the Hadamard product.
Proof. Commutativity and associativity follow from the definition of the Hada-

mard product. To show closure, we consider two elements in G(H, 1) and show that
their Hadamard product is also in G(H, 1). First, consider Hi,∗ ◦H1,∗ and Hj,∗ ◦H1,∗.
Their Hadamard product is Hi,∗ ◦H1,∗ ◦Hj,∗ ◦H1,∗ = Hi,∗ ◦Hj,∗, which is in G(H, j)
by the definition of G(H, j) and therefore in G(H, 1) by (GC). Similarly, we find that
the product of −Hi,∗ ◦ H1,∗ and Hj,∗ ◦ H1,∗ is in G(H, 1) and also the product of
−Hi,∗ ◦H1,∗ and −Hj,∗ ◦H1,∗ is in G(H, 1). From closure, it follows that the product
of H1,∗ ◦H1,∗ and itself is in G(H, 1) and this row (the all ones row) is the identity
element in the group.

Proof of Lemma 2.1. By Lemma 7.1, G(H, 1) forms an Abelian group under the
Hadamard product. All elements of this group have order 2, and thus it follows from
elementary algebra that the order of the group is a power of 2. Furthermore, the
nonsingularity of H implies that for all i �= j the elements Hi,∗ ◦H1,∗, −Hi,∗ ◦H1,∗,
Hj,∗ ◦ H1,∗, and −Hj,∗ ◦ H1,∗ are all distinct. Hence we have that |G(H, 1)| equals
twice the number of rows of H .

Proof of Lemma 2.3, the Group Condition Lemma. It is clear from the definition
of the group condition that there is a polynomial time algorithm that determines
whether H satisfies (GC). We focus on the #P-hardness result. Let EVALeven(A)
denote the problem of computing ZA(G) for an input graph G in which every vertex
of G has even degree.

Let H , n, M , Λ, and m be defined as in the statement of the lemma. Let p be
an even number. We will show how to transform any graph G into a graph Gp with
all even-degree vertices so that ZC[p](G) = ZM (Gp) for a matrix C [p] which we will
define below. The definition of C [p] depends upon M but not upon G. Thus, we will
have EVAL(C [p]) ≤ EVALeven(M) ≤ EVAL(M, Im, Im;Λ).

To finish the proof, we will show that, as long as p is sufficiently large with respect
to M (and H does not satisfy (GC)), then EVAL(C [p]) is #P-hard.

We start by giving the transformation from G = (V,E) into Gp = (Vp, Ep):

Vp := V ∪ {ve, veα , ve,1 . . . , ve,p | e ∈ E} ,
Ep := { {u, ve,1} , . . . , {u, ve,p} | e = {u, v} ∈ E}

∪ { {v, ve,1} , . . . , {v, ve,p} | e = {u, v} ∈ E}
∪ { {ve,1, ve} , . . . , {ve,p, ve} | e ∈ E}
∪ { {ve,1, veα} , . . . , {ve,p, veα} | e ∈ E} .
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veαve

ve,1
ve,2

ve,4 ve,3

u v

Fig. 7.1. The gadget for p = 4.

Essentially, every edge e = {u, v} in G is replaced by a distinct gadget. Figure 7.1
illustrates this gadget for p = 4. Since p is even, it is clear that all vertices of Gp have
even degree.

Let us now construct the matrix C [p]. Let Γ denote the graph with vertices u

and v and a single edge between them. Clearly, to satisfy ZC[p](Γ) = ZM (Γp), C
[p]
i,j

should be equal to the contribution to ZM (Γp) corresponding to those configurations ξ
with ξ(u) = i and ξ(v) = j. Thus,

(7.1) C
[p]
i,j =

m∑
a=1

m∑
b=1

(
m∑
c=1

Mi,cMj,cMa,cMb,c

)p
,

where a denotes the choice of spin for ve, b denotes the choice of spin for veα , and
c denotes the choice of spin for a vertex ve,�. Then ZC[p](Γ) = ZM (Γp) and also
ZC[p](G) = ZM (Gp) for any graph G because the contribution for any edge Γ of G is
exactly captured by the gadget Γp in Gp.

To finish the proof we must show that, as long as p is sufficiently large with
respect to M , then EVAL(C [p]) is #P-hard. From the definition of M , we see that,

for i ∈ [n], j ∈ {n + 1, . . . , 2n}, we have C
[p]
i,j = C

[p]
j,i = 0. Also, for all i, j ∈ [n], we

have the following:

C
[p]
i,j =

n∑
a=1

n∑
b=1

〈Hi,∗ ◦Hj,∗, Ha,∗ ◦Hb,∗〉p and

C
[p]
n+i,n+j =

n∑
a=1

n∑
b=1

〈H∗,i ◦H∗,j, H∗,a ◦H∗,b〉p.

Now, for all i, j ∈ [n] and x ∈ {0, . . . , n} let s
[x]
i,j be the number of pairs (a, b) such

that |〈Hi,∗ ◦Hj,∗, Ha,∗ ◦Hb,∗〉| = x, and similarly let s
[x]
n+i,n+j be the number of pairs

(a, b) such that |〈H∗,i ◦H∗,j , H∗,a ◦H∗,b〉| = x. Then for all i, j ∈ [n] we have

(7.2) C
[p]
i,j =

n∑
x=0

s
[x]
i,jx

p and C
[p]
n+i,n+j =

n∑
x=0

s
[x]
n+i,n+jx

p,

because p is even.
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The pair (a, b) = (i, j) contributes 1 toward s
[n]
i,j and 1 toward s

[n]
n+i,n+j , so, for all

i, j ∈ [n], we have C
[p]
i,j > 0 and C

[p]
n+i,n+j > 0 (remember that p is even).

Since H is Hadamard, s
[n]
i,i = n for every i ∈ [n] and, for every x ∈ {1, . . . , n− 1},

s
[x]
i,i = 0, so C

[p]
i,i = np+1. Also, since H is Hadamard, HHT = nI, so HT /n is the

right inverse, and hence also the left inverse, of H , so (1/n)HTH = I, so HT is also

Hadamard. It follows that s
[n]
n+i,n+i = n and, for every x ∈ {1, . . . , n−1}, s[x]n+i,n+i = 0,

so C
[p]
n+i,n+i = np+1.

We will prove that EVAL(C [p]) is #P-hard for some sufficiently large even p.
We will assume for contradiction that, for every even p, EVAL(C [p]) is not #P-hard.
Equation (7.1) indicates that C [p] is symmetric, so by Lemma 6.4 (due to Bulatov
and Grohe), for every even p, both blocks of C [p] have rank 1. This means that every
principal 2 × 2 submatrix in the blocks has a zero determinant. So, for i, j ∈ [n], we

have (C
[p]
i,i )

2 − (C
[p]
i,j )

2 = 0 and (C
[p]
n+i,n+i)

2 − (C
[p]
n+i,n+j)

2 = 0, so

(7.3) C
[p]
i,j = C

[p]
i,i and C

[p]
n+i,n+j = C

[p]
n+i,n+i.

Since (7.2) and (7.3) hold for all even p and all i, j ∈ [n], Lemma 6.5 allows us to

deduce that, for all i, j ∈ [n] and x ∈ {0, . . . , n}, s[x]i,j = s
[x]
i,i and s

[x]
n+i,n+j = s

[x]
n+i,n+i.

Thus, for all i, j ∈ [n],

(7.4) s
[1]
i,j = · · · = s

[n−1]
i,j = s

[1]
n+i,n+j = · · · = s

[n−1]
n+i,n+j = 0 and s

[n]
i,j = s

[n]
n+i,n+j = n.

From the statement of the lemma, we assume thatH does not satisfy (GC). There
are two similar cases.

Case 1. Suppose there are i, j ∈ [n] such that G(H, i) �= G(H, j). Fix such a pair
i, j. Fix a ∈ [n] such that Ha,∗ ◦ Hi,∗ is not in G(H, j). Now consider any b ∈ [n].
If it were the case that |〈Ha,∗ ◦ Hi,∗, Hb,∗ ◦ Hj,∗〉| = n, then we would know that
either Ha,vHi,v = Hb,vHj,v for all v or Ha,vHi,v = −Hb,vHj,v for all v. Either of
these would imply Ha,∗ ◦Hi,∗ ∈ G(H, j), which is not the case. So we conclude that
|〈Ha,∗ ◦Hi,∗, Hb,∗ ◦Hj,∗〉| < n.

Furthermore, there is some b ∈ [n] such that |〈Ha,∗ ◦ Hi,∗, Hb,∗ ◦ Hj,∗〉| �= 0.
Otherwise,

{H1,∗ ◦Hj,∗, . . . , Hn,∗ ◦Hj,∗, Ha,∗ ◦Hi,∗}

would be a set of n+ 1 linearly independent vectors, which is impossible.

But this implies that for some x ∈ [n− 1] we have s
[x]
i,j �= 0, contradicting (7.4).

Case 2. Suppose there are i, j ∈ [n] such that G(HT , i) �= G(HT , j). As in Case 1,
we can deduce that |〈HT

a,∗ ◦HT
i,∗, H

T
b,∗ ◦HT

j,∗〉| < n. Furthermore, there is some b ∈ [n]

such that |〈HT
a,∗ ◦HT

i,∗, H
T
b,∗ ◦HT

j,∗〉| �= 0. But this implies that for some x ∈ [n− 1]

we have s
[x]
n+i,n+j �= 0, contradicting (7.4).

7.3. Polynomial representation. For an n × n matrix H and a row index
l ∈ [n], let R(H) := {Hi,∗ | i ∈ [n]}. The extended group condition for H is as follows:

(EGC) R(H) is an Abelian group under the Hadamard product.
The following lemmas are useful preparation for the proof of Lemma 2.4, the

Polynomial Representation Lemma. We say that a Hadamard matrix is normalized
if its first row and column consist entirely of +1’s.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3356 L. GOLDBERG, M. GROHE, M. JERRUM, AND M. THURLEY

Lemma 7.2. Let H be a normalized n×n Hadamard matrix. If G(H, 1) is closed
under the Hadamard product, then R(H) is closed under the Hadamard product.

Proof. Fix i, j ∈ [n]. Since G(H, 1) is closed under the Hadamard product, and
Hi,∗ ◦H1,∗ ∈ G(H, 1) and Hj,∗ ◦H1,∗ ∈ G(H, 1), we have Hi,∗ ◦Hj,∗ ∈ G(H, 1). Thus,
there is an � ∈ [n] such that either Hi,∗ ◦Hj,∗ = H�,∗ ◦H1,∗ = H�,∗ (using the fact
that the first row of H is all ones) or Hi,∗ ◦Hj,∗ = −H�,∗ ◦H1,∗ = −H�,∗. The latter is
equivalent to Hi,∗ ◦H�,∗ = −Hj,∗. And since Hj,1 = 1 (since the first column of H is
positive), this implies that one of Hi,1 and H�,1 is negative, which is a contradiction.
We conclude that Hi,∗ ◦Hj,∗ = H�,∗.

Corollary 7.3. Let H be a normalized n× n Hadamard matrix. If H satisfies
the group condition, then H satisfies the extended group condition.

Proof. Suppose that H satisfies the group condition. By Lemma 7.1, G(H, 1)
is an Abelian group under the Hadamard product. The identity is the all ones row,
which is in R(H), and every element is its own inverse. Closure of R(H) follows from
Lemma 7.2.

Lemma 7.4. Suppose that B is an r × r matrix with entries in {−1,+1} and
that C is a t × t matrix with entries in {−1,+1}. Suppose that the tensor product
H = B⊗C is a Hadamard matrix. Then B and C are Hadamard. If H is symmetric,
then so are B and C. If H and B are normalized and H satisfies (EGC), then B and
C satisfy (EGC) and C is normalized.

Proof. Since H is Hadamard, we know that for any such k ∈ [r] and distinct i and
i′ in [t], the inner product 〈H(k−1)t+i,∗, H(k−1)t+i′,∗〉 is zero. But this inner product
is ∑

�∈[r]

∑
j∈[t]

H(k−1)t+i,(�−1)t+jH(k−1)t+i′,(�−1)t+j =
∑
�∈[r]

∑
j∈[t]

Bk,�Ci,jBk,�Ci′,j

=
∑
�∈[r]

B2
k,�〈Ci,∗, Ci′,∗〉

= r〈Ci,∗, Ci′,∗〉,

so C is Hadamard. Similarly, for any distinct k, k′ ∈ [r] and any i ∈ [t],

0 = 〈H(k−1)t+i,∗, H(k′−1)t+i,∗〉 =
∑
�∈[r]

∑
j∈[t]

H(k−1)t+i,(�−1)t+jH(k′−1)t+i,(�−1)t+j

=
∑
�∈[r]

∑
j∈[t]

Bk,�Ci,jBk′,�Ci,j

=
∑
j∈[t]

C2
i,j〈Bk,∗, Bk′,∗〉

= t〈Bk,∗, Bk′,∗〉,

so B is Hadamard. If H is symmetric, then it is easy to see that B and C are
symmetric as well. Also, if H and B are normalized, then it is easy to see that C is
normalized as well.

Suppose now that H and B are normalized and H satisfies (EGC). We first show
that C satisfies (EGC). Then we will finish by showing that B satisfies (EGC).

To show that R(C) is an Abelian group under the Hadamard product, we just
need to show closure. (Commutativity and associativity come from the definition of
the Hadamard product, the identity element is the row of all ones, and every element
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is its own inverse.) Since R(H) is closed under the Hadamard product, we know that,
for any distinct i, i′ ∈ [t], Hi,∗ ◦ Hi′,∗ ∈ R(H). But the first t elements of this row
are Hi,1Hi′,1, . . . , Hi,tHi′,t = B1,1Ci,1B1,1Ci′,1, . . . , B1,1Ci,tB1,1Ci′,1, which is equal
to Ci,∗ ◦ Ci′,∗. This shows that Ci,∗ ◦ Ci′,∗ ∈ G(C, 1). Now use Lemma 7.2 to show
that R(C) is closed under the Hadamard product.

Similarly, to show that R(B) is closed under the Hadamard product, note that
for any distinct k, k′ ∈ [r], H(k−1)t+1,∗ ◦ H(k′−1)t+1,∗ ∈ R(H). But the elements of
this row are

H(k−1)t+1,(�−1)t+jH(k′−1)t+1,(�−1)t+j

for � ∈ [r], j ∈ [t], and taking those with � = 1 (which occur as the first t elements
along the row), we get Bk,1C1,jBk′,1C1,j . Thus, the subrow of these elements is the
Hadamard product of Bk,∗ and Bk′,∗. This shows that Bk,∗ ◦ Bk′,∗ ∈ G(B, 1). Now
use Lemma 7.2 to show that R(B) is closed under the Hadamard product.

Given an n× n matrix H and permutations Σ and Π in Sn, let HΣ,Π denote the
matrix with (HΣ,Π)i,j = HΣ(i),Π(j).

Lemma 7.5. Let H be a normalized n × n Hadamard matrix with n ≥ 2 that
satisfies (GC). Then there are permutations Σ,Π in Sn with Σ(1) = 1 and Π(1) = 1
and a normalized Hadamard matrix H ′ satisfying (GC) such that HΣ,Π = H2 ⊗H ′.
Σ, Π, and H ′ can be constructed in polynomial time.

Proof. By Lemma 2.1 we know n is a power of 2, say, n = 2k+1. The lemma
is trivial for k = 0 since H = H2 and Σ and Π can be taken to be the identity. So
suppose k ≥ 1. Let ν = 2k.

Part 1. Choose Σ′ and Π′ in Sn with Σ′(1) = 1 and Π′(1) = 1 so that (HΣ′,Π′)ν+1,ν+1

= −1.
Σ′ and Π′ may be constructed as follows: H is Hadamard, so some entry Hi,j =

−1. The indices i and j are not 1 becauseH is normalized. Let Σ′ be the transposition
(i, ν + 1) and let Π′ be the transposition (j, ν + 1).

Part 2C. Choose π in Sn with π(1) = 1 and π(ν + 1) = ν + 1 so that, for � ∈ [ν],

(7.5) (HΣ′,Π′′)ν+1,� = +1 and (HΣ′,Π′′)ν+1,ν+� = −1,

where Π′′ denotes the composition of first Π′ and then π.
π may be constructed as follows. We construct a sequence of permutations

π1, . . . , πν , where π1 is the identity and we let π = πν . Let Hj denote HΣ′,πjΠ′ .

For j ∈ {2, . . . ν}, we define πj as follows. If Hj−1
ν+1,ν+j = −1, then πj = πj−1. Oth-

erwise, there is a 1 < � < ν + 1 with Hj−1
ν+1,� = −1. So π′j is the composition of first

applying π′j−1 and then transposing ν+j and �. To see that such an � exists, note that
H is Hadamard, so 〈H1,∗, Hν+1,∗〉 = 0. But H1,∗ is positive, so Hν+1,∗ has exactly ν
ones. � > 1 because πj−1Π

′(1) = 1.
Part 2R. Choose σ in Sn with σ(1) = 1 and σ(ν +1) = ν +1 so that, for � ∈ [ν],

(7.6) (HΣ′′,Π′′)�,ν+1 = +1 and (HΣ′′,Π′′)ν+�,ν+1 = −1,

where Σ′′ denotes the composition of first Σ′ and then σ.
The construction of σ is symmetric to the earlier construction of π.
Since σ(ν+1) = ν+1, we have (HΣ′,Π′′)ν+1,� = (HΣ′,Π′′)σ(ν+1),� = (HΣ′′,Π′′)ν+1,�

for every � ∈ [n], so (7.5) and (7.6) give
(7.7)
(HΣ′′,Π′′)ν+1,� = (HΣ′′,Π′′)�,ν+1 = +1 and (HΣ′′,Π′′)ν+1,ν+� = (HΣ′′,Π′′)ν+�,ν+1 = −1.
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Part 3C. Choose π′ in Sn with π′(1) = 1 and π′([ν]) = [ν] so that, for j, � ∈ [ν],

(7.8) (HΣ′′,Π)�,j = (HΣ′′,Π)�,ν+j and (HΣ′′,Π)ν+�,j = −(HΣ′′,Π)ν+�,ν+j ,

where Π denotes the composition of first Π′′ and then π′.
π′ is constructed as follows. Note that H satisfies (EGC) by Corollary 7.3; hence

HΣ′′,Π′′ satisfies (EGC) (permuting does not change (ECG)). Start with π′(1) = 1
and π′(ν + 1) = ν + 1. Note that, for j = 1, we have, by normalization and (7.6),

∀� ∈ [ν], (HΣ′′,Π′′)�,π′(j) = (HΣ′′,Π′′)�,π′(ν+j)(7.9)

and (HΣ′′,Π′′)ν+�,π′(j) = −(HΣ′′,Π′′)ν+�,π′(ν+j),

Now for j ∈ {2, . . . , ν} we define π′(j) and π′(ν+ j) to satisfy (7.9) as follows. Choose

any i ∈ [ν] such that π′−1(i) is undefined and set π′(j) = i. By (EGC) there is a
unique i′ with

(7.10) (HΣ′′,Π′′)i,∗ ◦ (HΣ′′,Π′′)ν+1,∗ = (HΣ′′,Π′′)i′,∗.

Also, i′ is not in [ν] since by (7.10) (HΣ′′,Π′′)i,ν+1(HΣ′′,Π′′)ν+1,ν+1 = (HΣ′′,Π′′)i′,ν+1,

and the left-hand side is −1 by (7.6). Finally, π′
−1

(i′) is undefined since no other i
satisfies (7.10). So set π′(ν + j) = i′.

Part 3R. Choose σ′ in Sn with σ′(1) = 1 and σ′([ν]) = [ν] so that, for j, � ∈ [ν],

(7.11) (HΣ,Π)�,j = (HΣ,Π)ν+�,j and (HΣ,Π)�,ν+j = −(HΣ,Π)ν+�,ν+j,

where Σ denotes the composition of first Σ′′ and then σ′.
The construction of σ′ is symmetric to the (earlier) construction of π′.
Now, since σ′([ν]) = [ν], (7.8) implies

(HΣ′′,Π)σ(�),j = (HΣ′′,Π)σ(�),ν+j and (HΣ′′,Π)σ(ν+�),j = −(HΣ′′,Π)σ(ν+�),ν+j

or, equivalently,

(7.12) (HΣ,Π)�,j = (HΣ,Π)�,ν+j and (HΣ,Π)ν+�,j = −(HΣ,Π)ν+�,ν+j.

By (7.11) and (7.12) we can take H ′ to be the first ν rows and columns of HΣ,Π, and
then we have HΣ,Π = H2 ⊗H ′.

