
880 Lecture 1

January 24, 2012

We will be presenting frameworks for counting problems, and using them to get tractability or intractabil-
ity results.

1 Holant

Given the graph G = (V,E), we have the edges are variables taking either 0 or 1, and every vertex is a
function over its edge values. The vertex function can also be called a constraint function, or a signature.
So for vertex v, we have fv. This is the Holant framework.

Imagine if we have, for all v, fv = EXACT-ONE. So fv(e1, e2, . . . , edeg(v)) = 1 if the number of 1s is
1, and 0 otherwise. We say fv|E(v) to mean the evaluation of fv over the assigned value of the edges of v.
Consider this equation ∑

σ:E→{0,}1

∏
v∈V

fv|E(v) (1)

where we sum over all possible edge assignments. What does this count? The number of perfect matching!
In a sense,

∏
v∈V fv|E(v) is a big conjunction when fv is either 0 or 1.

So a Holant problem is Ω = (G = (V,E), assignment of functions at vertices). We can consider what
different kinds of functions to use, and if the problem becomes hard or easy.

2 Partition

Consider if we have G = (V,E) and an assignment of 0, 1 values to every vertex σ : V → {0, 1} and each edge
has a function fe. This is a case that arises in physics, it is called a Partition problem. Any such function
fe can be described in the form:

f =
(

f(0, 0) f(0, 1)
f(1, 0) f(1, 1)

)
=
(

a b
c d

)
. (2)

If the graph is undirected, then the matrix is symmetric. In that case, where b = c, either they are 0 or
non-zero. Note that for the zero case,

f =
(

a 0
0 d

)
(3)

it is easy, because the only non-zero cases force all the vertices which are connected to one another to have
the same values. We can scale by a constant factor, so for the non-zero case we can make the anti-diagonal
entries 1.

f =
(

a 1
1 d

)
(4)

Then that’s the spin model, and if a = d that’s the Ising model. Again we compute the sum of products:∑
σ:V−{0,1}

∏
e∈E

fe(u, v) (5)

1

Though physicists often put this in the additive form: Define H =
∑

e∈E ge(u, v), then they compute eH .
Technically throughout this there are many constants, but we can always scale those. We will see that all
this is a very special case of graph homomorphism.

3 Holant is More General than Partition

There is a straightforward way of converting from a Partition problem to a Holant problem: If in the partition
problem we have two vertices u and v that are connected by an edge, then the two vertices each take a {0, 1}
value and the edge computes some function fe. What we do is add a new vertex in-between, call this new
vertex e. This gives us the path (u, e, v). Now the edges take {0, 1} values, the vertex e has the function fe,
and u, v both take the equality function of the appropriate arity, so that all the edges connected to u are the
same value, and all the edges connected to v are the same value.

You can see that the Holant is the same as the Partition function in this case. It has been shown
that counting-perfect matchings, the example problem when we introduced the Holant framework, is not
expressible as a Partition problem, and so the inclusion is strict.

Computing the number of perfect matchings is #P -hard. Are there signatures where computing the
Holant is tractable?

4 A Tractable Family of Signatures: Fibonacci Gates

Consider a function f that has n Boolean inputs where f has value fi if i of those inputs are 1. The behavior
of f depends solely on the hamming weight of its input. For such a function, we define a symmetric signature
as f = [f0, f1, . . . , fn].

A symmetric signature f is Fibonacci if fk+2 = fk+1 + fk, for k ≥ 0. An example is f = [1, 0, 1, 1]. This
is tractable! That is quite interesting, because it is the “not”, in a sense, of the same gate which counts the
number of perfect matchings. The signature for perfect macthings is f = [0, 1, 0, 0], and is #P -hard.

This brings us to Ladner’s theorem. There is a #P equivalent, that if P 6= #P then there are #P -
intermediate problems. However, these intermediate problems are artificial, they’re constructed through
diagonalization. But for these sum-of-product problems, which seem to capture most “natural” problems, it
does not appear to be the case: there are dichotomy theorems, that all problems so expressed are either in
P or #P -hard, nothing in between.

In the papers handed out, we can read why Fibonacci gates are tractable. The proof (for a more general
type of gate) is using holographic transformations. The steps are:

1. The basic Fibonacci gates are tractable.

2. Holographic transformations of those gates are tractable.

3. We can characterize all of the transformed signatures (via “basic transformations”).

4. A “collapse theorem” says that “basic transformations” suffice.

These four steps seem like a somewhat esoteric result without the history. But, then we see the next result:

5. Hardness. That’s it!

6. Technique for #2 is also used in hardness proofs.

So #5 brings us to a dichotomy theorem, either the problem is known-easy or it is #P -hard.
The two techniques we use for dichotomy results are really #6 and the seventh: interpolation.

2

5 Holographic Transformations

What are holographic transformations? Consider the “full” vector of a signature (expanded from the sym-
metric notation). For example, we have NOT-ALL-EQUAL defined as [0, 1, 1, 0] as a symmetric signature.
That is for a three-input function—it is an abbreviated form of an eight-dimensional vector indexed by the
Boolean value of the inputs. So we can write it as

NAE = (1, 1)⊗3 − (1, 0)⊗3 − (0, 1)⊗3. (6)

Now consider multiplying by this matrix, which may look familiar from quantum computation(
1 1
1 −1

)⊗3
((

1
1

)⊗3

−
(

1
0

)⊗3

−
(

0
1

)⊗3
)

. (7)

Recall the remarkable fact about tensors

A⊗nB⊗n = AB⊗n. (8)

So we can say the above equals

NAE
(

1 1
1 −1

)⊗3

=
(

2
0

)⊗3

−
(

1
1

)⊗3

−
(

1
−1

)⊗3

(9)

Which, after doing the tensor powering, is (back in symmetric notation)

[8, 0, 0, 0]− [1, 1, 1, 1]− [1,−1, 1,−1] = [6, 0,−2, 0]. (10)

And if you do the inverse transformation on the signature on the other side, which is the function
(=2) = [1, 0, 1] = (1, 0, 0, 1) = (1, 0)⊗2 + (0, 1)⊗2, or

(
(1, 0)⊗2 + (0, 1)⊗2

)(1 1
1 −1

)
. (11)

(Recall that this matrix is its own inverse, ignoring constants.) This equation, you can see, ultimately results
in [2, 0, 2]. That is, given a constant, still the equality function! So that remains the same.

The important part of this transformation is that [6, 0,−2, 0] fulfills the parity requirement, and is
matchgate realizable, this is tractable for planar graphs by the FKT algorithm.

3

