880 Lecture 1

January 24, 2012

We will be presenting frameworks for counting problems, and using them to get tractability or intractability results.

1 Holant

Given the graph $G=(V, E)$, we have the edges are variables taking either 0 or 1 , and every vertex is a function over its edge values. The vertex function can also be called a constraint function, or a signature. So for vertex v, we have f_{v}. This is the Holant framework.

Imagine if we have, for all $v, f_{v}=$ EXACT-ONE. So $f_{v}\left(e_{1}, e_{2}, \ldots, e_{\operatorname{deg}(v)}\right)=1$ if the number of 1 s is 1 , and 0 otherwise. We say $\left.f_{v}\right|_{E(v)}$ to mean the evaluation of f_{v} over the assigned value of the edges of v. Consider this equation

$$
\begin{equation*}
\left.\sum_{\sigma: E \rightarrow\{0,\}} \prod_{v \in V} f_{v}\right|_{E(v)} \tag{1}
\end{equation*}
$$

where we sum over all possible edge assignments. What does this count? The number of perfect matching! In a sense, $\left.\prod_{v \in V} f_{v}\right|_{E(v)}$ is a big conjunction when f_{v} is either 0 or 1 .

So a Holant problem is $\Omega=(G=(V, E)$, assignment of functions at vertices). We can consider what different kinds of functions to use, and if the problem becomes hard or easy.

2 Partition

Consider if we have $G=(V, E)$ and an assignment of 0,1 values to every vertex $\sigma: V \rightarrow\{0,1\}$ and each edge has a function f_{e}. This is a case that arises in physics, it is called a Partition problem. Any such function f_{e} can be described in the form:

$$
f=\left(\begin{array}{ll}
f(0,0) & f(0,1) \tag{2}\\
f(1,0) & f(1,1)
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

If the graph is undirected, then the matrix is symmetric. In that case, where $b=c$, either they are 0 or non-zero. Note that for the zero case,

$$
f=\left(\begin{array}{ll}
a & 0 \tag{3}\\
0 & d
\end{array}\right)
$$

it is easy, because the only non-zero cases force all the vertices which are connected to one another to have the same values. We can scale by a constant factor, so for the non-zero case we can make the anti-diagonal entries 1.

$$
f=\left(\begin{array}{ll}
a & 1 \tag{4}\\
1 & d
\end{array}\right)
$$

Then that's the spin model, and if $a=d$ that's the Ising model. Again we compute the sum of products:

$$
\begin{equation*}
\sum_{\sigma: V-\{0,1\}} \prod_{e \in E} f_{e}(u, v) \tag{5}
\end{equation*}
$$

Though physicists often put this in the additive form: Define $H=\sum_{e \in E} g_{e}(u, v)$, then they compute e^{H}. Technically throughout this there are many constants, but we can always scale those. We will see that all this is a very special case of graph homomorphism.

3 Holant is More General than Partition

There is a straightforward way of converting from a Partition problem to a Holant problem: If in the partition problem we have two vertices u and v that are connected by an edge, then the two vertices each take a $\{0,1\}$ value and the edge computes some function f_{e}. What we do is add a new vertex in-between, call this new vertex e. This gives us the path (u, e, v). Now the edges take $\{0,1\}$ values, the vertex e has the function f_{e}, and u, v both take the equality function of the appropriate arity, so that all the edges connected to u are the same value, and all the edges connected to v are the same value.

You can see that the Holant is the same as the Partition function in this case. It has been shown that counting-perfect matchings, the example problem when we introduced the Holant framework, is not expressible as a Partition problem, and so the inclusion is strict.

Computing the number of perfect matchings is $\# P$-hard. Are there signatures where computing the Holant is tractable?

4 A Tractable Family of Signatures: Fibonacci Gates

Consider a function f that has n Boolean inputs where f has value f_{i} if i of those inputs are 1. The behavior of f depends solely on the hamming weight of its input. For such a function, we define a symmetric signature as $f=\left[f_{0}, f_{1}, \ldots, f_{n}\right]$.