Lemma 7.6. Let H be a normalized symmetric n × n Hadamard matrix with
n ≥ 2 that has an entry −1 on the diagonal and satisfies (GC). Then there is a
permutation Σ in Sn with Σ(1) = 1 and a normalized symmetric Hadamard matrix
H ′ satisfying (GC) such that HΣ,Σ = H2 ⊗ H ′. Σ and H ′ can be constructed in
polynomial time.

Proof. In the proof of Lemma 7.5 note that we can ensure that Π = Σ. If
Ha,a = −1, then i = j = a in part 1.

Define H4 as follows:

H4 =

⎛⎜⎜⎝
+ + + +
+ + − −
+ − + −
+ − − +

⎞⎟⎟⎠ .

Lemma 7.7. Let H be a normalized symmetric n × n Hadamard matrix with
n > 2. Suppose that H has a positive diagonal and satisfies (GC). Then there is a
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permutation Σ ∈ Sn with Σ(1) = 1 and a normalized symmetric Hadamard matrix
H ′ satisfying (GC) such that HΣ,Σ = H4 ⊗ H ′. Σ and H ′ can be constructed in
polynomial time.

Proof. By Lemma 2.1 we know that n is a power of 2, say, n = 2k+2. The lemma
is trivial for k = 0 since H = H4 and Σ can be taken to be the identity. So suppose
that k ≥ 1. Let ν = 2k.

Part 1. Choose Σ′ in Sn with Σ′(1) = 1 and Σ′(ν+1) = ν+1 so that, for j ∈ [2ν],

(7.13) (HΣ′,Σ′)ν+1,j = +1 and (HΣ′,Σ′)ν+1,2ν+j = −1.

Σ′ is constructed as follows. We construct a sequence of permutations σ0, . . . , σ2ν ,
where σ0 is the identity and we let Σ′ = σ2ν . LetH

j denoteHσj ,σj . For j ∈ {1, . . . 2ν},
we define σj as follows. If Hj−1

ν+1,2ν+j = −1, then σj = σj−1. Otherwise, there is a

1 < � < 2ν + 1 with � �= ν + 1 with Hj−1
ν+1,� = −1. So σj is the composition of first

applying σj−1 and then transposing 2ν + j and �. To see that such an � exists, note
that Hν+1,∗ has exactly 2ν ones. However, since H is normalized and has a positive

diagonal, Hν+1,1 = Hν+1,ν+1 = +1, so Hj−1
ν+1,1 = Hj−1

ν+1,ν+1 = +1.

Observation. Since HΣ′,Σ′ is Hadamard, (HΣ′,Σ′)2ν+1,∗ has 2ν positive entries
(since its dot product with row 1 is 0). Also, half of these are in the first 2ν columns
(since its dot product with row ν + 1 is 0).

Part 2. Choose σ′ in Sn with σ′(1) = 1, σ′(ν + 1) = ν + 1, σ′(2ν + 1) = 2ν + 1,
and σ′([2ν]) = [2ν] so that, for j ∈ [ν],

(HΣ′′,Σ′′)2ν+1,j = (HΣ′′,Σ′′)2ν+1,2ν+j = +1(7.14)

and (HΣ′′,Σ′′)2ν+1,ν+j = (HΣ′′,Σ′′)2ν+1,3ν+j = −1,

where Σ′′ is the composition of Σ′ and then σ′.

σ′ is constructed as follows. We construct a sequence of permutations σ′1, . . . , σ
′
2ν ,

where σ′1 is the identity and we let σ′ = σ′2ν . Let Hj denote Hσ′
jΣ

′,σ′
jΣ

′ . Note that

H1
2ν+1,ν+1 = −1 by (7.13) and symmetry of H1. For j ∈ {2, . . . ν}, we define σ′j as

follows. If Hj−1
2ν+1,ν+j = −1, then σ′j = σ′j−1. Otherwise, by the observation at the end

of part 1, there is a 1 < � < ν+1 with Hj−1
2ν+1,� = −1. So σ′j is the composition of first

applying σ′j−1 and then transposing ν + j and �. For j ∈ {ν + 1, . . . , 2ν}, we define

σj as follows. If Hj−1
2ν+1,2ν+j = −1, then σ′j = σ′j−1. Otherwise, by the observation at

the end of part 1, there is a 2ν + 1 < � < 3ν + 1 with Hj−1
2ν+1,� = −1. So σ′j is the

composition of first applying σ′j−1 and then transposing 2ν + j and �. (The reason
that � > 2ν + 1 is that the diagonal is positive.)

Note that Σ′′(1) = 1. Since σ′(ν + 1) = ν + 1 and σ′([2ν]) = [2ν],

(HΣ′′,Σ′′)ν+1,j = (HΣ′,Σ′)σ′(ν+1),σ′(j) = (HΣ′,Σ′)ν+1,σ′(j),

so (7.13) gives us

(7.15) ∀j ∈ [2ν], (HΣ′′,Σ′′ )ν+1,j = +1 and (HΣ′′,Σ′′)ν+1,2ν+j = −1.

Equations (7.14) and (7.15) are summarized by the following picture, which takes into
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account the symmetry of HΣ′′,Σ′′ :

HΣ′′,Σ′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ . . . + + . . . + + . . . + + . . . +
...

...
...

+ + +
+ . . . + + . . . + − . . . − − . . . −
...

...
...

+ + −
+ . . . + − . . . − + . . . + − . . . −
...

...
...

+ − +
+ − −
...

...
...

+ − −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Part 3. Choose σ′′ in Sn with σ′′(1) = 1, σ′′(ν +1) = ν +1, σ′′(2ν+1) = 2ν+1,

σ′′([ν]) = [ν], σ′′({ν + 1, . . . , 2ν}) = {ν + 1, . . . , 2ν}, and σ′′({2ν + 1, . . . , 3ν}) =
{2ν + 1, . . . , 3ν} so that, for j ∈ [ν], we have the following, where Σ denotes the
composition of Σ′′ and then σ′′:

(HΣ,Σ)j,∗ ◦ (HΣ,Σ)2ν+j,∗ = (HΣ,Σ)2ν+1,∗,(7.16)

(HΣ,Σ)ν+j,∗ ◦ (HΣ,Σ)3ν+j,∗ = (HΣ,Σ)2ν+1,∗,(7.17)

(HΣ,Σ)j,∗ ◦ (HΣ,Σ)ν+j,∗ = (HΣ,Σ)ν+1,∗.(7.18)

σ′′ is constructed as follows. Note that H satisfies (EGC) by Corollary 7.3; hence
HΣ′′,Π′′ satisfies (EGC) (permuting does not change (ECG)). For j ∈ [ν], do the
following. Let i1 be the smallest element in [ν] such that the inverse of i1 under σ′′ is
still undefined. (For j = 1, σ′′ is still completely undefined, so we will have i1 = 1.)
Let i2 be the solution to

(7.19) (HΣ′′,Σ′′)i1,∗ ◦ (HΣ′′,Σ′′)ν+1,∗ = (HΣ′′,Σ′′)i2,∗.

This equation implies that

(HΣ′′,Σ′′)i1,ν+1(HΣ′′,Σ′′)ν+1,ν+1 = (HΣ′′,Σ′′)i2,ν+1

and

(HΣ′′,Σ′′)i1,2ν+1(HΣ′′,Σ′′ )ν+1,2ν+1 = (HΣ′′,Σ′′)i2,2ν+1.

Applying (7.14) and (7.15), the left-hand side of the first of these equations is +1 and
the left-hand side of the second of these equations is −1, so i2 ∈ {ν+1, . . . , 2ν}. Also,
since no other i1 satisfies (7.19) for this value of i2, the inverse of i2 under σ′′ is still
undefined (so there is no problem with defining it now). Let i3 be the solution to

(HΣ′′,Σ′′)i1,∗ ◦ (HΣ′′,Σ′′)2ν+1,∗ = (HΣ′′,Σ′′)i3,∗.

This equation implies that

(HΣ′′,Σ′′)i1,ν+1(HΣ′′,Σ′′)2ν+1,ν+1 = (HΣ′′,Σ′′)i3,ν+1
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and

(HΣ′′,Σ′′)i1,2ν+1(HΣ′′,Σ′′)2ν+1,2ν+1 = (HΣ′′,Σ′′)i3,2ν+1.

Applying (7.14) and (7.15), the left-hand side of the first of these equations is −1,
and the left-hand side of the second of these equations is +1, so i3 ∈ {2ν+1, . . . , 3ν}
and the inverse of i3 under σ′′ is still undefined. Let i4 be the solution to

(HΣ′′,Σ′′)i2,∗ ◦ (HΣ′′,Σ′′)2ν+1,∗ = (HΣ′′,Σ′′)i4,∗.

This equation implies that

(HΣ′′,Σ′′)i2,ν+1(HΣ′′,Σ′′)2ν+1,ν+1 = (HΣ′′,Σ′′)i4,ν+1

and

(HΣ′′,Σ′′)i2,2ν+1(HΣ′′,Σ′′)2ν+1,2ν+1 = (HΣ′′,Σ′′)i4,2ν+1.

Applying (7.14) and (7.15), the left-hand side of the first of these equations is −1,
and the left-hand side of the second of these equations is −1, so i4 ∈ {3ν+1, . . . , 4ν}
and the inverse of i4 under σ′ is still undefined. Let σ′′(j) = i1, σ

′′(ν + j) = i2,
σ′′(2ν + j) = i3, and σ

′′(3ν + j) = i4. Note that the choices of i1, i2, i3, and i4 imply
the following, which imply (7.16), (7.17), and (7.18):

(HΣ′′,Σ′′)σ′′(j),∗ ◦ (HΣ′′,Σ′′)σ′′(2ν+j),∗ = (HΣ′′,Σ′′)σ′′(2ν+1),∗,(7.20)

(HΣ′′,Σ′′)σ′′(ν+j),∗ ◦ (HΣ′′,Σ′′)σ′′(3ν+j),∗ = (HΣ′′,Σ′′)σ′′(2ν+1),∗,(7.21)

(HΣ′′,Σ′′)σ′′(j),∗ ◦ (HΣ,Σ)σ′′(ν+j),∗ = (HΣ′′,Σ′′)σ′′(ν+1),∗.(7.22)

Since σ′′(ν+1) = ν+1, σ′′(2ν+1) = 2ν+1, σ′′([ν]) = [ν], σ′′({ν+1, . . . , 2ν}) =
{ν + 1, . . . , 2ν}, and σ′′({2ν + 1, . . . , 3ν}) = {2ν + 1, . . . , 3ν}, (7.14) and (7.15) give
us

∀j ∈ [ν], (HΣ,Σ)2ν+1,j = (HΣ,Σ)2ν+1,2ν+j = +1

and (HΣ,Σ)2ν+1,ν+j = (HΣ,Σ)2ν+1,3ν+j = −1,

∀j ∈ [2ν], (HΣ,Σ)ν+1,j = +1 and (HΣ,Σ′′ )ν+1,2ν+j = −1.

These, together with (7.16), (7.17), and (7.18) and the symmetry of HΣ,Σ give us the
result, where H ′ is the first ν rows and columns of HΣ,Σ.

Lemma 7.8. Let H be a normalized Hadamard matrix of order n = 2k which
satisfies (GC). Let X = (X1, . . . , Xk), Y = (Y1, . . . , Yk). There are index mappings
ρR : F

k
2 → [n] and ρC : F

k
2 → [n] with ρR(0, . . . , 0) = ρC(0, . . . , 0) = 1 and a

permutation π ∈ Sk such that H is represented by the polynomial XπY . If H is
symmetric, then ρR = ρC . ρR, ρC , and π can be constructed in polynomial time.

Proof. The proof is by induction on k. The base case is k = 1 for which H = H2.
In this case, we take the index mapping ρR given by ρR(0) = 1 and ρR(1) = 2.
ρR = ρC and π is the identity.

For the inductive step, first suppose that H is not symmetric. By Lemma 7.5,
there are permutations Σ,Π ∈ Sn with Σ(1) = 1 and Π(1) = 1 and a normalized
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Hadamard matrix H ′ satisfying (GC) such that HΣ,Π = H2 ⊗ H ′. These are con-
structed in polynomial time. By induction, we can construct index mappings ρRk−1 :

F
k−1
2 → [2k−1] and ρCk−1 : Fk−12 → [2k−1] with ρRk−1(0, . . . , 0) = ρCk−1(0, . . . , 0) = 1

and a permutation π′ ∈ Sk−1 such that H ′ is represented by the polynomial

Xπ′(1)Y1 ⊕ · · · ⊕Xπ′(k−1)Yk−1.

Now take ρR(X1, . . . , Xk) = Σ(2k−1Xk+ρ
R
k−1(X1, . . . , Xk−1)) and ρ

C(Y1, . . . , Yk)

= Π(2k−1Yk + ρCk−1(Y1, . . . , Yk−1)), and let π ∈ Sk be the permutation that maps k
to itself and applies π′ to 1, . . . , k − 1.

Next, suppose that H is symmetric and that it has an entry −1 on the diagonal.
Using Lemma 7.6, we proceed exactly as before except that we are guaranteed (by
Lemma 7.6) that Π = Σ and that H ′ is symmetric. Thus, by induction, we are
guaranteed that ρCk−1 = ρRk−1. So the construction above gives ρC = ρR.

Finally, suppose that H is symmetric and that it has a positive diagonal. Note
that n > 2. By Lemma 7.7, there are a permutation Σ ∈ Sn with Σ(1) = 1 and
a normalized symmetric Hadamard matrix H ′ satisfying (GC) such that HΣ,Π =
H4 ⊕H ′. These are constructed in polynomial time. By induction, we can construct
an index mapping ρ′ : Fk−22 → [n] with ρ′(0, . . . , 0) = 1 and a permutation π′ ∈ Sk−2
such that H ′ is represented by the polynomial

Xπ′(1)Y1 ⊕ · · · ⊕Xπ′(k−2)Yk−2.

Now take ρ(X1, . . . , Xk) = Σ(2k−1Xk + 2k−1Xk−1 + ρ′(X1, . . . , Xk−2)) and let
π ∈ Sk be the permutation that transposes k and k−1 applies π′ to 1, . . . , k−2.

Proof of Lemma 2.4, the Polynomial Representation Lemma. Let n = 2k. Since
H is positive for ΛR and ΛC , choose a and b such that Ha,b = +1 and (1) a ∈ ΛR or
ΛR = ∅, (2) b ∈ ΛC or ΛC = ∅, and (3) if H is symmetric and ΛR = ΛC , then a = b.
Now let Σ be the transposition (1, a) and let Π be the transposition (1, b). Note that

(HΣ,Π)1,1 = +1. Let Ĥ be the matrix defined by

Ĥi,j = (HΣ,Π)i,j(HΣ,Π)i,1(HΣ,Π)1,j .

Note that Ĥ is normalized. Also, it is Hadamard, and it satisfies (GC) since HΣ,Π is
Hadamard and satisfies (GC).

By Lemma 7.8 we can construct ρ̂R, ρ̂C , and π such that Ĥ is represented by the
polynomial ĥ(X,Y ) := XπY . By the definition of “represents,” we have

Ĥρ̂R(x),ρ̂C(y) = −1 ⇐⇒ ĥ(x,y) = 1.

Define gR(x) = 1 if (HΣ,Π)ρ̂R(x),1 = −1 and gR(x) = 0 otherwise. Define gC(y) =

1 if (HΣ,Π)1,ρ̂C(y) = −1 and gC(y) = 0 otherwise. Now, note that

(HΣ,Π)ρ̂R(x),ρ̂C(y) = −1 ⇐⇒ ĥ(x,y) ⊕ gR(x)⊕ gC(y) = 1.

Now let ρR(x) = Σ(ρ̂R(x)) and let ρC(y) = Π(ρ̂C(y)). Note that H is represented

by ĥ(x,y) ⊕ gR(x) ⊕ gC(y) with respect to ρR and ρC .
From Lemma 7.8, ρ̂R(0, . . . , 0) = 1, so ρR(0, . . . , 0) = a. So if ΛR �= ∅ then

ρR(0, . . . , 0) ∈ ΛR. Similarly, ρR(1, . . . , 1) = b, so if ΛC �= ∅, then ρC(0, . . . , 0) ∈ ΛC .

Finally, if H is symmetric, then HΣ,Π is symmetric, so Ĥ is symmetric, so
Lemma 7.8 guarantees that ρ̂R = ρ̂C . Thus, if ΛR = ΛC , then a = b, so Σ = Π,
so gR = gC , and ρR = ρC .
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7.4. Linearity.
Proof of Lemma 2.5, the Linearity Lemma. Let H be an n×n Hadamard matrix

and ΛR,ΛC ⊆ [n] subsets of indices. Let M,Λ be the bipartization of H , ΛR, and
ΛC and let m = 2n. Suppose that (GC) and (R) are satisfied. Let n = 2k by
Lemma 2.1. We will construct a matrix C and and a reduction EVAL(C, Im, Im;Λ) ≤
EVAL(M, Im, Im;Λ). We will show that EVAL(C, Im, Im;Λ) is #P-hard unless (L) is
satisfied.

The reduction is as follows. Let G = (V,E) be an input to EVAL(C, Im, Im;Λ).
We construct an input G′ to EVAL(M, Im, Im;Λ) as follows. Each edge {u, v} ∈ E
corresponds to a gadget in G′ on vertex set {u, v, w, w′, w′′} and edge set {{u,w},
{v, w}, {w,w′}, {w′, w′′}}, where w, w′′, and w′′ are new vertices.

Now let us construct the matrix C. Let Γ denote the graph with vertices u and v
and a single edge between them. Clearly, Ca,b is equal to the contribution to ZM (Γ′)
corresponding to those configurations ξ with ξ(u) = a and ξ(v) = b. Thus, if c, d,
and e denote the choice of spins for vertices w, w′, and w′′, respectively, we get

(7.23) Ca,b =

m∑
c=1

Ma,cMb,c(Im;Λ)c,c

m∑
d=1

m∑
e=1

Mc,dMd,e(Im;Λ)e,e.

Here we use that the vertices w,w′′ have odd degree and the vertex w′ has even degree.
Note that, with the above definition of C, we have ZC,Im,Im;Λ(G) = ZM,Im,Im;Λ(G

′)
for all G.

From the definition of bipartization, we find that Ca,b = Cb,a = 0 for all a ∈ [n]
and b ∈ {n+ 1, . . . , 2n}. Furthermore, for a, b ∈ [n],

Ca,b =
n∑
c=1

Ma,n+cMb,n+c(Im;Λ)n+c,n+c

n∑
d=1

n∑
e=1

Mn+c,dMd,n+e(Im;Λ)n+e,n+e

=
∑

c,e∈ΛC

Ha,cHb,c

n∑
d=1

Hd,cHd,e.

Now, by (R), there are bijective index mappings ρR : Fk2 → [n] and ρC : Fk2 → [n]
and a permutation π ∈ Sk such that (with respect to ρR and ρC) the matrix H is
represented by the polynomial h(X,Y ) = XπY ⊕ gR(X) ⊕ gC(Y ). Let τR be the
inverse of ρR and τC be the inverse of ρC . Let LC = τC(ΛC) and LR = τR(ΛR).
Also, let αR = τR(a), βR = τR(b), γC = τC(c), δR = τR(d), and εC = τC(e). Thus,

Ha,cHb,c = (−1)h(α
R,γC) · (−1)h(β

R,γC)

= (−1)α
R
π ·γC⊕gR(αR)⊕gC(γC)⊕βR

π ·γC⊕gR(βR)⊕gC(γC)

= (−1)
gR(αR)⊕gR(βR)⊕αR

π ·γ
C⊕βR

π ·γ
C

= (−1)g
R(αR)⊕gR(βR)⊕γC·(αR

π⊕βR
π ).

Similarly, we get

Hd,cHd,e = (−1)
gC(γC)⊕gC(εC)⊕δRπ ·(γ

C⊕εC)
.

So, for a, b ∈ [n],

Ca,b = (−1)g
R(αR)⊕gR(βR)

∑
c,e∈ΛC

(−1)γ
C ·(αR

π⊕βR
π )⊕gC(γC)⊕gC(εC)

n∑
d=1

(−1)δ
R
π ·(γC⊕εC).
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Now note that

n∑
d=1

(−1)
δRπ ·(γ

C⊕εC)
=

∑
δRπ ∈Fk

2

(−1)
δRπ ·(γ

C⊕εC)
=

{
n if γC = εC ,
0 otherwise,

so for a, b ∈ [n],

Ca,b = n(−1)
gR(αR)⊕gR(βR)

∑
c∈ΛC

(−1)
γC·(αR

π⊕β
R
π )

(7.24)

= n(−1)
gR(αR)⊕gR(βR)

∑
γC∈LC

(−1)
γC ·(αR

π⊕β
R
π )
.

