We will be presenting frameworks for counting problems, and using them to get tractability or intractability results.

1 Holant

Given the graph $G = (V, E)$, we have the edges are variables taking either 0 or 1, and every vertex is a function over its edge values. The vertex function can also be called a constraint function, or a signature. So for vertex v, we have f_v. This is the Holant framework.

Imagine if we have, for all v, $f_v = \text{EXACT-ONE}$. So $f_v(e_1, e_2, \ldots, e_{\deg(v)}) = 1$ if the number of 1s is 1, and 0 otherwise. We say $f_v|_{E(v)}$ to mean the evaluation of f_v over the assigned value of the edges of v. Consider this equation

$$\sum_{\sigma: E \to \{0, 1\}} \prod_{v \in V} f_v|_{E(v)}$$

where we sum over all possible edge assignments. What does this count? The number of perfect matching! In a sense, $\prod_{v \in V} f_v|_{E(v)}$ is a big conjunction when f_v is either 0 or 1.

So a Holant problem is $\Omega = (G = (V, E), \text{assignment of functions at vertices})$. We can consider what different kinds of functions to use, and if the problem becomes hard or easy.

2 Partition

Consider if we have $G = (V, E)$ and an assignment of 0, 1 values to every vertex $\sigma: V \to \{0, 1\}$ and each edge e has a function f_e. This is a case that arises in physics, it is called a Partition problem. Any such function f_e can be described in the form:

$$f = \begin{pmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

If the graph is undirected, then the matrix is symmetric. In that case, where $b = c$, either they are 0 or non-zero. Note that for the zero case,

$$f = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}.$$

it is easy, because the only non-zero cases force all the vertices which are connected to one another to have the same values. We can scale by a constant factor, so for the non-zero case we can make the anti-diagonal entries 1.

$$f = \begin{pmatrix} a & 1 \\ 1 & d \end{pmatrix}.$$

Then that’s the spin model, and if $a = d$ that’s the Ising model. Again we compute the sum of products:

$$\sum_{\sigma: V \to \{0, 1\}} \prod_{e \in E} f_e(u, v)$$
Though physicists often put this in the additive form: Define \(H = \sum_{e \in E} g_e(u, v) \), then they compute \(e^H \). Technically throughout this there are many constants, but we can always scale those. We will see that all this is a very special case of graph homomorphism.

3 Holant is More General than Partition

There is a straightforward way of converting from a Partition problem to a Holant problem: If in the partition problem we have two vertices \(u \) and \(v \) that are connected by an edge, then the two vertices each take a \(\{0, 1\} \) value and the edge computes some function \(f_e \). What we do is add a new vertex in-between, call this new vertex \(e \). This gives us the path \((u, e, v)\). Now the edges take \(\{0, 1\} \) values, the vertex \(e \) has the function \(f_e \), and \(u, v \) both take the equality function of the appropriate arity, so that all the edges connected to \(u \) are the same value, and all the edges connected to \(v \) are the same value.

You can see that the Holant is the same as the Partition function in this case. It has been shown that counting-perfect matchings, the example problem when we introduced the Holant framework, is not expressible as a Partition problem, and so the inclusion is strict.

Computing the number of perfect matchings is \#P-hard. Are there signatures where computing the Holant is tractable?

4 A Tractable Family of Signatures: Fibonacci Gates

Consider a function \(f \) that has \(n \) Boolean inputs where \(f \) has value \(f_i \) if \(i \) of those inputs are 1. The behavior of \(f \) depends solely on the hamming weight of its input. For such a function, we define a symmetric signature as \(f = [f_0, f_1, \ldots, f_n] \).

A symmetric signature \(f \) is Fibonacci if \(f_{k+2} = f_{k+1} + f_k \), for \(k \geq 0 \). An example is \(f = [1, 0, 1, 1] \). This is tractable! That is quite interesting, because it is the “not”, in a sense, of the same gate which counts the number of perfect matchings. The signature for perfect matchings is \(f = [0, 1, 0, 0] \), and is \#P-hard.

This brings us to Ladner’s theorem. There is a \#P equivalent, that if \(P \neq \#P \) then there are \#P-intermediate problems. However, these intermediate problems are artificial, they’re constructed through diagonalization. But for these sum-of-product problems, which seem to capture most “natural” problems, it does not appear to be the case: there are dichotomy theorems, that all problems so expressed are either in \(P \) or \#P-hard, nothing in between.

In the papers handed out, we can read why Fibonacci gates are tractable. The proof (for a more general type of gate) is using holographic transformations. The steps are:

1. The basic Fibonacci gates are tractable.
2. Holographic transformations of those gates are tractable.
3. We can characterize all of the transformed signatures (via “basic transformations”).
4. A “collapse theorem” says that “basic transformations” suffice.

These four steps seem like a somewhat esoteric result without the history. But, then we see the next result:

5. Hardness. That’s it!
6. Technique for \#2 is also used in hardness proofs.

So \#5 brings us to a dichotomy theorem, either the problem is known-easy or it is \#P-hard. The two techniques we use for dichotomy results are really \#6 and the seventh: interpolation.
5 Holographic Transformations

What are holographic transformations? Consider the “full” vector of a signature (expanded from the symmetric notation). For example, we have NOT-ALL-EQUAL defined as \([0, 1, 1, 0]\) as a symmetric signature. That is for a three-input function—it is an abbreviated form of an eight-dimensional vector indexed by the Boolean value of the inputs. So we can write it as

\[
\text{NAE} = (1, 1)^{\otimes 3} - (1, 0)^{\otimes 3} - (0, 1)^{\otimes 3}.
\] (6)

Now consider multiplying by this matrix, which may look familiar from quantum computation

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & -1
\end{pmatrix}^{\otimes 3} \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}^{\otimes 3} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\otimes 3} - \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\otimes 3} \right).
\] (7)

Recall the remarkable fact about tensors

\[
A^{\otimes n} B^{\otimes n} = AB^{\otimes n}.
\] (8)

So we can say the above equals

\[
\text{NAE} \left(\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}^{\otimes 3} \right) = \left(\begin{pmatrix} 2 \\ 0 \end{pmatrix}^{\otimes 3} - \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{\otimes 3} - \begin{pmatrix} 1 \\ -1 \end{pmatrix}^{\otimes 3} \right).
\] (9)

Which, after doing the tensor powering, is (back in symmetric notation)

\[
[8, 0, 0, 0] - [1, 1, 1, 1] - [1, -1, 1, -1] = [6, 0, -2, 0].
\] (10)

And if you do the inverse transformation on the signature on the other side, which is the function \((\equiv_2) = [1, 0, 1] = (1, 0, 0, 1) = (1, 0)^{\otimes 2} + (0, 1)^{\otimes 2}\), or

\[
((1, 0)^{\otimes 2} + (0, 1)^{\otimes 2}) \left(\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \right).
\] (11)

(Recall that this matrix is its own inverse, ignoring constants.) This equation, you can see, ultimately results in \([2, 0, 2]\). That is, given a constant, still the equality function! So that remains the same.

The important part of this transformation is that \([6, 0, -2, 0]\) fulfills the parity requirement, and is matchgate realizable, this is tractable for planar graphs by the FKT algorithm.