A symmetric signature f is Fibonacci if $f_{k+2}=f_{k+1}+f_{k}$, for $k \geq 0$. An example is $f=[1,0,1,1]$. This is tractable! That is quite interesting, because it is the "not", in a sense, of the same gate which counts the number of perfect matchings. The signature for perfect macthings is $f=[0,1,0,0]$, and is $\# P$-hard.

This brings us to Ladner's theorem. There is a $\# P$ equivalent, that if $P \neq \# P$ then there are $\# P$ intermediate problems. However, these intermediate problems are artificial, they're constructed through diagonalization. But for these sum-of-product problems, which seem to capture most "natural" problems, it does not appear to be the case: there are dichotomy theorems, that all problems so expressed are either in P or $\# P$-hard, nothing in between.

In the papers handed out, we can read why Fibonacci gates are tractable. The proof (for a more general type of gate) is using holographic transformations. The steps are:

1. The basic Fibonacci gates are tractable.
2. Holographic transformations of those gates are tractable.
3. We can characterize all of the transformed signatures (via "basic transformations").
4. A "collapse theorem" says that "basic transformations" suffice.

These four steps seem like a somewhat esoteric result without the history. But, then we see the next result:
5. Hardness. That's it!
6. Technique for $\# 2$ is also used in hardness proofs.

So $\# 5$ brings us to a dichotomy theorem, either the problem is known-easy or it is $\# P$-hard.
The two techniques we use for dichotomy results are really $\# 6$ and the seventh: interpolation.

5 Holographic Transformations

What are holographic transformations? Consider the "full" vector of a signature (expanded from the symmetric notation). For example, we have NOT-ALL-EQUAL defined as $[0,1,1,0]$ as a symmetric signature. That is for a three-input function-it is an abbreviated form of an eight-dimensional vector indexed by the Boolean value of the inputs. So we can write it as

$$
\begin{equation*}
\text { NAE }=(1,1)^{\otimes 3}-(1,0)^{\otimes 3}-(0,1)^{\otimes 3} \tag{6}
\end{equation*}
$$

Now consider multiplying by this matrix, which may look familiar from quantum computation

$$
\left(\begin{array}{cc}
1 & 1 \tag{7}\\
1 & -1
\end{array}\right)^{\otimes 3}\left(\binom{1}{1}^{\otimes 3}-\binom{1}{0}^{\otimes 3}-\binom{0}{1}^{\otimes 3}\right) .
$$

Recall the remarkable fact about tensors

$$
\begin{equation*}
A^{\otimes n} B^{\otimes n}=A B^{\otimes n} \tag{8}
\end{equation*}
$$

So we can say the above equals

$$
\operatorname{NAE}\left(\begin{array}{cc}
1 & 1 \tag{9}\\
1 & -1
\end{array}\right)^{\otimes 3}=\binom{2}{0}^{\otimes 3}-\binom{1}{1}^{\otimes 3}-\binom{1}{-1}^{\otimes 3}
$$

Which, after doing the tensor powering, is (back in symmetric notation)

$$
\begin{equation*}
[8,0,0,0]-[1,1,1,1]-[1,-1,1,-1]=[6,0,-2,0] . \tag{10}
\end{equation*}
$$

And if you do the inverse transformation on the signature on the other side, which is the function $(=2)=[1,0,1]=(1,0,0,1)=(1,0)^{\otimes 2}+(0,1)^{\otimes 2}$, or

$$
\left((1,0)^{\otimes 2}+(0,1)^{\otimes 2}\right)\left(\begin{array}{cc}
1 & 1 \tag{11}\\
1 & -1
\end{array}\right)
$$

(Recall that this matrix is its own inverse, ignoring constants.) This equation, you can see, ultimately results in $[2,0,2]$. That is, given a constant, still the equality function! So that remains the same.

The important part of this transformation is that $[6,0,-2,0]$ fulfills the parity requirement, and is matchgate realizable, this is tractable for planar graphs by the FKT algorithm.