Similarly,

Ca+n,b+n =

n∑
c=1

Ma+n,cMb+n,c(Im;Λ)c,c

n∑
d=1

n∑
e=1

Mc,d+nMd+n,e(Im;Λ)e,e

=
∑

c,e∈ΛR

Hc,aHc,b

n∑
d=1

Hc,dHe,d,

so taking αC = τC(a), βC = τC(b), and γR = τR(c), we get

(7.25) Ca+n,b+n = n(−1)
gC(αC)⊕gC(βC)

∑
γR∈LR

(−1)
γR
π ·(α

C⊕βC)
.

Let λC = |LC | and λR = |LR|. We will now assume that EVAL(C, Im, Im;Λ)
is not #P-hard. Using this assumption, we will show that LC and LR are linear
subspaces of Fk2 , which implies that (L) is satisfied. We give the argument for LC .
The argument for LR is symmetric.

If LC is empty, then it is a linear subspace of Fk2 , so assume that it is nonempty.
Condition (R) guarantees that, since ΛC is nonempty, ρC(0) ∈ ΛC . Hence, 0 ∈ LC .

Let L be the subspace of Fk2 spanned by LC . L contains all linear combinations
of elements of LC . We will show that LC = L, so LC is a linear subspace of Fk2 .

By (7.23), the matrix C is symmetric. By (7.24), we have Ca,a = nλC for a ∈
[n]. Thus, by Lemma 6.4 (due to Bulatov and Grohe) Ca,b ∈ {−nλC , 0, nλc} for
all a, b ∈ [n]. Otherwise, EVAL(C, Im, Im;Λ) is #P-hard. Let χ = αRπ ⊕ βRπ . Since
Ca,b ∈ {−nλC , 0, nλc}, (7.24) implies that for every such χ ∈ F

k
2 ,∑

γ∈LC

(−1)γ·χ ∈ {−λC , 0, λC}.

Since 0 ∈ LC , one of the items in the summation is (−1)0·ξ = 1, so the outcome −λC
is not possible. Therefore, we get

(7.26)
∑
γ∈LC

(−1)
γ·χ ∈ {0, λC} for all χ ∈ F

k
2 .

Let Ξ0 = {χ ∈ F
k
2 | ∀γ ∈ LC , χ · γ = 0}. If χ ∈ Ξ0, then χ · γ = 0 for all γ ∈ L.

Otherwise, by the linearity of L,

|{γ ∈ L : χ · γ = 0}| = |{γ ∈ L : χ · γ = 1}|.
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Thus ∑
γ∈L

(−1)
χ·γ

=

{
|L| if χ ∈ Ξ0,
0 otherwise.

Hence (the characteristic functions of) the sets LC and L have the same Fourier
transform, up to scaling. It follows that L = LC and LC is a linear subspace of Fk2 ,
as required.

Finally, note that it is easy, in polynomial time, given H , to construct C and
to determine whether, for all a, b ∈ [n], Ca,b ∈ {−nλC , 0, nλc} and Cn+a,n+b ∈
{−nλR, 0, nλR}. Also, φR and φC can be found efficiently. Thus, it is easy, in
polynomial time, to determine whether (L) holds.

The following fact about linear maps will be useful later.
Lemma 7.9. Let φ : F

�
2 → F

k
2 be a linear map. There is a surjective map

f : Fk2 → F
�
2 and a constant z ∈ N such that

• f(c1, . . . , ck) · (x1, . . . , x�) = (c1, . . . , ck) · φ(x1, . . . , x�), and
• ∀(c′1, . . . , c′�), z = |{(c1, . . . , ck) | f(c1, . . . , ck) = (c′1, . . . , c

′
�)}|.

Proof. Let B be the � × k matrix defining φ, i.e., φ(x1, . . . , x�) = (x1, . . . , x�)B.
Define f by f(c1, . . . , ck) = (c1, . . . , ck)B

T . Then, letting x denote the row vector
(x1, . . . , x�),

f(c1, . . . , ck) · (x1, . . . , x�) = f(c1, . . . , ck)x
T

= (c1, . . . , ck)B
TxT

= (c1, . . . , ck)(xB)T

= (c1, . . . , ck) · φ(x1, . . . , x�).

Fix any c′ ∈ F
�
2 and any c ∈ F

k
2 such that f(c) = c′. Note that

f−1(c′) =
{
c+ x | x ∈ F

k
2 , f(c+ x) = c′

}
.

As f is linear, we have f(c+x) = f(c)+f(x) = c′+f(x), so f−1(c′) =
{
c+x | x ∈ F

k
2 ,

f(x) = 0
}
. Thus, we take z = |{x ∈ F

k
2 | f(x) = 0}|.

7.5. The degree condition. Let X = (X1, . . . , Xk). Every polynomial in
g(X1, . . . , Xk) ∈ F2[X1, . . . , Xk] can be written as a sum of distinct monomials of
the form Xi1 ·Xi2 , . . . , Xij for 1 ≤ i1 < · · · < ij ≤ k. Given a polynomial g(X), let
#(g(X)) = |{α ∈ F

k
2 | g(α) = 1}|. For α, β, γ ∈ F

k
2 , let

gα,β,γ(X) = g(α⊕X)⊕ g(β ⊕X)⊕ γ ·X.

Lemma 7.10. Let g ∈ F2[X1, . . . , Xk] be of degree at least 3. Suppose that
variables Xr, Xs, and Xt are contained in a monomial of degree at least 3. Let β = 0
and let α ∈ F

k
2 be the vector which is all zero except at index r. Then there are

polynomials h, hr,s, hr,t, and hr such that h is not identically 0 and

gα,β,γ(X) = XsXth(X \ {r, s, t})⊕Xshr,s(X \ {r, s, t})⊕Xthr,t(X \ {r, s, t})(7.27)

⊕ hr(X \ {r, s, t})⊕ γ ·X

for all γ ∈ F
k
2 .

Proof. Let Z denote the tuple X \{r, s, t}. Let h′(X) be the sum of all monomials
of g that contain Xr, Xs, and Xt. Let h(Z) be the polynomial satisfying h′(X) =
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XrXsXth(Z). Note that h(Z) is not identically zero. Choose hr,s, hr,t, hs,t, hr, hs,
ht, and h∅ so that

g(X) = XrXsXth(Z)⊕XrXshr,s(Z)⊕XrXthr,t(Z)⊕XsXths,t(Z)

⊕Xrhr(Z)⊕Xshs(Z)⊕Xtht(Z)⊕ h0(Z).

Then for α and β as defined in the statement of the lemma, we have

g(α⊕X)⊕ g(β ⊕X) = g(α⊕X)⊕ g(X)

= ((Xr ⊕ 1)XsXt ⊕XrXsXt)h(Z)

⊕((Xr ⊕ 1)Xs ⊕XrXs)hr,s(Z)

⊕((Xr ⊕ 1)Xt ⊕XrXt)hr,t(Z)⊕ hr(Z)

= XsXth(Z)⊕Xshr,s(Z)⊕Xthr,t(Z)⊕ hr(Z),

which finishes the proof.
Lemma 7.11. Let g(X) ∈ F2[X1, . . . , Xk]. The following are equivalent.
1. g has degree at most 2.
2. For all α and β in F

k
2 ,

• there is exactly one γ ∈ F
k
2 such that #(gα,β,γ(X)) ∈

{
0, 2k

}
, and

• for all γ′ �= γ, #(gα,β,γ′(X)) = 2k−1.
Also, if g has degree greater than 2, then there are α and β in F

k
2 for which there is

no γ ∈ F
k
2 such that #(gα,β,γ(X)) ∈ {0, 2k}.

Proof. Suppose that g has degree at most 2. Let g′(X) := g(α⊕X)⊕ g(β ⊕X).
Consider any degree-2 term XrXs in g. In g

′, this term becomes (Xr⊕αr)(Xs⊕αs)⊕
(Xr ⊕ βr)(Xs⊕ βs). Now (Xr ⊕αr)(Xs⊕αs) = XrXs⊕Xrαs⊕αrXs⊕αrαs, so the
term XrXs cancels in g′. We conclude that g′(X) is linear in X1, . . . , Xk and part
2 holds.

Conversely, suppose that g has degree at least 3. Suppose that variables Xr, Xs,
and Xt are contained in a monomial of degree at least 3. Let β = 0 and let α ∈ F

k
2 be

the vector which is all zero except at index r. By Lemma 7.10, there are polynomials
h, hr,s, hr,t, and hr such that h is not identically 0 and

gα,β,γ(X) = XsXth(X \ {r, s, t})⊕Xshr,s(X \ {r, s, t})⊕Xthr,t(X \ {r, s, t})
⊕ hr(X \ {r, s, t})⊕ γ ·X.

Since h is not identically 0, the term XsXth(X \ {r, s, t}) does not cancel for any
choice of γ. Hence, there is no γ such that #(gα,β,γ(X)) ∈

{
0, 2k

}
, part 2 does not

hold.
Lemma 7.12. Let g ∈ F2[X1, . . . , Xk]. There is a γ ∈ F

k
2 such that

#(gα,β,γ(X)) �= 2k−1.

Proof. Suppose, for contradiction, that #(gα,β,γ(X)) = 2k−1 for every γ ∈ F
k
2 .

We thus have, for every γ ∈ F
k
2 ,

(7.28) 0 =
∑
X

(−1)gα,β,γ(X) =
∑
X

(−1)gα,β,0(X) · (−1)γ·X .

For x ∈ F
k
2 , let vx(γ) = (−1)γ·x and let vx be the length-2k vector (vx(00 · · · 0), . . . ,

vx(11 · · · 1)). The vectors in {vx} are orthogonal, so they form a basis and any vector
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u’1 v’’1u’’1

v’1

x1 y1

z w

u v

Fig. 7.2. The lotus gadget for p = 1.

in the corresponding vector space is uniquely expressible as a sum of these basis
elements. In particular, the all zero vector (0, . . . , 0) =

∑
x cxvx has cx = 0 for all x.

However, (7.28) implies cx = (−1)gα,β,0(x) ∈ {−1, 1}, which is a contradiction.
Corollary 7.13. Let g(X) ∈ F2[X1, . . . , Xk]. The following are equivalent.
1. g has degree at most 2.
2. For all α �= β in F

k
2 ,

there is at most one γ ∈ F
k
2 such that #(gα,β,γ(X)) ∈ {0, 2k}, and(7.29)

for all γ′ �= γ, #(gα,β,γ′(X)) = 2k−1.(7.30)

Proof. If g has degree at most 2, then (2) holds by Lemma 7.11. Suppose that g
has degree at least 3. Lemma 7.11 provides an α and β such that there is no γ such
that #(gα,β,γ(X)) ∈ {0, 2k}. So to prove the theorem we just have to rule out the
case that every γ satisfies #(gα,β,γ(X)) = 2k−1 for this choice of α and β, and this is
ruled out by Lemma 7.12.

Proof of Lemma 2.6, the Degree Lemma. Let H be an n × n Hadamard matrix
and ΛR,ΛC ⊆ [n] subsets of indices. Let M,Λ be the bipartization of H , ΛR, and ΛC

and let m = 2n. Suppose that (GC), (R), and (L) are satisfied. For integers p we will
construct a matrix C [p] and a reduction EVAL(C [p]) ≤ EVAL(M, Im, Im;Λ). We will
show that if (D) does not hold, then there is a p such that EVAL(C [p]) is #P-hard.

The reduction is as follows. Let G = (V,E) be an input to EVAL(C [p]). We con-
struct an inputG′ to EVAL(M, Im, Im;Λ) as follows. Each edge {u, v} ∈ E corresponds
to a “lotus” gadget inG′. The vertex set of the gadget is {u, v, u′i, v′i, u′′i , v′′i , xi, yi, z, w |
i ∈ [p]}. See Figure 7.2 for an illustration of the lotus gadget for p = 1. The gad-
get has the following edges for all i ∈ [p]: {z, xi}, {w, xi}, {z, yi}, {w, yi}, {u, u′i},
{u′i, u′′i }, {xi, u′i}, {xi, v′i}, {v, v′i}, {v′i, v′′i }, {yi, u′i}, and {yi, v′i}.

Note that the vertices of the gadget have the following degrees:

d(u′′i ) = d(v′′i ) = 1,

d(u′i) = d(v′i) = d(xi) = d(yi)) = 4,

d(z) = d(w) = 2p.

Furthermore, for the “boundary” vertices u, v we have

dG′(u) = p · dG(u), dG′(v) = p · dG(v).
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We will stipulate that p is even. Then the degree of the vertices, except for the u′′i
and v′′i , is even.

Now let us construct the matrix C [p]. Let Γ denote the graph with vertices u

and v and a single edge between them. Clearly, C
[p]
a,b is equal to the contribution to

ZM,Im,Im;Λ(Γ
′) corresponding to those configurations ξ with ξ(u) = a and ξ(v) = b.

By (R), there are bijective index mappings ρR : Fk2 → [n] and ρC : Fk2 → [n]
and a permutation π ∈ Sk such that (with respect to ρR and ρC) the matrix H is
represented by the polynomial h(X,Y ) = XπY ⊕ gR(X) ⊕ gC(Y ). Let τR be the
inverse of ρR and τC be the inverse of ρC . Let LC = τC(ΛC) and LR = τR(ΛR). By

condition (L) we know that the sizes of LR and LC are powers of 2. Let |LR| = 2�
R

and let |LC | = 2�
C

. If ΛR is nonempty, then let φR : F�
R

2 → F
k
2 be a coordinatization

of ΛR with respect to ρR. Similarly, if ΛC is nonempty, let φC be a coordinatization
of ΛC with respect to ρC . Let φC = φR if ΛC = ΛR and this is nonempty and H is
symmetric. Note that if ΛC and ΛR are empty, then (D) is satisfied.

Let Γi be the subgraph of Γ′ induced by {u, xi, yi, u′i, u′′i }. For α, γ, δ ∈ F
k
2 , let

aR = ρR(α), cR = ρR(γ), and dR = ρR(δ). Let ZR(α, γ, δ) denote the contribution to
ZM,Im,Im;Λ(Γi) corresponding to those configurations ξ with ξ(u) = aR, ξ(xi) = cR,
and ξ(yi) = dR, ignoring contributions due to Im;Λ for vertices u, xi, and yi. (We
ignore these contributions because these vertices will have even degree in G′, so these
contributions will cancel when we use Z(α, β, γ).) Using n + a′ to denote the spin
at u′i (which must be in the range {n+1, . . . , 2n}; otherwise the contribution is zero)
and a′′ to denote the spin at u′′i (which must be in [n]), we get

ZR(α, γ, δ) =

n∑
a′=1

n∑
a′′=1

MaR,n+a′Mn+a′,a′′McR,n+a′MdR,n+a′(Im;Λ)a′′,a′′

=
∑

a′′∈ΛR

n∑
a′=1

HaR,a′Ha′′,a′HcR,a′HdR,a′ .

Plugging in the representation of H where ρR(φR(μ)) is the spin a′′ ∈ ΛR, we get
the following:

ZR(α, γ, δ) = (−1)
gR(α)⊕gR(γ)⊕gR(δ)

∑
μ∈F�R

2

(−1)
gR(φR(μ))

∑
α′∈Fk

2

(−1)
α′·(απ⊕φR(μ)π⊕γπ⊕δπ).

Note that∑
α′∈Fk

2

(−1)
α′·(απ⊕φR(μ)π⊕γπ⊕δπ) =

{
n if φR(μ)π = απ ⊕ γπ ⊕ δπ,
0 otherwise.

Equivalently,

∑
α′∈Fk

2

(−1)
α′·(απ⊕φR(μ)π⊕γπ⊕δπ) =

{
n if φR(μ) = α⊕ γ ⊕ δ,
0 otherwise.

Thus, ZR(α, γ, δ) = 0 unless α⊕ γ ⊕ δ ∈ LR, and in this case,

(7.31) ZR(α, γ, δ) = n(−1)
gR(α)⊕gR(γ)⊕gR(δ)⊕gR(α⊕γ⊕δ)

.
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Our strategy for the rest of the proof is the following: The goal is to prove that
either there is a p such that EVAL(C [p]) is #P-hard or the following two conditions
are satisfied.

Row condition. Either ΛR is empty or the polynomial gR ◦ φR has degree at
most 2.

Column condition. Either ΛC is empty or the polynomial gC ◦ φC has degree at
most 2.

Let us turn to the row condition first. Suppose that ΛR is nonempty; other-

wise there is nothing to prove. Let a, b ∈ ΛR. Define αR and βR in F
�R

2 so that
φR(αR) = τR(a) and φR(βR) = τR(b). Note that the contribution to ZM,Im,Im;Λ(Γ

′)
of a configuration ξ with ξ(u) = a and ξ(v) = b is zero unless the spins of vertices u′i,
v′i, z, and w are in {n+ 1, . . . , 2n} and the rest of the spins are in [n]. Then taking
ρC(ε) + n as the spin of z and ρC(ζ) + n as the spin of w, we get

C
[p]
a,b =

∑
ε,ζ∈Fk

2

p∏
i=1

⎛⎝ ∑
γi,δi∈Fk

2

ZR(φR(αR), γi, δi)Z
R(φR(βR), γi, δi)(−1)((γi)π⊕(δi)π)·(ε⊕ζ)

⎞⎠
=

∑
ε,ζ∈Fk

2

⎛⎝ ∑
γ,δ∈Fk

2

ZR(φR(αR), γ, δ)ZR(φR(βR), γ, δ)(−1)(γπ⊕δπ)·(ε⊕ζ)

⎞⎠p

.

From (7.31) we find that if we take any γ′ and δ′ such that γ′ ⊕ δ′ = γ ⊕ δ, then
ZR(α, γ, δ)ZR(β, γ, δ) = ZR(α, γ′, δ′)ZR(β, γ′, δ′) for any α and β. Thus, we can
simplify the expression using ψ to denote ε⊕ ζ and η to denote γ ⊕ δ.

C
[p]
a,b = n

∑
ψ∈Fk

2

⎛⎝ ∑
γ,δ∈Fk

2

ZR(φR(αR), γ, δ)ZR(φR(βR), γ, δ)(−1)(γπ⊕δπ)·ψ

⎞⎠p

= n
∑
ψ∈Fk

2

⎛⎝n ∑
η∈Fk

2

ZR(φR(αR), η,0)ZR(φR(βR), η,0)(−1)ηπ·ψ

⎞⎠p

= np+1
∑
ψ∈Fk

2

⎛⎝∑
η∈Fk

2

ZR(φR(αR), η,0)ZR(φR(βR), η,0)(−1)ηπ ·ψ

⎞⎠p

.

Now, by (7.31), the contribution for a given η is 0 unless φR(αR)⊕ η and φR(βR)⊕ η
are in LR. But φR(αR) and φR(βR) are in LR, so by (L), the contribution for a given
η is nonzero exactly when η ∈ LR. Thus, we can use (7.31) to simplify, writing η as
φR(μ):

C
[p]
a,b = np+1

∑
ψ∈Fk

2

⎛⎝ ∑
η∈LR

n2(−1)g
R(φR(αR))⊕gR(φR(βR))⊕gR(φR(αR)⊕η)⊕gR(φR(βR)⊕η)⊕ηπ ·ψ

⎞⎠p

= n3p+1
(
(−1)

gR(φR(αR))⊕gR(φR(βR))
)p

×
∑
ψ∈Fk

2

⎛⎜⎝ ∑
μ∈F�R

2

(−1)
gR(φR(αR)⊕φR(μ))⊕gR(φR(βR)⊕φR(μ))⊕φR(μ)π ·ψ

⎞⎟⎠
p

.
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Since p is even, we have ((−1)
gR(φR(αR))⊕gR(φR(βR))

)p = 1. Using the linearity of φR

and inverting π, we further simplify as follows:

C
[p]
a,b = n3p+1

∑
ψ∈Fk

2

⎛⎜⎝ ∑
μ∈F�R

2

(−1)
gR(φR(αR⊕μ))⊕gR(φR(βR⊕μ))⊕φR(μ)·ψπ−1

⎞⎟⎠
p

= n3p+1
∑
χ∈Fk

2

⎛⎜⎝ ∑
μ∈F�R

2

(−1)
gRφR(αR⊕μ)⊕gRφR(βR⊕μ)⊕φR(μ)·χ

⎞⎟⎠
p

.

Since φR is linear, by Lemma 7.9, there are a surjective map f : Fk2 → F
�R

2 and a

constant κR ∈ N such that φR(μ) · χ = f(χ) · μ and for any γ ∈ F
�R

2 the number of χ
with f(χ) = γ is κR, so we can simplify:

C
[p]
a,b = n3p+1κR

∑
γ∈F�R

2

⎛⎜⎝ ∑
μ∈F�R

2

(−1)
gRφR(αR⊕μ)⊕gRφR(βR⊕μ)⊕μ·γ

⎞⎟⎠
p

.

Let

Ĉ [p] =
C [p]

n3p+1 · κR .

Clearly EVAL(C [p]) ≡ EVAL(Ĉ [p]). We will now show that gR ◦ φR has degree at

most 2 or there is an even p such that EVAL(Ĉ [p]) is #P-hard. First note that Ĉ [p]

is symmetric and

Ĉ [p]
a,a =

∑
γ∈F�R

2

⎛⎜⎝ ∑
μ∈F�R

2

(−1)
μ·γ

⎞⎟⎠
p

= 2�
Rp.

For X = (X1, . . . , X�R) and a, b ∈ ΛR and γ ∈ F
�R

2 , define the polynomial

g̃a,b,γ(X) = gR ◦ φR(αR ⊕X)⊕ gR ◦ φR(βR ⊕X)⊕ γ ·X.

For all a, b ∈ ΛR we define

Ca,b :=
{
γ ∈ F

�R

2 | #(g̃a,b,γ(X)) ∈
{
0, 2�

R
}}

,

Ga,b :=
{
γ ∈ F

�R

2 | #(g̃a,b,γ(X)) /∈
{
0, 2�

R−1, 2�
R
}}

,

Ha,b :=
{
γ ∈ F

�R

2 | #(g̃a,b,γ(X)) = 2�
R−1

}
,

where #(g̃a,b,γ(X)) denotes the number of x ∈ F
�R

2 such that g̃a,b,γ(x) = 1.

For every γ ∈ Ga,b define za,b,γ :=
∑

μ∈F�R
2
(−1)g̃a,b,γ (μ), which, by definition,

satisfies za,b,γ �= 0 and |za,b,γ | < 2�
R

. Let zmax
a,b = maxγ∈Ga,b

|za,b,γ | and zmin
a,b =



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTITION FUNCTIONS WITH MIXED SIGNS 3371

minγ∈Ga,b
|za,b,γ |. For a, b ∈ ΛR, we can simplify the expression for Ĉ

[p]
a,b:

Ĉ
[p]
a,b =

∑
γ∈F�R

2

⎛⎜⎝ ∑
μ∈F�R

2

(−1)g̃a,b,γ (μ)

⎞⎟⎠
p

=

⎛⎝ ∑
γ∈Ca,b

2�
Rp +

∑
γ∈Ga,b

(za,b,γ)
p +

∑
γ∈Ha,b

0

⎞⎠
=

⎛⎝|Ca,b|2�
Rp +

∑
γ∈Ga,b

(za,b,γ)
p

⎞⎠ .

Since p is even, (za,b,γ)
p is positive for all γ ∈ Ga,b, and thus Ĉ

[p]
a,b is nonnegative for all

a, b ∈ ΛR. If ΛR is empty, then the relevant condition in (D) is satisfied, so suppose
that it is nonempty. We will now show that gR ◦ φR has degree at most 2 or there
exists an even p such that Ĉ [p] has a block of rank at least two.

Case A. There are a, b ∈ ΛR such that Ga,b �= ∅. Choose such a, b. The principal

2× 2 submatrix of Ĉ [p], defined by a and b, has determinant

(7.32)

∣∣∣∣∣ Ĉ
[p]
a,a Ĉ

[p]
a,b

Ĉ
[p]
b,a Ĉ

[p]
b,b

∣∣∣∣∣ =
∣∣∣∣∣ 2�

Rp Ĉ
[p]
a,b

Ĉ
[p]
a,b 2�

Rp

∣∣∣∣∣ = 22�
Rp − (Ĉ

[p]
a,b)

2.

If the determinant is zero, then Ĉ
[p]
a,b/2

�Rp = 1. We consider two cases. If Ca,b = ∅,
then

Ĉ
[p]
a,b

2�Rp
=

(∑
γ∈Ga,b

(za,b,γ)
p
)

2�Rp

≤
|Ga,b|(zmax

a,b )p

2�Rp

≤ 2�
R

(
zmax
a,b

2�R

)p
≤ 2�

R

(
2�

R − 1

2�R

)p
(because zmax

a,b < 2�
R

)

≤ 2�
R · e−p/2�

R

.

This is less than one for all p > �R2�
R

. Hence the determinant (7.32) is nonzero.

Furthermore, as Ga,b �= ∅ we have Ĉ
[p]
a,b �= 0, and hence Ĉ [p] contains a block of rank at

least two. This implies the #P-hardness of EVAL(Ĉ [p]) by Lemma 6.4. (Recall that

Ĉ
[p]
a,b is nonnegative since a, b ∈ ΛR.)

For the other case, suppose |Ca,b| ≥ 1. Then

Ĉ
[p]
a,b

2�Rp
= 2−�

Rp

⎛⎝|Ca,b|2�
Rp +

∑
γ∈Ga,b

(za,b,γ)
p

⎞⎠
≥ 2−�

Rp
(
|Ca,b|2�

Rp + |Ga,b|(zmin
a,b )

p
)

> |Ca,b| ≥ 1.
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Here, the second-to-last inequality holds, because zmin
a,b > 0 and (by the precondition

of Case A) Ga,b �= ∅. Hence again we have
Ĉ

[p]
a,b

2�Rp
�= 1, and the determinant (7.32) is

nonzero. As in the first case, this implies the #P-hardness of EVAL(Ĉ [p]).
Case B. For all a, b ∈ ΛR it holds that Ga,b = ∅. Then for all a, b ∈ ΛR we have

Ĉ
[p]
a,b = |Ca,b|2�

Rp +
∑
γ∈Ga,b

zpa,b,γ = |Ca,b|2�
Rp.

So the principal 2× 2 submatrix of Ĉ [p] defined by a, b has determinant∣∣∣∣∣ Ĉ
[p]
a,a Ĉ

[p]
a,b

Ĉ
[p]
b,a Ĉ

[p]
b,b

∣∣∣∣∣ =
∣∣∣∣∣ 2�

Rp 2�
Rp|Ca,b|

2�
Rp|Ca,b| 2�

Rp

∣∣∣∣∣ = 22�
Rp(1 − |Ca,b|2).

This determinant is zero if and only if |Ca,b| = 1, and the submatrix is part of a block if
and only if Ca,b �= ∅. Hence, we have #P-hardness by Lemma 6.4 if there are a, b ∈ ΛR

such that |Ca,b| /∈ {0, 1}. Assume that for all a, b ∈ ΛR we have |Ca,b| ∈ {0, 1}. Define
sets

I :=
{
(a, b) | a ∈ ΛR, b ∈ ΛR, |Ca,b| = 1, a �= b

}
,

Z :=
{
(a, b) | a ∈ ΛR, b ∈ ΛR, |Ca,b| = 0, a �= b

}
.

Obviously, these form a partition of pairs of distinct elements in ΛR. In other words,

for all a �= b ∈ ΛR there is at most one γ ∈ F
�R

2 such that #(g̃a,b,γ(X)) ∈ {0, 2�R}.
Furthermore, Ga,b = ∅ implies that for all other γ′ �= γ we have #(g̃a,b,γ′(X)) = 2�

R−1.
But Corollary 7.13 implies that in this case gR ◦ φR has degree at most two. This
finishes Case B and hence the proof of the row condition.

For the column condition, in a symmetric way to how we defined ZR(α, γ, δ),
we let ZC(α, γ, δ) denote the contribution to ZM,Im,Im;Λ(Γi) corresponding to those
configurations ξ with ξ(u) = n + aC , ξ(xi) = n + cC , and ξ(yi) = n + dC , ignoring
contributions due to Im;Λ for vertices u, xi, and yi. Using this, we can compute

C
[p]
n+a,n+b for a, b ∈ ΛC and show that, if ΛC is nonempty, then either gCφC has

degree at most 2 or EVAL(C [p]) is #P-hard.
Finally, we note that it is straightforward, in polynomial time, to determine

whether EVAL(C [p]) is #P-hard or (D) holds.
Corollary 7.14. Let H be a symmetric n×n Hadamard matrix and ΛR = ΛC ⊆

[n] identical subsets of indices. If H is positive for ΛR and ΛC, then EVAL(H, In, In;ΛR)
is polynomial-time computable if and only if H ΛR and ΛC satisfy the group condi-
tion (GC) and conditions (R), (L), and (D). Otherwise EVAL(H, In, In;ΛR) is #P-
hard. If H is not positive for ΛR and ΛC, then EVAL(H, In, In;ΛR) is polynomial-time
computable if and only if −H ΛR and ΛC satisfy the group condition (GC) and con-
ditions (R), (L), and (D). Otherwise EVAL(H, In, In;ΛR) is #P-hard.

Proof. By the equivalence of EVAL(H, In, In;ΛR) and EVAL(−H, In, In;ΛR) we
can assume that H is positive for ΛR and ΛC . Let M,Λ be the bipartization of
H , ΛR, and ΛC and let m = 2n. First, suppose that one of the conditions is
not satisfied. By Theorem 2.2, EVAL(M, Im, Im;Λ) is #P-hard. Since M is bi-
partite, EVAL(M, Im, Im;Λ) remains #P-hard when restricted to connected bipar-
tite instances G. But for these instances, ZM,Im,Im;Λ(G) = 2ZH,In,In;ΛR

(G), so

EVAL(H, In, In;ΛR) is #P-hard.
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It remains to give the proof for the tractability part. For symmetric H and ΛR =
ΛC satisfying (GC), (R), (L), and (D), we shall show how to compute ZH,In,In;ΛR

(G)
for an input graph G in polynomial time. Let Vo ⊆ V denote the set of odd-degree
vertices of G and Ve = V \ Vo. We have

ZH,In,In;ΛR
(G) =

∑
ξ:V→[n]

∏
{u,v}∈E

Hξ(u),ξ(v)

∏
v∈Vo

(In;ΛR )ξ(v),ξ(v)

=
∑

ξ:V→[n]

ξ(V o)⊆ΛR

∏
{u,v}∈E

Hξ(u),ξ(v).

Fix a configuration ξ : V → [n] and let ρ = ρR = ρC be the index mapping and
h the F2-polynomial representing H as given in condition (R). Let, furthermore,
φ := φR = φC be the coordinatization of ΛR as given in condition (D). Let τ be
the inverse of ρ and L = τ(ΛR). Then ξ induces a configuration ς : V → F

k
2 defined

by ς = τ ◦ ξ, which implies for all u, v ∈ V that h(ς(u), ς(v)) = 1 if and only if
Hξ(u),ξ(v) = −1. We can simplify:
(7.33)

ZH,In,In;ΛR
(G) =

∑
ξ:V→[n]

ξ(Vo)⊆ΛR

∏
{u,v}∈E

(−1)h(τ◦ξ(u),τ◦ξ(v)) =
∑

ς:V→F
k
2

ς(Vo)⊆L

(−1)
⊕

{u,v}∈E h(ς(u),ς(v)).

Define for each v ∈ V a tuple Xv = (Xv
1 , . . . , X

v
k ) and an F2-polynomial

hG =
⊕

{u,v}∈E
h(Xu, Xv).

Let var(hG) denote the set of variables in hG and, for mappings χ : var(hG) → F2,
we use the expression χ(Xv) := (χ(Xv

1 ), . . . , χ(X
v
k )) as shorthand. Define hG(χ) :=⊕

{u,v}∈E h(χ(X
u), χ(Xv)) and note that this is a sum in F2.

For a ∈ F2 let

(7.34) sa := |{χ : var(hG) → F2 | χ(Xv) ∈ L for all v ∈ Vo and hG(χ) = a}|.

Hence, by (7.33), ZH,In,In;ΛR
(G) = s0 − s1. It remains therefore to show how to

compute the values sa. Clearly,

hG =
⊕
{u,v}∈E

(Xu)πX
v ⊕ g(Xu)⊕ g(Xv) =

⊕
{u,v}∈E

(Xu)πX
v ⊕

⊕
v∈Vo

g(Xv),

as the term g(Xv) occurs exactly deg(v) many times in the above expression and thus
these terms cancel for all even degree vertices.

By (7.34) we are interested only in those assignments χ which satisfy χ(Xv) ∈ L
for all v ∈ Vo. With |ΛR| = 2l for some appropriate l, we introduce variable vectors
Y v = (Y v1 , . . . , Y

v
l ) for all v ∈ Vo. If u ∈ Vo or v ∈ Vo, then we can express the term

(Xu)πX
v in hG in terms of these new variables. In particular, let

h′′G =
⊕

{u,v}∈E
u,v∈Vo

(φ(Y u))π · φ(Y v)⊕
⊕
{u,v}∈E
u,w∈Ve

(Xu)π ·Xv ⊕
⊕
{u,v}∈E
u∈Vo,v∈Ve

(φ(Y u))π ·Xv.
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Let

h′G = h′′G ⊕
⊕
v∈V o

⊕g(φ(Y v)).

Then we see that

(7.35) sa := |{χ : var(h′G) → F2 | h′G(χ) = a}|.

By condition (D) g ◦ φ is a polynomial of degree at most 2, and therefore h′G is a
polynomial of degree at most 2. Furthermore, we have expressed sa as the number of
solutions to a polynomial equation over F2. Therefore, as in the proof of Theorem 2.2,
the proof now follows by Fact 2.7.

Proof of Theorem 1.2. Let H be a symmetric n × n Hadamard matrix and
ΛR = ΛC = [n]. Then H is positive for ΛR and ΛC . Let M,Λ be the bipartization of
H,ΛR,ΛC .

Suppose first that H has no quadratic representation. Then there are no index
mapping ρ = ρR = ρC and coordinatization φ = φR = φC such that conditions
(R) and (D) are satisfied. Hence by Theorem 2.2, EVAL(M, Im, Im;Λ) is #P-hard.
Since M is bipartite, EVAL(M, Im, Im;Λ) remains #P-hard when restricted to con-
nected bipartite instances G. But for these instances, ZM,Im,Im(G) = 2ZH,In,In(G),
so EVAL(H, In, In) is #P-hard. Suppose next that H has a quadratic representation
with index mapping ρ : Fk2 → [n] and polynomial h(X,Y ). Instead of going through
Theorem 2.2, it is easier to prove the tractability of EVAL(H) directly along the lines
of the proof of the tractability part of the theorem. We leave the details to the reader.
This is similar to the tractability part of the proof of Corollary 7.14.

8. The proofs for section 3.

8.1. Technical preliminaries.
Lemma 8.1. Let C ∈ R

m×m
A

be a symmetric matrix and let Δ+ and Δ− be
diagonal m ×m matrices. Let D be the componentwise sum D = Δ+ + Δ− and let
O = Δ+ −Δ−. Let A be the tensor product

A =

(
1 −1
−1 1

)
⊗ C.

Let Δ be the 2m × 2m matrix such that, for all i ∈ [m] and j ∈ [m], Δi,j = Δ+
i,j ,

Δi,m+j = Δm+i,j = 0, and Δm+i,m+j = Δ−i,j. Then

ZC,D,O(G) = ZA,Δ(G) for all graphs G.

Proof. It is useful to think of A and Δ in terms of four m×m tiles as follows:

A =

(
C −C

−C C

)
and Δ =

(
Δ+ 0
0 Δ−

)
.

We will simplify the expression for ZA,Δ(G) now. Let ξ : V → [2m] be a map such
that, for some w ∈ V , ξ(w) ∈ [m]. Let ψ be the mapping such that, for all v ∈ V ,

ψ(v) := ξ(v) +

{
m if w = v,
0 otherwise.
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Then∏
{u,v}∈E

Aψ(u),ψ(v) =
∏

{w,w}∈E
Aψ(w),ψ(w)

∏
{w,v}∈E
v �=w

Aψ(w),ψ(v)

∏
{u,v}∈E
u,v �=w

Aψ(u),ψ(v)

=
∏

{w,w}∈E
Aξ(w),ξ(w)

∏
{w,v}∈E
v �=w

−Aξ(w),ξ(v)

∏
{u,v}∈E
u,v �=w

Aξ(u),ξ(v),

which implies that ∏
{u,v}∈E

Aξ(u),ξ(v) = (−1)deg(w)
∏

{u,v}∈E
Aψ(u),ψ(v),

where deg(w) denotes the degree of w in G (self-loops add two to this degree). Since∏
v∈V Δξ(v),ξ(v) = Δξ(w),ξ(w)

∏
w �=v∈V Δξ(v),ξ(v), we have

ZA,Δ(G) =
∑

ξ:V→[2m]

∏
{u,v}∈E

Aξ(u),ξ(v)
∏
v∈V

Δξ(v),ξ(v)

=
∑

ξ:V→[2m]
ξ(w)∈[m]

∏
{u,v}∈E

Aξ(u),ξ(v)

(
Δξ(w),ξ(w) + (−1)deg(w)Δm+ξ(w),m+ξ(w)

)

·
∏

w �=v∈V
Δξ(v),ξ(v).

As this argument can be applied independently to all w ∈ V , we obtain

ZA,Δ(G) =
∑

ξ:V→[m]

∏
{u,v}∈E

Aξ(u),ξ(v)
∏
w∈V

(
Δξ(w),ξ(w) + (−1)deg(w)Δm+ξ(w),m+ξ(w)

)
=

∑
ξ:V→[m]

∏
{u,v}∈E

Cξ(u),ξ(v)
∏
w∈V

deg(w) even

Dξ(w),ξ(w)

∏
w∈V

deg(w) odd

Oξ(w),ξ(w)

= ZC,D,O(G).

Corollary 8.2. Let C be a symmetric m×m matrix which contains exclusively
blocks of rank 1. Let D and O be diagonal m × m matrices. Then the problem
EVAL(C,D,O) is polynomial-time computable.

Proof. By Lemma 8.1 the problem EVAL(C,D,O) is polynomial-time equivalent
to a problem EVAL(A,Δ) with A a matrix consisting of blocks of row-rank at most 1.
Thus the statement of the corollary follows from Lemma 6.3.

8.1.1. Extended twin reduction. Unfortunately the Twin Reduction Lemma,
Lemma 6.2, does not fully satisfy our needs. As we are dealing with possible negative
rows, we will be in a situation where it is useful to reduce matrices even further,
namely, by collapsing two rows Ai,∗ and Aj,∗ into one if Ai,∗ = ±Aj,∗.

To achieve this, we say that two rows Ai,∗ and Aj,∗ are plus-minus-twins (pm-
twins) if and only if Ai,∗ = ±Aj,∗. This induces an equivalence relation on the rows
(and by symmetry on the columns) of A. Let I1, . . . , Ik be a partition of the row
indices of A according to this relation. For technical reasons it will be convenient
to partition the sets Ii into the positive and the negative parts. That is, for every
i ∈ [k] we define a partition (Pi, Ni) of Ii such that Pi �= ∅ and for all ν, ν′ ∈ Pi and
μ, μ′ ∈ Ni we have Aν,∗ = Aν′,∗, Aμ,∗ = Aμ′,∗, and Aν,∗ = −Aμ,∗.
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The pm-twin-resolvent of A is the matrix defined, for all i, j ∈ [k], by

T ±(A)i,j := Aμ,ν for some μ ∈ Pi, ν ∈ Pj .

This definition is technical and seems to be counterintuitive, as we are not taking
the Ni into account. However, its motivation will become clear with the following
lemma and it is still well defined, even though possibly Ni = ∅ for some i ∈ [k].

As before, we define a mapping τ : [m] → [k] defined by μ ∈ Iτ(μ); that is, τ maps
μ ∈ [m] to the class Ij it is contained in. Therefore, we have T ±(A)τ(i),τ(j) = ±Ai,j for
all i, j ∈ [m]. We call τ the pm-twin-resolution mapping of A. Define N = N1∪· · ·∪Nk
and P = P1 ∪ · · · ∪ Pk. Then, in particular,

T ±(A)τ(i),τ(j) = Ai,j for all (i, j) ∈ (P × P ) ∪ (N ×N),

T ±(A)τ(i),τ(j) = −Ai,j for all (i, j) ∈ (P ×N) ∪ (N × P ).

Lemma 8.3 (Extended Twin Reduction Lemma). Let A be a symmetric m×m
matrix and Δ a diagonal m×m matrix of vertex weights. Let (P1, N1), . . . , (Pk, Nk)
be a partition of the row indices of A according to the pm-twin-relation.

Then

ZA,Δ(G) = ZT ±(A),D,O(G) for all graphs G,

where D and O are diagonal k × k matrices defined by

Di,i =
∑
ν∈Pi

Δν,ν +
∑
μ∈Ni

Δμ,μ and Oi,i =
∑
ν∈Pi

Δν,ν −
∑
μ∈Ni

Δμ,μ for all i ∈ [k].

Proof. Define Ji = Pi and Jk+i = Ni for all i ∈ [k]. Without loss of generality
we may assume that if there is a minimal l ∈ [k] such that Jk+l = ∅, then for all
j ≥ l we have Jk+j = ∅ (this can be achieved by appropriate relabeling of the Pi and
Ni). Let l := k+ 1 if all Jk+i are nonempty. Then J1, . . . , Jk+l−1 are the equivalence
classes of A according to the twin-relation. Therefore, the Twin Reduction Lemma,
Lemma 6.2, implies that for the diagonal (k+ �− 1)× (k+ �− 1) diagonal matrix Δ′′

defined by Δ′′j,j =
∑

ν∈Jj
Δν,ν we have

ZA,Δ(G) = ZT (A),Δ′′(G) for all graphs G.

Let n′ := k + l − 1 and note that, by the definition of the sets Ji, T (A) is the upper
left n′ × n′ submatrix of the 2k × 2k matrix

M =

(
T ±(A) −T ±(A)

−T ±(A) T ±(A)

)
=

(
1 −1

−1 1

)
⊗ T ±(A),

that is, T (A) = M[n′][n′]. Define a 2k × 2k diagonal matrix Δ′ such that Δ′i,i = Δ′′i,i
for all i ∈ [n′] and Δ′i,i = 0 for all n′ < i ≤ 2k. Then

ZM,Δ′(G) = ZT (A),Δ′′(G) for all graphs G.

Moreover, by the definition of Δ′′, the matrix Δ′ satisfies, for all i ∈ [k],

(8.1) Δ′i,i =
∑
ν∈Pi

Δν,ν and Δ′k+i,k+i =
∑
ν∈Ni

Δν,ν .
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Now, by Lemma 8.1, ZM,Δ′(G) = ZT ±(A),D′,O′ , where D′ and O′ are k × k matrices
such that D′i,i = Δ′i,i+Δ′k+i,k+i and O

′
i,i = Δ′i,i−Δ′k+i,k+i. But by (8.1), we see that

D′ = D and O′ = O.
Lemma 8.4 (Row-Column Negation Lemma). Let C be a symmetric m × m

matrix and D,O diagonal m×m matrices of vertex weights.
Let i ∈ [m] and define C ′ as the matrix obtained from C by multiplying row and

column i with −1. Let O′ be the matrix obtained from O by negating the diagonal
entry Oi,i. Then

ZC,D,O(G) = ZC′,D,O′(G) for all graphs G.

Proof. Let G = (V,E) be a graph and Vo, Ve the sets of odd (even) degree vertices
in V . Recall that

ZC,D,O(G) =
∑

ξ:V→[m]

∏
{u,v}∈E

Cξ(u),ξ(v)
∏
v∈Ve

Dξ(v),ξ(v)

∏
v∈Vo

Oξ(v),ξ(v).

Fix some mapping ξ : V → [m]. We will prove the lemma by showing that∏
{u,v}∈E

Cξ(u),ξ(v)
∏
v∈Ve

Dξ(v),ξ(v)

∏
v∈Vo

Oξ(v),ξ(v)

=
∏

{u,v}∈E
C′ξ(u),ξ(v)

∏
v∈Ve

Dξ(v),ξ(v)

∏
v∈Vo

O′ξ(v),ξ(v).

Define W := ξ−1(i) and let We := Ve ∩W and Wo := Vo ∩W denote the even
and odd degree vertices in W . By the definition of O′ we have∏

v∈Vo

O′ξ(v),ξ(v) = (−1)|Wo|
∏
v∈Vo

Oξ(v),ξ(v).

Furthermore, for all edges {u, v} ∈ E we have that Cξ(u),ξ(v) = C′ξ(u),ξ(v) if and only

if either both u, v ∈W or both u, v /∈W . If exactly one of the vertices is in W , then
Cξ(u),ξ(v) = −C′ξ(u),ξ(v). Therefore, if we denote by e(W,V \W ) the number of edges

e = {u, v} in G such that exactly one vertex is in W , we have∏
{u,v}∈E

C′ξ(u),ξ(v) = (−1)e(W,V \W )
∏

{u,v}∈E
Cξ(u),ξ(v).

To finish the proof, we note that

e(W,V \W ) ≡
∑
v∈W

deg(v) ≡ |Wo| (mod 2).

8.1.2. Pinning vertices. In the proof of Lemma 3.1 it will be convenient to
“pin” certain vertices of the input graph G to prescribed spins. We will develop the
tools which are necessary for this now. These results extend analogous techniques
used in [8] and [6].

Let A be an m ×m matrix and D a diagonal m ×m matrix of positive vertex
weights. In the following, a labeled graph is a triple G = (V,E, z), where (V,E) is a
graph and z ∈ V . For a labeled graph G = (V,E, z) and a k ∈ [m], we let

ZA,D(k,G) = (Dk,k)
−1

∑
ξ:V→[m]
ξ(z)=k

∏
{u,v}∈E

Aξ(u),ξ(v) ·
∏
v∈V

Dξ(v),ξ(v).
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The product GH of two labeled graphs G and H is formed by taking the disjoint union
of the graphs and then identifying the labeled vertices. Let Hs denote the product of
H with itself taken s times. Note that ZA,D(k,GH) = ZA,D(k,G)ZA,D(k,H) for all
labeled graphs G and H .

Recall that a twin-free matrix A is a matrix such that Ai,∗ �= Aj,∗ for all row
indices i �= j. Furthermore, an automorphism of (A,D) is a bijection α : [m] → [m]
such that Ai,j = Aα(i),α(j) and Di,i = Dα(i),α(i) for all i ∈ [m]. The following lemma
follows by a result of Lovász (Lemma 2.4 in [20]).

Lemma 8.5. Let A ∈ R
m×m be twin-free, D ∈ R

m×m a diagonal matrix of
positive vertex weights, and i, j ∈ [m]. If for all labeled graphs G we have

ZA,D(i, G) = ZA,D(j,G),

then there is an automorphism α of (A,D) such that j = α(i).
We furthermore need some standard result about interpolation (see Lemma 8.6),

which we use in the form as stated in [8] Lemma 3.2.
Lemma 8.6. Let w1, . . . , wr be known distinct nonzero constants. Suppose that

we know the values f1, . . . , fr such that

fi =

r∑
j=1

cjw
i
j for all i ∈ [r].

Then the coefficients c1, . . . , cr are uniquely determined and can be computed in poly-
nomial time.

Lemma 8.7 (Pinning Lemma). Let A ∈ R
m×m
A

be a symmetric matrix and Δ ∈
R
m×m
A

a diagonal matrix of positive real entries. Then for every labeled graph G and
every k ∈ [m], we can compute ZA,Δ(k,G) in polynomial time using an EVAL(A,Δ)
oracle.

Proof. Let the matrices B and D be the result of twin-reduction (Lemma 6.2)
when applied to A and Δ. In particular, B is twin-free and ZA,Δ(G) = ZB,D(G) for
all graphs G. Therefore, using the oracle, we can compute ZB,D(G) in polynomial
time (for input G).

Consider a graph G = (V,E) with a labeled vertex z and a particular spin k ∈ [m].
We will show how to compute ZB,D(k,G) using an oracle for ZB,D. This suffices since,
although ZB,D(k,G) is not the same as ZA,Δ(k,G), they can be derived from each
other.

Call spins i, j ∈ [m] equivalent if there is an automorphism α of (B,D) such that
j = α(i). Partition [m] into equivalence classes I1, . . . , Ic according to this definition.
For every spin j in equivalence class Ii, let cj denote the size of the equivalence
class—cj = |Ii|. For every equivalence class i ∈ [c] let ki denote a particular spin
ki ∈ Ii.

For any two equivalent spins a and a′ we have ZB,D(a, F ) = ZB,D(a
′, F ) for every

graph F . Therefore,

(8.2) ZB,D(G) =

c∑
i=1

ckiZB,D(ki, G).

We will now prove the following claim. The result follows by taking S =
⋃
i∈[c]{ki}.

Claim 3. Given a set S of inequivalent spins and a spin k ∈ S, we can compute
ZB,D(k,G) in polynomial time using an oracle for computing

∑
k∈S ckZB,D(k,G).
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Proof. The proof is by induction on |S|. The base case |S| = 1 is straightforward,
so assume |S| > 1. We will show how to compute ZB,D(k,G) (for any spin k ∈ S)
using an oracle for

∑
k∈S ckZB,D(k,G). Fix distinct spins i and j in S. By Lemma 8.5,

there is a labeled graph Gi,j such that

(8.3) ZB,D(i, Gi,j) �= ZB,D(j,Gi,j).

Note that the construction of Gi,j takes O(1) time since Gi,j does not depend on any
input graph G. Partition S into classes J1, . . . , Jt such that ν, ν′ ∈ Jμ if and only if
ZB,D(ν,Gi,j) = ZB,D(ν

′, Gi,j). We show below how to compute
∑
k∈Jμ

ckZB,D(k,G)

(for any μ ∈ [t]) using an oracle for
∑

k∈S ckZB,D(k,G). Once we have done that, we
can finish as follows. For a fixed k ∈ S, suppose k ∈ Jμ. Note that |Jμ| < S since one
of the spins i and j is not in Jμ. By induction, we can compute ZB,D(k,G) using the
newly constructed oracle to compute

∑
k∈Jμ

ckZB,D(k,G).

To finish, we now show how to compute
∑
k∈Jμ

ckZB,D(k,G) using an oracle for∑
k∈S ckZB,D(k,G). For every μ ∈ [t], let sμ be a spin in Jμ. Let wμ = ZB,D(sμ, Gi,j).

Let

fr =
∑
k∈S

ckZB,D(k,GG
r
i,j)

=
∑
μ∈[t]

∑
k∈Jμ

ckZB,D(k,GG
r
i,j)

=
∑
μ∈[t]

∑
k∈Jμ

ckZB,D(k,G)(ZB,D(k,Gi,j))
r

=
∑
μ∈[t]

wμ
r
∑
k∈Jμ

ckZB,D(k,G).

Note that we can compute fr in polynomial time using the oracle. Now by Lemma 8.6
we can recover

∑
k∈Jμ

ckZB,D(k,G) for every μ apart from the one with wμ = 0 (if

there is a μ with wμ = 0). But we can recover this one, if it exists, by subtraction
since ∑

k∈Jμ

ckZB,D(k,G) =
∑
k∈S

ckZB,D(k,G)−
∑
ν �=μ

∑
k∈Jν

ckZB,D(k,G).

The following corollary will be helpful in the proof of Lemma 8.12.
Corollary 8.8. Let C ∈ R

m×m
A

be a symmetric matrix and D,O ∈ R
m×m
A

diagonal matrices such that the diagonal of D is positive and that of O is nonnegative
such that D −O is nonnegative. Then, for every labeled graph G and every k ∈ [m],
we can compute ZC,D,O(k,G) in polynomial time using an EVAL(C,D,O) oracle.

Proof. Let Δ+ and Δ− be diagonal m ×m matrices with Δ+
i,i = (Di,i + Oi,i)/2

and Δ−i,i = (Di,i −Oi,i)/2. Let

A =

(
1 −1
−1 1

)
⊗ C.

Let Δ be the 2m × 2m matrix such that, for all i ∈ [m] and j ∈ [m], Δi,j = Δ+
i,j ,

Δi,m+j = Δm+i,j = 0, and Δm+i,m+j = Δ−i,j . Then by Lemma 8.1

ZC,D,O(G) = ZA,Δ(G) for all graphs G.
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Let I = {i ∈ [2m] | Δi,i �= 0}. Since D +O and D −O are nonnegative, we have
that the matrix ΔII has a positive diagonal. By inspection we have

ZA,Δ(G) = ZAII ,ΔII (G) for all graphs G.

By the Pinning Lemma, Lemma 8.7, we can compute the value ZAII ,ΔII (k,G) by an al-
gorithm with oracle access to EVAL(AII ,ΔII). Now, ZC,D,O(k,G) = ZAII ,ΔII (k,G)+
ZAII ,ΔII (k +m,G) for every k ∈ [m]. This finishes the proof.

8.1.3. Tensor product decomposition. The following technical lemma will
be used in the proof of Lemma 3.2.

Lemma 8.9. Given symmetric r × r matrices A and D and m × m matrices
A′, D′,

ZA⊗A′,D⊗D′(G) = ZA,D(G) · ZA′,D′(G) for every graph G.

Proof. We consider the indices of A ⊗ A′ and D ⊗D′ as pairs (i, j) ∈ [r] × [m]
such that, e.g.,

(A⊗A′)(i,i′)(j,j′) = Ai,j ·A′i′,j′ .

Let π : [r] × [m] → [r] and ρ : [r] × [m] → [m] be the canonical projections; i.e.,
for every (i, j) ∈ [r]× [m] we have π(i, j) = i and ρ(i, j) = j.

Thus

ZA⊗A′,D⊗D′(G) =
∑

ξ:V→[r]×[m]

∏
uv∈E

(A⊗A′)ξ(u),ξ(v)
∏
v∈V

(D ⊗D′)ξ(v),ξ(v)

=
∑

ξ:V→[r]×[m]

∏
uv∈E

Aπ(ξ(u)),π(ξ(v))A
′
ρ(ξ(u)),ρ(ξ(v))

·
∏
v∈V

Dπ(ξ(v)),π(ξ(v))D
′
ρ(ξ(v)),ρ(ξ(v))

=
∑

ξ:V→[r]
ξ′:V→[m]

∏
uv∈E

Aξ(u),ξ(v)A
′
ξ′(u),ξ′(v)

∏
v∈V

Dξ(v),ξ(v)D
′
ξ′(v),ξ′(v)

= ZA,D(G) · ZA′,D′(G).

It is not hard to see that this kind of decomposition can be performed for parity-
distinguishing partition functions as well, as the following lemma shows.

Lemma 8.10. Suppose that A′ is a symmetric m′×m′ matrix and D′ and O′ are
diagonal m′×m′ matrices. Suppose that A′′ is a symmetric m′′×m′′ matrix and D′′

and O′′ are diagonal m′′ ×m′′ matrices. Then, for every graph G,

ZA′⊗A′′,D′⊗D′′,O′⊗O′′ (G) = ZA′,D′,O′(G) · ZA′′,D′′,O′′(G).

Proof. Let A = A′⊗A′′, D = D′⊗D′′, and O = O′⊗O′′. We consider the indices
of A, D, and O as pairs (i, j) ∈ [m′]× [m′′] such that, for example,

(A)(i′,i′′)(j′,j′′) = A′i′,j′ · A′′i′′,j′′ .

Let π′ : [m′] × [m′′] → [m′] and π′′ : [m′] × [m′′] → [m′′] be the canonical
projections; i.e., for every (i, j) ∈ [m′]× [m′′] we have π′(i, j) = i and π′′(i, j) = j.
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With Vo ⊆ V the set of even degree vertices and Ve = V \ Vo, we have

ZA,D,O(G) =
∑

ξ:V→[m′]×[m′′]

∏
{u,v}∈E

Aξ(u),ξ(v)
∏
v∈Ve

Dξ(v),ξ(v)

∏
v∈Vo

Oξ(v),ξ(v).

With ∏
v∈Ve

Dξ(v),ξ(v) =
∏
v∈Ve

D
′
π′(ξ(v)),π′(ξ(v))

∏
v∈Ve

D
′′
π′′(ξ(v)),π′′(ξ(v)),∏

v∈Vo

Oξ(v),ξ(v) =
∏
v∈VO

O
′
π′(ξ(v)),π′(ξ(v))

∏
v∈Vo

O
′′
π′′(ξ(v)),π′′(ξ(v)),

and ∏
{u,v}∈E

Aξ(u),ξ(v) =
∏

{u,v}∈E
A′π′(ξ(u)),π′(ξ(v))

∏
{u,v}∈E

A′′π′′(ξ(u)),π′′(ξ(v)),

we therefore have

ZA,D,O(G) =

⎛⎝ ∑
ψ′:V→[m′]

∏
{u,v}∈E

A′ψ′(u),ψ′(v)

∏
v∈Ve

D
′
ψ′(v),ψ′(v)

∏
v∈Vo

O
′
ψ′(v),ψ′(v)

⎞⎠
·

⎛⎝ ∑
ψ′′:V→[m′′]

∏
{u,v}∈E

A′′ψ′′(u),ψ′′(v)

∏
v∈Ve

D
′′
ψ′′(v),ψ′′(v)

∏
v∈Vo

O
′′
ψ′′(v),ψ′′(v)

⎞⎠
= ZA′,D′ ,O′ (G) · ZA′′,D′′ ,O′′ (G).

Corollary 8.11. Let B′ be a symmetric m′ × m′ block and let DR′
and OR

′

be diagonal m′ × m′ matrices. Let B′′ = vvT be a symmetric m′′ × m′′ block and
for v a positive vector. Let DR′′

and OR
′′
be diagonal m′′ ×m′′ matrices such that

DR′′
has positive diagonal and OR

′′
has nonnegative diagonal. Let DR = DR′ ⊗DR′′

,
OR = OR

′ ⊗OR
′′
, and B = B′ ⊗ B′′. Furthermore, OR

′′
= 0 if and only if OR

′
= 0.

Then

EVAL(B,DR, OR) ≡ EVAL(B′, DR′
, OR

′
).

Proof. For every graph G, Lemma 8.10 gives

ZB′⊗B′′,DR′⊗DR′′ ,OR′⊗OR′′ (G) = ZB′,DR′ ,OR′ (G) · ZB′′ ,DR′′ ,OR′′ (G).

As B′′ = vvT is of rank 1, Corollary 8.2 implies that EVAL(B′′, DR′′
, OR

′′
) is

polynomial-time computable. It is not hard to see that ifOR
′′ �= 0, then ZB′′ ,DR′′ ,OR′′ (G)

is positive for all graphs G. In this case it follows straightforwardly that

EVAL(B,DR, OR) ≡ EVAL(B′, DR′
, OR

′
).

On the other hand, assume that OR
′′

= 0. This implies that OR
′
= 0, and thus

ZB′,DR′ ,OR′ (G) = 0 for every G which contains an odd-degree vertex. For all G
which contain only even-degree vertices, ZB′′ ,DR′′ ,OR′′ (G) is nonzero. The claimed
reducibility follows.

Lemma 8.12. Let B′ be an m′ × n′ block, DR′
and OR

′
be diagonal m′ × m′

matrices, and DC′
and OC

′
be diagonal n′×n′ matrices. Let B′′ be an m′′×n′′ block,
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DR′′
and OR

′′
be diagonal m′′×m′′ matrices, and DC′′

and OC
′′
be diagonal n′′×n′′

matrices. Assume that the diagonal entries of DR′
, DC′

, DR′′
, DC′′

are positive and
those of OR

′
, OC

′
, OR

′′
, OC

′′
are nonnegative. Furthermore, we have that OR

′
= 0 if

and only if OR
′′
= 0 and that OC

′
= 0 if and only if OC

′′
= 0. Let

D′ =

(
DR′

0

0 DC′

)
, D′′ =

(
DR′′

0

0 DC′′

)
,

and D =

(
DR′ ⊗DR′′

0

0 DC′ ⊗DC′′

)
,

and let O and O′, O′′ be constructed from OR, OC and OR
′
, OC

′
in the analogous way.

Let A,A′, A′′ be the connected bipartite matrices with underlying blocks B := B′⊗B′′,
B′, and B′′, respectively. Let B′′ = vwT for positive vectors v, w.

If D +O and D −O have only nonnegative entries, then

EVAL(A,D,O) ≡ EVAL(A′, D′, O′).

Proof. Note that ZA,D,O(G) = 0 unless G is bipartite. Therefore, we will assume
in the following that all graphs G are bipartite and that (U,W ) is a partition of the
vertex set V into two independent sets. Assume first that G is connected; the case of
nonconnected graphs will be handled later. Note that A is a square matrix of order
m+ n for m = m′m′′ and n = n′n′′. For diagonal r × r matrices D,O, a set X ⊆ V ,
and a configuration ξ : X → [r] define

ω̇D,O(X,φ) :=
∏
x∈X

deg(x) even

Dξ(x),ξ(x)

∏
x∈X

deg(x) odd

Oξ(x),ξ(x).

By the above definitions we have

ZA,D,O(G) =
∑

ξ:U→[m+n]
ψ:W→[m+n]

∏
{u,w}∈E

Aξ(u),ψ(w)ω̇D,O(U, ξ)ω̇D,O(W,ψ).

Therefore, since G is connected,

ZA,D,O(G) =
∑

ξ:U→[m]
ψ:W→[n]

∏
{u,w}∈E

Bξ(u),ψ(w)ω̇DR,OR(U, ξ)ω̇DC ,OC (W,ψ)

+
∑

ξ:U→[n]
ψ:W→[m]

∏
{u,w}∈E

Bψ(w),ξ(u)ω̇DC ,OC (U, ξ)ω̇DR,OR(W,ψ).

Define

(8.4) Z→A,D,O(G) :=
∑

ξ:U→[m]
ψ:W→[n]

∏
{u,w}∈E

Bξ(u),ψ(w)ω̇DR,OR(U, ξ)ω̇DC ,OC (W,ψ)

and

(8.5) Z←A,D,O(G) :=
∑

ξ:U→[n]
ψ:W→[m]

∏
{u,w}∈E

Bψ(w),ξ(u)ω̇DC ,OC (U, ξ)ω̇DR,OR(W,ψ).
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That is,

(8.6) ZA,D,O(G) = Z→A,D,O(G) + Z←A,D,O(G).

For matricesA′, D′, O′ and A′′, D′′, O′′ we define the analogous expressions (Z←A′,D′,O′(G),
etc.).

We consider the indices of B′ ⊗ B′′ as pairs. That is, row indices are (i′, i′′) ∈
[m′]× [m′′], and column indices become (j′, j′′) ∈ [n′]× [n′′].

(B′ ⊗B′′)(i′,i′′)(j′,j′′) = B′i′,j′ ·B′′i′′,j′′ .

Let ρ′ : [m′] × [m′′] → [m′], ρ′′ : [m′] × [m′′] → [m′′] and γ′ : [n′] × [n′′] → [n′],
γ′′ : [n′]×[n′′] → [n′′] be the canonical projections. That is, for (i′, i′′) ∈ [m′]×[m′′] we
have ρ′(i′, i′′) = i′, ρ′′(i′, i′′) = i′′ and for (j′, j′′) ∈ [n′]× [n′′] we have γ′(j′, j′′) = j′,
γ′′(j′, j′′) = j′′. Therefore, for all ξ : U → [m] and ψ : W → [n] we have∏

{u,w}∈E
Bξ(u),ψ(w) =

∏
{u,w}∈E

B′ρ′◦ξ(u),γ′◦ψ(w) ·
∏

{u,w}∈E
B′′ρ′′◦ξ(u),γ′′◦ψ(w)

and

ω̇DR,OR(U, ξ) = ω̇DR′ ,OR′ (U, ρ′ ◦ ξ)ω̇DR′′ ,OR′′ (U, ρ′′ ◦ ξ),
ω̇DC ,OC (W,ψ) = ω̇DC′ ,OC′ (W,γ′ ◦ ψ)ω̇DC′′ ,OC′′ (W,γ′′ ◦ ψ).

Hence, we can rewrite (8.4):

Z→A,D,O(G) =

⎛⎜⎜⎜⎝ ∑
ξ′:U→[m′]
ψ′:W→[n′]

∏
{u,w}∈E

B′ξ′(u),ψ′(w)ω̇DR′ ,OR′ (U, ξ′)ω̇DC′ ,OC′ (W,ψ′)

⎞⎟⎟⎟⎠

·

⎛⎜⎜⎜⎝ ∑
ξ′′:U→[m′′]
ψ′′:W→[n′′]

∏
{u,w}∈E

B′′ξ′′(u),ψ′′(w)ω̇DR′′ ,OR′′ (U, ξ′′)ω̇DC′′ ,OC′′ (W,ψ′′)

⎞⎟⎟⎟⎠
= Z→A′,D′,O′(G) · Z→A′′,D′′,O′′(G).

By an analogous argument this extends to Z←A,D,O(G). We therefore have

Z←A,D,O(G) = Z←A′,D′,O′(G) · Z←A′′,D′′,O′′(G),(8.7)

Z→A,D,O(G) = Z→A′,D′,O′(G) · Z→A′′,D′′,O′′(G).(8.8)

Claim 4. The values Z→A,D,O(G) and Z←A,D,O(G) can be computed in polynomial
time for every graph G by an algorithm with oracle access to EVAL(A,D,O).

Proof. Let G = (U,W,E) be a given connected bipartite graph, and label a vertex
u ∈ U . Then

Z→A,D,O(G) =
m∑
k=1

ZA,D,O(k,G),

and the values ZA,D,O(k,G) can be computed using the EVAL(A,D,O) oracle by
Corollary 8.8.
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The analogous argument labeling a vertex w ∈ W yields the result for
Z←A,D,O(G).

We will show first that EVAL(A,D,O) ≤ EVAL(A′, D′, O′). Let G be a given
connected graph. By (8.6), (8.7), and (8.8) we have

ZA,D,O(G) = Z→A,D,O(G) + Z←A,D,O(G)

= Z→A′,D′,O′(G)Z→A′′,D′′,O′′(G) + Z←A′,D′,O′(G)Z←A′′,D′′,O′′(G).

By Claim 4 we can compute the values Z→A′,D′,O′(G) and Z←A′,D′,O′(G) using the
EVAL(A′, D′, O′) oracle. The values Z→A′′,D′′,O′′(G) and Z←A′′,D′′,O′(G) can be com-
puted by Claim 4 using the fact that EVAL(A′′, D′′, O′′) is polynomial-time com-
putable. This polynomial-time computability follows from Lemma 8.2 using the fact
that the block B′′ = vwT underlying A′′ has rank 1.

To see that EVAL(A′, D′, O′) ≤ EVAL(A,D,O), note that by Claim 4 we can
compute

(8.9) Z→A,D,O(G) = Z→A′,D′,O′(G)Z→A′′,D′′,O′′(G)

and

Z←A,D,O(G) = Z←A′,D′,O′(G)Z←A′′,D′′,O′′(G)

using an EVAL(A,D,O) oracle. We continue by showing how to compute Z→A′,D′,O′(G);
the proof for Z←A′,D′,O′(G) will be analogous. Altogether, we will then obtain

ZA′,D′,O′(G) = Z→A′,D′,O′(G) + Z←A′,D′,O′(G).

Let us see how to compute Z→A′,D′,O′(G). Note that by Claim 4, using the fact that
EVAL(A′′, D′′, O′′) is polynomial-time computable, we can compute Z→A′′,D′′,O′′(G). If

OR
′′ �= 0 and OC

′′ �= 0, then it is not hard to see that Z→A′′,D′′,O′′(G) is positive, since

D′′ has positive diagonal and B′′ = vwT . In this case we can compute Z→A′,D′,O′(G)
by (8.9).

It remains to consider the three cases where either OR
′′
= 0 or OC

′′
= 0. For

simplicity, let us consider only the case that OR
′′
= 0 and OC

′′ �= 0; the others are
handled by analogous reasoning. By the condition of the lemma, we have OR

′
= 0.

Thus, if U contains a vertex of odd degree, then 0 = Z→A′,D′,O′(G) = Z→A′′,D′′,O′′(G).
If all vertices in U have even degree, then, as above, we see that Z→A′′,D′′,O′′(G) is
positive. Therefore, we can compute Z→A′,D′,O′(G) by (8.9).

The proof for nonconnected G follows from the above using the fact that

ZA,D,O(G) =
c∏
i=1

ZA,D,O(Gi),

with G1, . . . , Gc being the connected components of G.

8.2. The proof of Lemma 3.1.
Proof of Lemma 3.1. Let G be a given graph. Note that if G = (V,E) is not

connected with G1, . . . , Gk being the components of G, then we have

ZA(G) =

k∏
i=1

c∑
j=1

ZAj(Gi).
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This proves (2). To prove (1) note that for hardness we may restrict ourselves to
connected G.

Therefore, for some i ∈ [c] fix a component Ai of A and let I ⊆ [m] be the set of
row/column indices such that Ai = AII . Let G = (V,E) be a connected graph and
call some vertex z ∈ V the labeled vertex of G. Then by the connectedness of G we
have

ZAi(G) =
∑
k∈I

ZA(k,G).

The proof now follows by the Pinning Lemma, Lemma 8.7.

8.3. The proof of Lemma 3.2. In order to prove Lemma 3.2, it will be con-
venient to transition from partition functions to parity-distinguishing partition func-
tions. How this translation can be performed will be described in Lemma 8.15. Once
we have determined some conditions on the shape of the resulting partition functions,
the proof of Lemma 3.2 will become straightforward.

Shape conditions. Given an evaluation problem EVAL(C,D,O) with D,O diag-
onal matrices of vertex weights and C a connected bipartite matrix with underlying
block B, we define conditions on the shape of C and D,O. These conditions will be
used incrementally; that is, we will rely on (C(i + 1)) only if (C1)–(Ci) are assumed
to hold.

(C1) There are r,m, n ∈ N, a nonsingular r × r-matrix H with entries in {−1, 1},
and vectors v ∈ RA

m
>0, w ∈ RA

n
>0 of pairwise distinct entries such that

B = vwT ⊗H =

⎛⎜⎝ v1w1H . . . v1wnH
...

. . .
...

vmw1H . . . vmwnH

⎞⎟⎠ .

If B satisfies (C1), for convenience, we will consider the indices of the entries in B as
pairs such that B(μ,i),(ν,j) = vμwνHi,j for μ ∈ [m], ν ∈ [n], and i, j ∈ [r]. We call the
submatrices vμvνH the tiles of B.

The diagonal entries of the matrices D and O are vertex weights which, by the
shape of C,

C =

(
0 B
BT 0

)
,

will be considered with respect to B. As B is an rm×rn matrix, we group the entries
of O and D into rm × rm submatrices DR, OR corresponding to the rows of B and
rn× rn submatrices DC , OC corresponding to the columns of B so as to obtain

D =

(
DR 0
0 DC

)
and O =

(
OR 0
0 OC

)
.

Furthermore, according to the tiles of B, the matrix DR can be grouped into m tiles
DR,μ (for all μ ∈ [m]), each of which is an r × r diagonal matrix. Analogously we
group the matrix DC into n submatrices DC,ν for all ν ∈ [n] and we obtain

DR =

⎛⎜⎝ DR,1 . . . 0
...

. . .
...

0 . . . DR,m

⎞⎟⎠ and DC =

⎛⎜⎝ DC,1 . . . 0
...

. . .
...

0 . . . DC,n

⎞⎟⎠ .
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The matrices OR and OC are grouped analogously. If B is symmetric, then DR = DC

and OR = OC . We define four more conditions:

(C2) D is a diagonal matrix of positive vertex weights, OR,1, OC,1, and D+O, and
D − O are nonnegative.

(C3) The matrix H is a Hadamard matrix.

(C4) For all μ ∈ [m], ν ∈ [n] there are αRμ , α
C
ν such that DR,μ = αRμ Ir and

DC,ν = αCν Ir.

(C5) There are sets ΛR,ΛC ⊆ [r] such that for all μ ∈ [m], ν ∈ [n] there are
βRμ , β

C
ν such that OR,μ = βRμ Ir;ΛR andOC,ν = βCν Ir;ΛC . Furthermore, ΛR = ∅

(ΛC = ∅, resp.) if and only if βRμ = 0 for all μ ∈ [m] (βCν = 0 for all ν ∈ [n],
resp.).

Before we transform a given problem EVAL(A) into the form EVAL(C,D,O) in
Lemma 8.15, we will exclude some cases from our consideration. That is, we show
in the following lemma that EVAL(A) is #P-hard unless the block B underlying A
satisfies rank abs(B) = 1.

Lemma 8.13. Let A be a symmetric connected bipartite matrix with underlying
block B. Then at least one of the following outcomes occurs.

Outcome 1. EVAL(A) is #P-hard. If B is symmetric, then EVAL(B) is #P-
hard.

Outcome 2. For some m,n ∈ N there are vectors v ∈ R
m
A

and w ∈ R
n
A
satisfying

0 < v1 < . . . < vm and 0 < w1 < . . . < wn and permutations Σ and Π such that

BΣ,Π =

⎛⎜⎝ v1w1S
11 . . . v1wnS

1n

...
. . .

...
vmw1S

m1 . . . vmwnS
mn

⎞⎟⎠ ,

where, for i ∈ [m] and j ∈ [n], Sij is a {−1, 1}-matrix of some order mi × nj. If B
is symmetric, then Σ = Π.

Proof. By Lemma 6.4, EVAL(A) is #P-hard unless rank abs(B) = 1. Similarly,
if B is symmetric, then EVAL(B) is #P-hard unless rank abs(B) = 1.

We conclude that abs(B) = xyT for some nonnegative real vectors x, y. If B is
symmetric, then we can take y = x. To see this, suppose x̂ and ŷ are vectors such
that x̂ŷT is symmetric and let xi = yi =

√
x̂iŷi. Note that xiyj =

√
x̂iŷix̂j ŷj = x̂iŷj .

Note that the vectors x and y contain no zero entries. This follows from the fact
that abs(B) is a block because B is. Hence, if some entry of x satisfies xi = 0, then
Ai,∗ = xix

T = 0, and therefore B has a decomposition.

Let v ∈ R
m
A

be the vector of ascendingly ordered distinct entries of x. That is,
vi < vj for all i < j and, for each xi, there is a j ∈ [m] such that xi = vj . Similarly,
let w be the vector of ascendingly ordered distinct entries of y.

Lemma 8.14. Let A be a symmetric n× n matrix of rank r and I ⊆ [n] a set of
indices with |I| = r. If AI∗ has rank r, then the matrix AII is nonsingular.

Proof. As rankAI = rankA, the rows of A with indices in Ī depend linearly on
those from I. By symmetry this holds for the columns as well and is still true in AI .
Hence rankA = rankAII .

Lemma 8.15. Let A be a symmetric connected bipartite matrix with underlying
block BA of rank r. Then at least one of the following outcomes occurs.

Outcome 1. EVAL(A) is #P-hard. If BA is symmetric, then EVAL(BA) is #P-
hard.
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Outcome 2. There are a connected bipartite matrix C, whose underlying block B
is size mr × nr for some m and n, and diagonal matrices D and O, which satisfy
conditions (C1) and (C2), such that

EVAL(C,D,O) ≡ EVAL(A).

The matrices D and O consist ofmr×mr submatrices DR, OR and nr×nr submatrices
DC , OC such that

D =

(
DR 0
0 DC

)
and O =

(
OR 0
0 OC

)
.

C, D, and O can be computed in time polynomial in the size of A. If BA is symmetric,
then so is B. Also DR = DC , OR = OC , and

EVAL(B,DR, OR) ≡ EVAL(BA).

Proof. Suppose that the matrix A does not give Outcome 1 in Lemma 8.13.
Let Σ and Π be the permutations from Lemma 8.13, and let Φ be the permutation
on the rows of A that applies Σ to the rows of BA and applies Π to the columns.
Let Ã = AΦ,Φ. Note that EVAL(A) ≡ EVAL(Ã). Also, the block underlying Ã is

(BA)Σ,Π, which we denote B̃. Note that B̃ is symmetric if BA is symmetric, since

Σ = Π in that case and EVAL(BA) ≡ EVAL(B̃). By Lemma 8.13 there are m,n ∈ N

such that

B̃ =

⎛⎜⎝ v1w1S
11 . . . v1wnS

1n

...
. . .

...
vmw1S

m1 . . . vmwnS
mn

⎞⎟⎠
for vectors v ∈ R

m
A
, w ∈ R

n
A
of positive pairwise distinct reals and {−1, 1}-matrices

Sκλ of order mκ × nλ. Let

S =

⎛⎜⎝ S11 . . . S1n

...
. . .

...
Sm1 . . . Smn

⎞⎟⎠ .

For convenience, we consider the indices of the entries in B̃ as pairs such that
B̃(κ,i),(λ,j) = vκwλS

κλ
i,j for (κ, λ) ∈ [m] × [n] and (i, j) ∈ [mκ] × [nλ]. Entries and

submatrices of S will be treated in the same way.
First we shall see that we may assume that either every pair of rows (or columns)

of S is orthogonal or they are (possibly negated) copies of each other.
Claim 5. Outcome 1 occurs unless for all κ, λ ∈ [m] and i ∈ [mκ], j ∈ [mλ]

(8.10)
either 〈Sκνi,∗ , Sλνj,∗〉 = 0 for every ν ∈ [n]

or there is an s ∈ {−1,+1} such that Sκνi,∗ = sSλνj,∗ for every ν ∈ [n].

The analogues hold for the columns of S: for all κ, λ ∈ [n] and i ∈ [nκ], j ∈ [nλ]

(8.11)
either 〈Sμκ∗,i , S

μλ
∗,j〉 = 0 for every μ ∈ [m]

or there is an s ∈ {−1,+1} such that Sμκ∗,i = sSμλ∗,j for every μ ∈ [m].
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Proof. Let p ∈ N be odd. By p-thickening and subsequent 2-stretching we obtain
a reduction

EVAL(A′) ≤ EVAL(Ã)

for a matrix A′ = (Ã(p))2 which contains submatrices B̃(p)(B̃(p))T and (B̃(p))T B̃(p).

The same reduction gives EVAL((B̃(p))2) ≤ EVAL(B̃) if B̃ is symmetric. We will

give the proof of (8.10) by focusing on B̃(p)(B̃(p))T . The analogous argument on

(B̃(p))T B̃(p) yields (8.11).

Let C̃ = B̃(p)(B̃(p))T . For κ, λ ∈ [m] and i ∈ [mκ], j ∈ [mλ] we have

(8.12) C̃(κ,i),(λ,j) =
∑
(ν,k)

B̃
(p)
(κ,i),(ν,k)B̃

(p)
(λ,j),(ν,k) = vpκv

p
λ

n∑
ν=1

w2p
ν 〈Sκνi,∗ , Sλνj,∗〉.

Note that by 2-thickening we have a reduction EVAL(A′′) ≤ EVAL(Ã) for a matrix

A′′ = (A′)(2). This also gives a reduction EVAL(C̃(2)) ≤ EVAL(B̃) if B̃ is symmet-

ric. The matrix A′′ has only nonnegative entries and contains the submatrix C̃(2).
Theorem 1.3 (due to Bulatov and Grohe) implies that EVAL(C̃(2)) and EVAL(A′′)

are #P-hard, in which case Outcome 1 occurs, if C̃(2) contains a block of row-rank at
least 2. We shall determine the conditions under which this is not the case.

A 2× 2 principal submatrix of C̃(2), defined by (κ, i), (λ, j), has determinant

det(κ,i),(λ,j) :=

∣∣∣∣∣ C̃
(2)
(κ,i),(κ,i) C̃

(2)
(κ,i),(λ,j)

C̃
(2)
(λ,j),(κ,i) C̃

(2)
(λ,j),(λ,j)

∣∣∣∣∣ = (C̃(κ,i),(κ,i)C̃(λ,j),(λ,j))
2 − (C̃(κ,i),(λ,j))

4.

We have

C̃
(2)
(κ,i),(κ,i) = v4pκ

(
n∑
ν=1

w2p
ν 〈Sκνi,∗ , Sκνi,∗〉

)2

= v4pκ

(
n∑
ν=1

w2p
ν nν

)2

,

and therefore

det(κ,i),(λ,j) = v4pκ v
4p
λ

⎛⎝(
n∑
ν=1

w2p
ν nν

)4

−
(

n∑
ν=1

w2p
ν 〈Sκνi,∗ , Sλνj,∗〉

)4
⎞⎠ .

This determinant is zero if and only if there is an s ∈ {−1, 1} such that 〈Sκνi,∗ , Sλνj,∗〉 =
snν for all ν ∈ [n], which implies Sκνi,∗ = sSλνj,∗ for all ν ∈ [n]. If the determinant is

nonzero, then the row-rank is two, so EVAL(C̃(2)) is #P-hard if all of the entries of
this principal submatrix are nonzero (in which case they are contained in a block).

By (8.12) and Lemma 6.5 we further have C̃
(2)
(κ,i),(λ,j) = 0 for arbitrarily large p if and

only if 〈Sκνi,∗ , Sλνj,∗〉 = 0 for all ν ∈ [n].
Assume from now on that (8.10) and (8.11) hold. The next claim states that the

rank of each tile of S equals the rank of S itself (which is equal to r, the rank of B̃,
which is the rank of BA).

Claim 6. rankS = rankSκλ for all (κ, λ) ∈ [m]× [n].
Proof. Equation (8.10) implies that rankSκμ = rankSκν for all κ ∈ [m] and

μ, ν ∈ [n]. Combining this with (8.11), we obtain rankSκμ = rankSλν for all κ, λ ∈
[m] and μ, ν ∈ [n].
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Therefore, it suffices to show that r = rankS = rankS11 holds. Let S∗1 denote
the matrix

S∗1 =

⎛⎜⎝ S11

...
Sm1

⎞⎟⎠ .

Let I be a set of row indices with |I| = rankS = r such that the set {Si,∗ | i ∈ I}
is linearly independent. By (8.10) we have 〈Si,∗, Sj,∗〉 = 0 and 〈S∗1i,∗, S∗1j,∗〉 = 0 for all

i �= j ∈ I. Hence, S∗1 has rank r. As S11 is an m1×n1 matrix, there is a set J ⊆ [n1]
such that the columns of S∗1 with indices in J form a rank r set. Equation (8.11)
implies 〈S11

∗,i, S
11
∗,j〉 = 0 for all i �= j ∈ J . This proves the claim.

Claim 6 has strong implications on S (and B̃). It implies that for all (κ, λ) ∈ [m]×
[n] there are sets K(κ,λ), L(κ,λ) of cardinality r such that SκλK(κ,λ)L(κ,λ)

is nonsingular.

By (8.10) we take, without loss of generality, K(κ,λ) = K(κ,λ′) for all κ ∈ [m] and
λ, λ′ ∈ [n]. Analogously, (8.11) implies L(κ,λ) = L(κ′,λ) for all κ, κ

′ ∈ [m] and λ ∈ [n].
Therefore, there are sets of indices K1, . . . ,Km and L1, . . . , Ln each of cardinality r,
such that the matrix

(8.13) SκλKκLλ
is nonsingular for all (κ, λ) ∈ [m]× [n].

If BA is symmetric, then B̃ is symmetric and we may assume, by Lemma 8.14,
that Kκ = Lκ for all κ ∈ [m]. But there is more we can infer from Claim 5, namely,
the above nonsingular subtiles of each tile are (up to row-column negations and per-
mutations) equal.

Claim 7. For all κ ∈ [m] and λ ∈ [n] the sets Kκ and Lλ have orderings

Kκ = {kκ,1, . . . , kκ,r} and Lλ = {�λ,1, . . . , �λ,r}

and there are families {τRκ : [r] → {−1, 1}}κ∈[m] and {τCλ : [r] → {−1, 1}}λ∈[n] of
mappings such that

S11
k1,a�1,b = τRκ (a)τCλ (b)Sκλkκ,a,�λ,b

for all (κ, λ) ∈ [m]× [n], a, b ∈ [r].

If B̃ is symmetric, then S is symmetric, and Kκ = Lκ and τRκ = τCκ for all κ ∈ [m].
Proof. As S11

K1L1
= SK1L1 and rankS11 = rankS, (8.10) implies that every row

in S is either a copy or a negated copy of a row in SK1∗. Fix an arbitrary ordering
K1 = {k1,1, . . . , k1,r}. As Sκ1Kκ,∗ has rank r for all κ ∈ [m], there are an ordering

{kκ,1, . . . , kκ,r} and, for every a ∈ [r], an sa ∈ {−1,+1} such that S11
k1,a,∗ = saS

κ1
kκ,a,∗.

Let τRκ (a) = sa. Then S11
k1,a,∗ = τRκ (a)Sκ1kκ,a,∗ for all a ∈ [r]. Equation (8.10) implies

that this extends to

S1λ
k1,a,∗ = τRκ (a)Sκλkκ,a,∗ for all a ∈ [r], κ ∈ [m], λ ∈ [n].

An analogous argument on the columns of S using (8.11) yields orderings of the
sets Lλ and mappings τλ such that

Sκ1∗,�1,b = τCλ (b)Sκλ∗,�λ,b
for all b ∈ [r], κ ∈ [m], λ ∈ [n].

Combining both finishes the proof of Claim 7.
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For κ ∈ [m], let πRκ be a permutation of [mκ] which satisfies πRκ (a) = kκ,a for
a ∈ [r]. For λ ∈ [n], let πCλ be a permutation of [nλ] which satisfies πCλ (a) = �λ,a for
all a ∈ [r].

Let Ŝκλ be the result of the permutations πRκ and πCλ when applied to Sκλ; that

is, Ŝκλ := (Sκλ)πR
κ ,π

C
λ
. Let B̂ be the matrix defined by B̂(κ,i),(λ,j) = vκwλŜ

κλ
i,j and

let Ŝ be the matrix defined by Ŝ(κ,i),(λ,j) = Ŝκλi,j . Let Â be the bipartite matrix with

underlying block B̂. Note that EVAL(Â) ≡ EVAL(Ã) ≡ EVAL(A). The definition

of these permutations implies that B̂ is symmetric if B̃ is symmetric (which is true

if BA is symmetric). In this case, EVAL(B̂) ≡ EVAL(B̃) ≡ EVAL(BA). Equation
(8.13) simplifies to

(8.14) Ŝκλ[r][r] is nonsingular for all (κ, λ) ∈ [m]× [n],

and Claim 7 implies furthermore that

(8.15) Ŝ11
a,b = τRκ (a)τCλ (b)Ŝκλa,b for all (κ, λ) ∈ [m]× [n], a, b ∈ [r].

We consider the twin-relation on Â now. As Â is bipartite, the equivalence classes
of this relation induce collections of equivalence classes separately for the rows and
columns of B̂. Furthermore, as B̂(κ,i),(λ,j) = vκwλŜ

κλ
i,j and the values vi are pairwise

distinct and positive, two rows corresponding to different vi values are not twins.
This is similarly true for the columns of B̂. Hence, the equivalence classes of rows
can be grouped into collections I1, . . . , Im and the equivalence classes of columns can
be grouped into collections J1, . . . ,Jn such that, for every κ ∈ [m], the collection Iκ
contains the equivalence classes of rows in the submatrix

T κ∗ :=
(
vκw1Ŝ

κ1 · · · vκwnŜ
κn

)
of B̂. By (8.10) and (8.14) every row in T κ∗ is either a copy or a negated copy of
a row in (T κ∗)[r]∗. Moreover, every two i �= j ∈ [r] belong to different equivalence
classes by (8.14).

We may therefore assume, without loss of generality, that the collection Iκ consists
of classes P κ∗1 , . . . , P κ∗r and Nκ∗

1 , . . . , Nκ∗
r such that i ∈ P κ∗i for all i ∈ [r]. Further-

more, the sets Nκ∗
i account for the possible negated copies of rows in (T κ∗)[r]∗, and

therefore some of these sets may be empty. But for all i ∈ [r] if Nκ∗
i is nonempty,

then all a ∈ Nκ∗
i are indices of negated copies of rows from P κ∗i .

Similarly, the collection Jλ of equivalence classes of columns corresponds to the
submatrix

T ∗λ :=

⎛⎜⎝ v1wλŜ
1λ

...

vmwλŜ
mλ

⎞⎟⎠
of B̂. By (8.11) every column in T ∗λ is either a copy or a negated copy of a column
in (T ∗λ)∗[r]. Moreover, by (8.14) every two i �= j ∈ [r] belong to different equivalence
classes of the twin-relation.

We may assume that the collection Jλ consists of classes P ∗λ1 , . . . , P ∗λr and
N∗λ1 , . . . , N∗λr such that i ∈ P ∗λi for all i ∈ [r]. The sets N∗λi account for the possible
negated copies of columns in (T ∗λ)∗[r], and therefore some of these sets may be empty.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTITION FUNCTIONS WITH MIXED SIGNS 3391

But for all i ∈ [r] if N∗λi is nonempty, then all a ∈ N∗λi are indices of negated copies
of columns from P ∗λi .

Note that if B̂ is symmetric, the above definitions directly imply that m = n and,
for all μ ∈ [m], Iμ = Jμ. Also, we can take Pμ∗i = P ∗μi and Nμ∗

i = N∗μi for all i ∈ [r].
Application of the Extended Twin Reduction Lemma, Lemma 8.3, according to

these equivalency classes, therefore yields an evaluation problem EVAL(Ĉ,D, Ô) ≡
EVAL(Â) (≡ EVAL(A)) such that the block B̂′ underlying Ĉ satisfies

B̂′ =

⎛⎜⎜⎝
v1w1Ŝ

11
[r][r] . . . v1wnŜ

1n
[r][r]

...
. . .

...

vmw1Ŝ
m1
[r][r] . . . vmwnŜ

mn
[r][r]

⎞⎟⎟⎠ .

That is, B̂′ is an mr×nr matrix and D and Ô are diagonal matrices of vertex weights
of order mr + nr. Grouping these vertex weights according to the rows and columns
of B̂′ to which they correspond, we obtain

D =

(
DR 0
0 DC

)
and Ô =

(
ÔR 0

0 ÔC

)
for mr×mr diagonal matrices DR, ÔR and nr×nr diagonal matrices DC , ÔC . Their
structure corresponding to the tiles of B̂′ in turn is

DR =

⎛⎜⎝ DR,1 . . . 0
...

. . .
...

0 . . . DR,m

⎞⎟⎠ and DC =

⎛⎜⎝ DC,1 . . . 0
...

. . .
...

0 . . . DC,n

⎞⎟⎠ ,

which holds analogously for Ô such that the DR,μ, ÔR,μ, DC,ν , ÔC,ν for all μ ∈ [m],
ν ∈ [n] are r × r diagonal matrices. The definition of these matrices according to
the Extended Twin Reduction Lemma, Lemma 8.3, is then, for all μ ∈ [m], ν ∈ [n],
i, j ∈ [r], given by

(8.16)
DR,μ
i,i = |Pμ∗i |+ |Nμ∗

i | and DC,ν
j,j = |P ∗νj |+ |N∗νj |,

ÔR,μi,i = |Pμ∗i | − |Nμ∗
i | and ÔC,νj,j = |P ∗νj | − |N∗νj |.

If BA is symmetric then B̂ is symmetric, and DR = DC . Also, B̂′ is also sym-
metric and EVAL(B̂′, DR, ÔR) ≡ EVAL(B̂).

Clearly, the matrix D is a diagonal matrix of vertex weights whose diagonal is
positive as the sets P κ∗i and P ∗λi are nonempty by definition for all κ ∈ [m], λ ∈ [n],
and i ∈ [r].

By (8.15), for all (κ, λ) ∈ [m]× [n], the matrix Ŝκλ[r][r] is—up to negations of rows

and columns—just a copy of the matrix Ŝ11
[r][r]. However, the diagonal entries of Ô

given by (8.16) may be negative in some cases. To satisfy condition (C2), we therefore
define mappings ρ : [r] → {−1, 1} and γ : [r] → {−1, 1} by

ρ(i) =

{
−1 if ÔR,1i,i < 0,

1 otherwise
and γ(j) =

{
−1 if ÔC,1j,j < 0,

1 otherwise.

We will use these mappings below to “transfer” the signs of diagonal entries of ÔR,1

and ÔC,1 to B̂′. Note that ρ = γ ifBA is symmetric since ÔR = ÔC in this case. Define
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matrices Šκλ[r][r] by applying row and column negations according to these mappings;
that is,

(8.17) Šκλa,b = ρ(a)γ(b)τRκ (a)τCλ (b)Ŝκλa,b for all (κ, λ) ∈ [m]× [n], a, b ∈ [r].

By (8.15), we have the following for all (κ, λ) ∈ [m]× [n] and a, b ∈ [r]:

ρ(a)γ(b)Ŝ11
a,b = ρ(a)γ(b)τRκ (a)τCλ (b)Ŝκλa,b = Šκλa,b.

Thus

τR1 (a)τC1 (b)Š11
a,b = ρ(a)γ(b)τR1 (a)τC1 (b)τR1 (a)τC1 (b)Ŝ11

a,b = Šκλa,b.

But, by their definition in Claim 7, the mappings τR1 and τC1 satisfy τR1 (i) = τC(i) = 1
for all i ∈ [r]. So the above equation gives Š11

a,b = Šκλa,b for all (κ, λ) ∈ [m] × [n] and

a, b ∈ [r], and so Š11
[r][r] = Šκλ[r][r] for all (κ, λ) ∈ [m] × [n]. Define H := Š11

[r][r]. Let B
be the matrix defined by B(κ,i),(λ,j) = vκwλHi,j so that

B(κ,i),(λ,j) = vκwλŠ
11
i,j

= vκwλŠ
κλ
i,j

= vκwλρ(i)γ(j)τ
R
κ (i)τCλ (j)Ŝκλi,j

= ρ(i)γ(j)τRκ (i)τCλ (j)B̂(κ,i),(λ,j).

Let C be the symmetric bipartite matrix with underlying block B. For κ ∈ [m],
λ ∈ [n], and i, j ∈ [r], let

OR,κi,i = ρ(i)τRκ (i)ÔR,κi,i and OC,λj,j = γ(j)τCλ (j)ÔC,λj,j .

Let OR be the diagonal matrix with tiles OR,κ for κ ∈ [m] and OC be the diagonal
matrix with tiles OC,λ for λ ∈ [n]. Let O be the matrix

O =

(
OR 0
0 OC

)
.

Since (as noted above) τR1 (i) = τC(i) = 1 for all i ∈ [r], the matrices OR,1 and
OC,1 are nonnegative.

The Row-Column Negation Lemma, Lemma 8.4, implies

EVAL(Ĉ,D, Ô) ≡ EVAL(C,D,O).

The block B satisfies (C1) and the matricesD andO satisfy (C2). The definitions ofD
and Ô in (8.16) and the definition of O imply that D+O and D−O are nonnegative,

as required. If BA is symmetric, then B̃ and S are symmetric, so τRκ = τCκ and
πRκ = πCκ , so Ŝ and B̂ are symmetric. Since ρ = γ, B is also symmetric. So the
Row-Column Negation Lemma, Lemma 8.4, implies

EVAL(B̂′, DR, ÔR) ≡ EVAL(B,DR, OR).

Furthermore, it is easy to see that all operations performed to form C,D,O from
the matrix A are polynomial-time computable. This finishes the proof.
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vu vu

Fig. 8.1. The gadget templates T (1, 3, 2) and T (2, 2, 1).

The remainder of this section relies on a gadget which consists of arrangements
of paths of length 2. These paths affect the matrices C,D,O in a way similar to
2-stretching. It is therefore convenient to have a look at the effect this operation has.
Clearly 2-stretching yields EVAL(CDC,D,O) ≤ EVAL(C,D,O). If B is symmetric,
then it also yields EVAL(BDRB,DR, OR) ≤ EVAL(B,DR, OR).

Assume that C and D,O satisfy conditions (C1) and (C2). Recall that B =
vwT ⊗H holds for the block B underlying C. Furthermore, the matrix CDC contains
the submatrices BDCBT and BTDRB and

BDCBT =

⎛⎜⎝ v1v1H(
∑n
ν=1 w

2
νD

C,ν)HT . . . v1vmH(
∑n

ν=1 w
2
νD

C,ν)HT

...
. . .

...
vmv1H(

∑n
ν=1 w

2
νD

C,ν)HT . . . vmvmH(
∑n

ν=1 w
2
νD

C,ν)HT

⎞⎟⎠ .

With analogous analysis of BTDRB, we have

BDCBT = vvT ⊗
(
H

(
n∑
ν=1

w2
νD

C,ν

)
HT

)
and(8.18)

BTDRB = wwT ⊗
(
HT

(
m∑
μ=1

v2μD
R,μ

)
H

)
.

We define a reduction template T (t, p, q) which will be used in the proofs of Lem-
mas 8.17 and 8.19. Let P (t, p) be a graph constructed as follows. Start with an edge
with a distinguished endpoint a. Then perform in succession a t-thickening, then a
2-stretch, and finally a p-thickening. (Informally, there is a vertex b connected to a
by t many length-2 paths such that all edges in those paths have multiplicity p.)

The reduction T (t, p, q) works as follows. In a given graph G = (V,E), we 2-
stretch each edge e ∈ E and call the middle vertex ve. We attach q disjoint copies
of P (t, p) by identifying their terminal vertices with ve. Figure 8.1 illustrates the
construction.

Recall that M ◦N denotes the Hadamard product of matrices M and N .

Lemma 8.16. Suppose C and D,O satisfy (C1) and (C2). At least one of the
following outcomes occurs.

Outcome 1. EVAL(C,D,O) is #P-hard. If B is symmetric, then EVAL(B,DR, OR)
is #P-hard.
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Outcome 2. For t, p, q ∈ N and p′ = 2p+ 1 and q′ = 2q there are r × r matrices
Θ = Θ(t, p′) and Ξ = Ξ(t, p′) defined by

Θ = (γRp′)
t ·

m∑
μ=1

vtp
′

μ ·
{
DR,μ if t is even,
OR,μ if t is odd,

Ξ = (γCp′)
t ·

n∑
ν=1

wtp
′

ν ·
{
DC,ν if t is even,
OC,ν if t is odd

for positive constants γRp′ and γ
C
p′ depending on p′.

The reduction T (t, p′, q′) yields EVAL(CΔC,D,O) ≤ EVAL(C,D,O) for a diag-
onal matrix

Δ = Δ(t, p′, q′) =

(
ΔR 0
0 ΔC

)
and a matrix CΔC =

(
BΔCBT 0

0 BTΔRB

)
.

ΔR is a diagonal rm × rm matrix of r × r tiles ΔR,μ = vtp
′q′

μ DR,μ ◦ Θ(q′) for all

μ ∈ [m]. ΔC is a diagonal rn× rn matrix of r × r tiles ΔC,ν = wtp
′q′

ν DC,ν ◦ Ξ(q′) for
all ν ∈ [n]. If B is symmetric, then the same reduction yields

EVAL(BΔRB,DR, OR) ≤ EVAL(B,DR, OR).

Proof. Let p′, q′ be as above.

Claim 8. Either Outcome 1 occurs or there are constants γRp′ and γ
C
p′ depending

on p′ such that
(8.19)

B(p′)DC(B(p′))T = (vvT )(p
′) ⊗ γRp′Ir and (B(p′))TDRB(p′) = (wwT )(p

′) ⊗ γCp′Ir.

Proof. We have EVAL(C(p′)DC(p′), D,O) ≤ EVAL(C,D,O) by p′-thickening fol-
lowed by 2-stretching. IfB is symmetric, this also yields EVAL(B(p′)DRB(p′), DR, OR)
≤ EVAL(B,DR, OR). Matrix C(p′)DC(p′) contains submatricesX := B(p′)DC(B(p′))T

and Y := (B(p′))TDRB(p′). We show the first part of (8.19) by an argument based on
the matrix X . The second part then follows analogously using Y . (Recall from (C1)
that DR = DC when B is symmetric, in which case X = Y .)

Define Π =
∑n

ν=1 w
2
νD

C,ν . By (8.18) we haveX = (vvT )p
′⊗

(
HΠHT

)
. Therefore,

if abs(HΠHT ) contains a block of row rank at least two, then X does.

As H is a {−1, 1}-matrix, we have (HΠHT )i,i = tr(Π) for all i ∈ [r] and the trace
of Π is positive. Furthermore, |(HΠHT )i,j | < tr(Π) for all j �= i by the nonsingularity
of H . Hence, we obtain a block of rank at least 2 in abs(HΠHT ) if there is a nonzero
entry (HΠHT )i,j for some i �= j ∈ [r]. The proof follows with γRp′ = tr(Π).

For convenience, let T = T (t) denote the matrix D if t is even and O otherwise.

Recall the reduction template; let (μ, i), (κ, k) ∈ [m+ n]× [r] denote the spins of
ve and b.
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The diagonal (μ, i) entries of Δ correspond to the partition function of the reduc-
tion template with vertex ve fixed to (μ, i). Therefore, for μ ∈ [m],

ΔR,μ
i,i = DR,μ

i,i

(
m∑
κ=1

r∑
k=1

TR,κk,k (C(p′)DC(p′))t(μ,i),(κ,k)

)q′

= DR,μ
i,i

(
m∑
κ=1

r∑
k=1

TR,κk,k (B(p′)DC(B(p′))T )t(μ,i),(κ,k)

)q′

= vtp
′q′

μ DR,μ
i,i

(
(γRp′)

t ·
m∑
κ=1

vtp
′

κ TR,κi,i

)q′
,

where the last equation follows from Claim 8. Similarly, for ν ∈ [n],

ΔC,ν
ii = DC,ν

i,i

(
n∑
κ=1

r∑
k=1

TC,κk,k (C(p′)DC(p′))t(ν,i),(κ,k)

)q′

= DC,ν
i,i

(
n∑
κ=1

r∑
k=1

TC,κk,k ((B(p′))TDRB(p′))t(ν,i),(κ,k)

)q′

= wtp
′

ν DC,ν
i,i

(
(γCp′)

t
n∑
κ=1

wtp
′

κ TC,κi,i

)q′
.

With Θ and Ξ defined as in the statement of the lemma, the proof follows.
Lemma 8.17. Let C and D,O satisfy (C1) and (C2). At least one of the following

outcomes occurs.
Outcome 1. EVAL(C,D,O) is #P-hard. If B is symmetric, then EVAL(B,DR, OR)

is #P-hard.
Outcome 2. Conditions (C3) and (C4) are satisfied.
Proof. The #P-hardness part will be shown using a gadget construction T (2, p′, q′)

with p′ = 2p + 1 and q′ = 2q for p, q ∈ N. By Lemma 8.16 this yields a reduction
EVAL(CΔC,D,O) ≤ EVAL(C,D,O) such that CΔC contains submatrices BΔCBT

and BTΔRB. If B is symmetric, then EVAL(BΔRB,DR, OR) ≤ EVAL(B,DR, OR).
Focusing on BTΔRB, we will prove (C3) and the part of (C4) which claims that
DR,μ = αRμ Ir. The proof for DC,ν = αCν Ir then follows by analogous arguments

based on BΔCBT .
Recall that by the proof of (8.18) we have BTΔRB = (wwT )⊗ (HTΔ′H) for an

r × r diagonal matrix Δ′ defined by

Δ′ =
m∑
μ=1

v2μΔ
R,μ =

(
m∑
μ=1

v2p
′q′+2

μ DR,μ

)
◦Θ[p](q

′)

with Θ[p] = Θ(2, p′, q′) = (γRp′)
2 ·

m∑
μ=1

v2p
′

μ ·DR,μ.(8.20)

If abs(HTΔ′H) contains a block of rank at least 2, then abs(BΔRB) does. So, if
abs(HTΔ′H) contains a block of rank at least 2, then Outcome 1 occurs by Lemma 6.4.
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By the definition of HTΔ′H , we have (HTΔ′H)i,i = tr(Δ′) for all i ∈ [r], and this
trace is positive by the definition of Δ′. Therefore, every principal 2× 2 submatrix of
abs(HTΔ′H) has the form(

tr(Δ′) |(HTΔ′H)i,j |
|(HTΔ′H)j,i| tr(Δ′)

)
.

As H is nonsingular, |(HTΔ′H)i,j | < tr(Δ′) for all i �= j ∈ [r], and, therefore, every
such submatrix has a nonzero determinant. Furthermore, such a submatrix is part
of a block if (HTΔ′H)i,j �= 0. Therefore, we have Outcome 1 if we can show that
(HTΔ′H)i,j �= 0 for some i �= j ∈ [r] and some p, q ∈ N.

Assume, therefore, that (HTΔ′H)i,j = 0 for all i �= j ∈ [r] and all p, q ∈ N.
The remainder of the proof is to show that in this case conditions (C3) and (C4) are
satisfied.

Let ϑp,q,i =
∑m

μ=1 v
2p′q′+2
μ DR,μ

i,i for all i ∈ [r]. Note that Δ′i,i = ϑp,q,iΘ
[p]q

′

i,i. We

define an equivalence relation ∼ on [r] by letting i ∼ j if and only if DR,μ
i,i = DR,μ

j,j for

all μ ∈ [m]. Let I be the set of equivalence classes. We will use the notation DR,μ
I

to denote the value DR,μ
i,i for i ∈ I. Similarly, we use the notation ϑp,q,I and Θp,I to

denote the values ϑp,q,i and Θ
[p]
i,i for i ∈ I.

For i, j ∈ [r] define sets Pij = {k ∈ [r] | Hk,iHk,j > 0} and Nij = {k ∈ [r] |
Hk,iHk,j < 0}.

Then we have

(HTΔ′H)i,j =

r∑
k=1

Hk,iHk,jΔ
′
k,k =

r∑
k=1

Hk,iHk,jϑp,q,k

(
Θ[p]

k,k

)q′

=

⎛⎝ ∑
k∈Pij

ϑp,q,k(Θ
[p]
k,k)

q′ −
∑
l∈Nij

ϑp,q,l(Θ
[p]
l,l)

q′

⎞⎠ .

Then

(HTΔ′H)i,j =
∑
I∈I

⎛⎝ ∑
k∈I∩Pij

ϑp,q,k(Θ
[p]
k,k)

q′ −
∑

l∈I∩Nij

ϑp,q,l(Θ
[p]
l,l)

q′

⎞⎠
=
∑
I∈I

Θq
′
p,I

⎛⎝ ∑
k∈I∩Pij

ϑp,q,I −
∑

l∈I∩Nij

ϑp,q,I

⎞⎠
=
∑
I∈I

ϑp,q,IΘ
q′
p,I (|I ∩ Pi,j | − |I ∩Ni,j |) .

Claim 9. Suppose that (HTΔ′H)i,j = 0 for all i �= j ∈ [r] and all p, q ∈ N. Then
there is a J ∈ I such that |J ∩ Pij | = |J ∩ Nij | for all i �= j ∈ [r].

Proof. Recall that the values vμ in the definition of ϑp,q,I and Θ[p]
i,i are pairwise

distinct and nonnegative. Assume without loss of generality that the values vμ are
ordered decreasingly, i.e., v1 > v2 > · · · > vm. For each I ∈ I consider the vector
(DR,1

I , DR,2
I , . . . , DR,m

I ). Let J ∈ I such that the corresponding vector is maximal
in the lexicographical order of these vectors. The definition of J implies that it is
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unique. Further, we claim that, for every I �= J ,

(8.21) there is an rI such that, for all r ≥ rI ,
m∑
μ=1

vrμD
R,μ
I <

m∑
μ=1

vrμD
R,μ
J .

To see this fix some I ∈ I and let κ ∈ [m] be the smallest index such thatDR,κ
J > DR,κ

I .
Then the inequality of (8.21) holds if

vrκ(D
R,κ
J −DR,κ

I ) >

m∑
μ=κ+1

vrμ(D
R,μ
J −DR,μ

I ),

which holds for large enough r since vκ > vμ for all μ > κ.
By (8.21) we can thus fix a p which satisfies p ≥ rI for all I ∈ I. The definition

of the values ϑp,q,I and Θp,I therefore implies that for any q ∈ N and I ∈ I, we have
0 < ϑp,q,I < ϑp,q,J and 0 < Θp,I < Θp,J .

Now consider i �= j ∈ [r]. For all I ∈ I, let cI = |I ∩ Pij | − |I ∩ Nij |.
Since (HTΔ′H)i,j = 0, for all q ∈ N,

0 =
∑
I∈I

cIϑp,q,IΘ
2q
p,I

= cJϑp,q,JΘ
2q
p,J +

∑
I∈I\{J}

cIϑp,q,IΘ
2q
p,I

= cJ +
∑

I∈I\{J}
cI
ϑp,q,I
ϑp,q,J

(
Θp,I
Θp,J

)2q

.(8.22)

As q tends to infinity, the sum tends to 0, so cJ = 0.
Assume now that (HTΔ′H)i,j = 0 for all i �= j ∈ [r] and p, q ∈ N. Fix J ∈ I such

that |J ∩ Pij | = |J ∩ Nij | for all i �= j ∈ [r]. Recall that HJ,∗ denotes the submatrix
of H consisting of the rows of H with indices in J . For each pair i �= j ∈ [r], the fact
that |J∩Pij | = |J∩Nij | implies 〈(HJ,∗)∗,i, (HJ,∗)∗,j〉 = 0. Hence, the columns in HJ,∗
are pairwise orthogonal. Since the rank of H is r, this implies that |J | = r. Now since
the rows of HT are pairwise orthogonal, we have HTH = rIr , so the inverse of HT

is r−1H . As right inverses of matrices are also left inverses, we have r−1HHT = Ir,
and therefore H is a Hadamard matrix, and we have proved condition (C3).

Finally, J = [r] implies that DR,μ
i,i = DR,μ

j,j for all i, j ∈ [r]. Equivalently, DR,μ =

αRμ Ir for some appropriate αRμ . This proves (C4).
We call a diagonal matrix D preuniform if there is a nonnegative d such that all

diagonal entries Di,i of D satisfy Di,i ∈ {0, d}. An important technical tool in the
last step of our proof of conditions (C1)–(C5) will be the following lemma.

Lemma 8.18 (Preuniform Diagonal Lemma). Let H be a nonsingular r × r
{−1, 1}-matrix and D be an r × r diagonal matrix with nonnegative entries in R. If
D is not preuniform, then there is a p ∈ N such that abs(HD(p)HT ) contains a block
of row-rank at least 2.

Proof. Note that, if the diagonal of D is constantly zero, then D is preuniform.
Assume therefore that there is some positive diagonal entry in D. Define B :=
HD(p)HT , K := {k ∈ [r] | Dk,k > 0}, and s := |K|. Hence, for i, j ∈ [r],

(8.23)
Bij =

∑r
k=1Hi,kHj,k(Dk,k)

p =
∑

k∈K Hi,kHj,k(Dk,k)
p

= (H∗,KD
(p)(H∗,K)T )i,j .
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That is, for every I ⊆ [r], we have BI,I = HI,KD
(p)
K,K(HI,K)T . Fix a set I ⊆ [r]

such that |I| = s and the matrix HI,K has rank s. Since HI,K is nonsingular, every
2 × 2 principal submatrix of BI,I has a nonzero determinant. To see this, note that

by (8.23) we have Bi,i = tr(D
(p)
K,K) for all i ∈ I and this trace is positive. Then every

such principal 2× 2 submatrix has determinant∣∣∣∣∣ tr(D
(p)
K,K) |(HI,KD

(p)
KK(HI,K)T )i,j |

|(HI,KD
(p)
K,K(HI,K)T )j,i| tr(D

(p)
K,K)

∣∣∣∣∣ ,
and by the nonsingularity of HI,K we have |(HI,KD

(p)
K,K(HI,K)T )i,j | < tr(D

(p)
K,K)

(compare with (8.23)). Hence the above determinant is nonzero.
Assume that, for all p ∈ N, there are no nontrivial blocks in BI,I , i.e., Bi,j = 0

for all i �= j ∈ I. We will show that this implies that D is preuniform.
For i, j ∈ I define the sets Pi,j := {k ∈ K | Hi,kHj,k = 1} and Ni,j := {k ∈ K |

Hi,kHj,k = −1}. That is, Pi,j and Ni,j form a partition of K. Therefore, for i, j ∈ I
we have

Bi,j =
n∑
k=1

Hi,kHj,kD
p
k,k =

∑
k∈Pi,j

Dp
k,k −

∑
k∈Ni,j

Dp
k,k.

Partition K into equivalence classes J such that i, j ∈ K are in the same equiv-
alence class if and only if Di,i = Dj,j . Let J be the set of these equivalence classes,
and for each J ∈ J define DJ := Dj,j for some j ∈ J . We have

Bi,j =
∑
J∈J

∑
k∈J∩Pi,j

(Dk,k)
p −

∑
k∈J∩Ni,j

(Dk,k)
p =

∑
J∈J

(|J ∩ Pi,j | − |J ∩ Ni,j |)(DJ)
p.

As the DJ are positive and pairwise distinct, Lemma 6.5 implies that for all p we
have Bi,j = 0 if and only if |J ∩ Pi,j | = |J ∩ Ni,j | for all J . By our assumption that
this is true for all i �= j ∈ I, we see that the s× |J | matrix HI,J is orthogonal, which
implies |J | = s. In particular, J = K, and DK,K is linearly dependent on Is, which
implies the preuniformity of D.

Lemma 8.19. Let C and D,O satisfy conditions (C1)–(C4). At least one of the
following outcomes occurs.

Outcome 1. EVAL(C,D,O) is #P-hard. If B is symmetric, then EVAL(B,DR, OR)
is #P-hard.

Outcome 2. Condition (C5) is satisfied.
Proof. We will use reduction template T (1, p′, q′) with p′ = 2p+1 and q′ = 2q for

p, q ∈ N. By Lemma 8.16 this yields a reduction EVAL(CΔC,D,O) ≤ EVAL(C,D,O)
such that CΔC contains submatrices BΔCBT and BTΔRB. If B is symmetric, then
it yields the reduction EVAL(BΔRB,DR, OR) ≤ EVAL(B,DR, OR). We base our
argument on BTΔRB to prove that OR,μ = βRμ Ir;ΛR for all μ ∈ [m] and some βRμ
and ΛR ⊆ [r]. The analogous argument on BΔCBT then yields the result for the
submatrices of OC .

Recall that by (8.18) we have BTΔRB = (wwT )⊗(HTΔ′H) for an r×r diagonal
matrix Δ′. With

(8.24) Θ[p] = Θ(1, p′) = γRp′ ·
m∑
μ=1

vp
′
μ ·OR,μ,
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the r × r diagonal matrix Δ′ is defined by

Δ′ =
m∑
μ=1

v2μΔ
R,μ =

(
m∑
μ=1

vp
′q′+2
μ DR,μ

)
◦Θ[p](q

′)
=

(
m∑
μ=1

vp
′q′+2
μ αμIr

)
◦Θ[p](q

′)
.

The last equality holds by condition (C4). Taking

(8.25) ϑ :=
m∑
μ=1

vp
′q′+2
μ αμ, we have Δ′ = ϑΘ[p](q

′)
.

If abs(HTΔ′H) contains a block of rank at least 2, then abs(BTΔRB) does.
So, if abs(HTΔ′H) contains a block of rank at least 2, then Outcome 1 occurs by
Lemma 6.4.

By the definition of HTΔ′H , we have (HTΔ′H)i,i = tr(Δ′) for all i ∈ [r], and
this trace is nonnegative by the definition of Δ′. Therefore, every principal 2 × 2
submatrix of abs(HTΔ′H) has the form(

tr(Δ′) |(HTΔ′H)i,j |
|(HTΔ′H)j,i| tr(Δ′)

)
.

As H is nonsingular, |(HTΔ′H)i,j | < tr(Δ′) for all i �= j ∈ [r], and, therefore, every
such submatrix has a nonzero determinant if tr(Δ′) is positive. Furthermore, such a
submatrix is part of a block if (HTΔ′H)i,j �= 0 and tr(Δ′) �= 0. Therefore, we have
Outcome 1 if we can show that (HTΔ′H)i,j �= 0 and tr(Δ′) �= 0 for some i �= j ∈ [r]
and some p, q ∈ N.

Assume therefore that either (HTΔ′H)i,j = 0 or tr(Δ′) = 0 for all i �= j ∈ [r] and
all p, q ∈ N. The remainder of the proof is to show that in this case condition (C5) is
satisfied.

Recall that by (8.25) the value ϑ is positive for all p, q ∈ N. Therefore, Δ′i,i = 0

if and only if Θ[p]
i,i = 0.

Claim 10. There is a p0 ∈ N such that for all p ≥ p0 and all i ∈ [r] we have

Θ[p]
i,i = 0 if and only if (OR,μi,i = 0 for all μ ∈ [m]).

Proof. For each i ∈ [r], application of Lemma 6.6 to (8.24) yields that there is a
pi such that for all p ≥ pi we have

Θ[p]
i,i = 0 if and only if (OR,μi,i = 0 for all μ ∈ [m]).

The claim follows with p0 := max{p1, . . . , pr}.
Claim 11. Let p ∈ N. If (HTΔ′H)i,j = 0 for all i �= j ∈ [r] and all q ∈ N, then

Θ[p](2) is preuniform.

Proof. Define Π = (Θ[p])(2). Then all entries of Π are nonnegative and Π(q) =

(Θ[p])(q
′). With HTΔ′H = ϑ(HTΘ[p](q

′)
H) = ϑ(HTΠ(q)H) the claim follows by the

preuniform Diagonal Lemma, Lemma 8.18.

Claim 12. There is a p= ∈ N such that for all p ≥ p= and all i, j ∈ [r] we have

Θ[p]2

i,i = Θ[p]2

j,j if and only if (OR,μi,i = OR,μj,j for all μ ∈ [m]).
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Proof. The backward direction holds for all p ∈ N. Fix i, j ∈ [r]. By (8.24) the

equality Θ[p]2

i,i = Θ[p]2

j,j implies∣∣∣∣∣
m∑
μ=1

vp
′
μ O

R,μ
i,i

∣∣∣∣∣ =
∣∣∣∣∣
m∑
μ=1

vp
′
μ O

R,μ
j,j

∣∣∣∣∣ .
By Lemma 6.6 either we have a pi,j such that for all p ≥ pi,j

Θ[p]2

i,i = Θ[p]2

j,j if and only if OR,μi,i = OR,μj,j for all μ ∈ [m]

or there is a p−i,j such that for all p ≥ p−i,j

Θ[p]2

i,i = Θ[p]2

j,j if and only if OR,μi,i = −OR,μj,j for all μ ∈ [m].

However, the second possibility would particularly imply that OR,1i,i < 0 for some
i ∈ [r], which was precluded by condition (C2). Therefore, the first possibility holds
with pi,j . The claim now follows with p= = max{pi,j | i, j ∈ [r]}.

These claims now enable us to finish the proof. Note first that condition (C5) is

satisfied with ΛR = ∅ if OR,μi,i = 0 for all μ ∈ [m] and i ∈ [r].

Assume therefore that OR has nonzero diagonal entries. Fix values p0, p= ∈ N

according to Claims 10 and 12 and define p = max{p0, p=}. This implies tr(Δ′) �= 0.

To see this note that there is some i ∈ [r] and some μ ∈ [m] such that OR,μi,i �= 0 which

by our choice of p implies Θ[p]
i,i �= 0.

By our assumption, tr(Δ′) �= 0 implies (HTΔ′H)i,j = 0 for all i �= j ∈ [r] and all

q ∈ N which by Claim 11 yields the preuniformity of Θ[p](2).

Define ΛR :=
{
i ∈ [r] | Θ[p]

i,i �= 0
}
. By the preuniformity of Θ[p](2) Claim 12

implies that, for each μ ∈ [m] and every i ∈ ΛR, there is a βRμ such that OR,μi,i = βRμ .

Furthermore, Claim 10 implies that for each μ ∈ [m] and every i ∈ [r] \ ΛR we have

OR,μi,i = 0. This finishes the proof.

8.3.1. Putting everything together. We are now able to prove Lemma 3.2.
Proof of Lemma 3.2. Bipartite A. Consider first the case in which A is bipartite.

By Lemmas 8.15, 8.17, and 8.19, the evaluation problem EVAL(A) is #P-hard unless
EVAL(A) ≡ EVAL(C,D,O) for matrices C,D,O satisfying conditions (C1)–(C5).

C is a symmetric bipartite matrix with underlying block B. Conditions (C1)–(C5)
imply that B = vwT ⊗H , DR = DR′′ ⊗ Ir, D

C = DC′′ ⊗ Ir, O
R = OR

′′ ⊗ Ir;ΛR , and

OC = OC
′′ ⊗ Ir;ΛC for diagonal m×m matrices DR′′

and OR
′′
defined by DR′′

μ,μ = αRμ
and OR

′′
μ,μ = βRμ for all μ ∈ [m]. The n×n diagonal matrices DC′′

and OC
′′
are defined

analogously in terms of αCν and βCν . Then we have

D′′ =

(
DR′′

0

0 DC′′

)
, O′′ =

(
OR

′′
0

0 OC
′′

)
, and C′′ =

(
0 vwT

wvT 0

)
.

Note thatD+O andD−O are nonnegative by condition (C2). Hence withM,Λ being
the bipartization of H , ΛR, and ΛC , we have EVAL(C,D,O) ≡ EVAL(M, I2r, I2r;Λ)
by Lemma 8.12.

Nonbipartite A. Now suppose that A is not bipartite. LetM be the bipartization
of A. Recall that this is a matrix of the form

M =

(
0 A
A 0

)
.
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By Lemmas 8.15, 8.17, and 8.19, the evaluation problem EVAL(A) is #P-hard unless
there are matrices C,D,O with block B underlying C satisfying conditions (C1)–(C5)
such that EVAL(A) ≡ EVAL(B,DR, OR).

Conditions (C1)–(C5) imply that B = vvT ⊗ H , DR = DR′′ ⊗ Ir , and OR =
OR

′′ ⊗ Ir;ΛR for diagonal m×m matrices DR′′
and OR

′′
defined by DR′′

μ,μ = αRμ and

OR
′′

μ,μ = βRμ for all μ ∈ [m]. Hence we have EVAL(B,DR, OR) ≡ EVAL(A, Ir, Ir;ΛR)
by Corollary 8.11.

Finishing the proof. It remains to state the polynomial time computability. Note
that conditions (C2)–(C5) are straightforwardly checkable in polynomial time and
for (C1) this follows from Lemma 8.15.

Acknowledgment. We thank the referees for many helpful comments and for
suggesting the current proof of Lemma 7.12, which is much simpler than our original
version.
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