
CS 880: Complexity of Counting Problems 1/31/2012

Lecture 3: Baby Dichotomy Theorem

Instructor: Jin-Yi Cai Scribe: Tyson Williams

After finishing the proof of #P-harness that we started last time, we embark on proving
our first dichotomy theorem for a very restricted case.

1 Polynomial Interpolation

In the previous lecture, we introduced the proof technique of polynomial interpolation and
were using it to show that the problem Holant([0, 1, 1, 0]) is #P-hard over 3-regular graphs.
We finish the last bit of that proof now.

Proof cont. Last time, we had just finished constructing our Vandermonde system and begin
talking about our recursive gadget construction of the Ni’s, which is shown in Figure 9 of [2].
The signature of Ni is [ai, bi, bi, ai]. For the Vandermonde system to be of full rank, we need
some polynomially many Ni with distinct ratios ai/bi. The entries in the signature of Ni+1

can be expressed as a linear combination of the entries in Ni. Thus, there exists a matrix A
such that [

ai+1

bi+1

]
= Ai+i

[
a0

b0

]
.

By some careful counting, one can determine that A =

[
20 60
20 75

]
. With more calculation,

one can also determine that the eigenvalues λ and µ of A are distinct. Therefore, we can

diagonalize A as A = M

[
λ 0
0 µ

]
M−1. The reason for wanting to express A in this form is

that when we raise A to some power i, then Ai = M

[
λi 0
0 µi

]
M−1.

Now by previous work, there are three conditions that suffice to show that the Ni’s will
have distinct ratios ai/bi. They are

1.

[
a0

b0

]
not a column eigenvector,

2. detA 6= 0, and

3. λ/µ not a root of unity.

For higher dimensional interpolation (i.e. the matrix A is of a higher dimension than 2),

the correct generalization of the first condition is that

[
a0

b0

]
is not orthogonal to any row
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eigenvector of A. For 2-by-2 matrices, these two statements are equivalent. The reason for
the third condition is that otherwise our construction will eventually produce the same Ni’s
(up to a constant factor, which does not matter since it is cancelled in the ratio).

If we write our diagonalization of A as AM = M

[
λ 0
0 µ

]
, then we see that the columns

of M are the column eigenvectors of A. If we write it as M−1A =

[
λ 0
0 µ

]
M−1, then we see

that the rows of M−1 are the row eigenvectors of A. Let u and v be the column eigenvectors

of A, thus M = [u,v]. Then we can write

[
a0

b0

]
= su + tv where s, t 6= 0 since

[
a0

b0

]
really is

not a column eigenvector of A. Then[
ai

bi

]
= Ai

[
a0

b0

]
= M

[
λi 0
0 µi

]
M−1

[
a0

b0

]
= M

[
λi 0
0 µi

] [
s
t

]
= M

[
λis
µit

]
.

Now for i < j, ai/bi will be distinct from aj/bj if the determinant of

[
ai aj

bi bj

]
is nonzero.

Well,

det

[
ai aj

bi bj

]
= detM · det

[
λis µit
λjs µjt

]
= detM · (λiµjst− λjµist)

= stλiµi detM · (µj−i − λj−i)

6= 0

since none of these terms is zero. In particular (µj−i − λj−i) is not zero, since otherwise
µ/λ is a root of unity, which it is not. Therefore, interpolation succeeded and the proof is
complete.

2 Dichotomy Theorem

Our goal for this section is to prove the following dichotomy, which can be found in [1].1

Theorem 1 (Theorem 8.3 in [1]). Every counting problem Holant([x0, x1, x2] | [y0, y1, y2, y3]),
where [x0, x1, x2] and [y0, y1, y2, y3] are Boolean signatures, is either

• in P,

• #P-complete but solvable in P for planar graphs, or

• #P-complete even for planar graphs.

1A more complete version titled “Holographic Reduction, Interpolation and Hardness” was handed out
in class and is also available on the class website. In this version, it is Theorem 6.3.
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To know which case each pair of signatures is in, see the table about the statement of
the theorem (in either version of the paper). The notation Holant([x0, x1, x2] | [y0, y1, y2, y3])
means that the input graphs are bipartite where all the vertices in one partite set must take
the signature [x0, x1, x2] and the vertices in the other partite set must take the signature
[y0, y1, y2, y3]. This forces the input graphs to be (2,3)-regular so as to match the arity of
these two signatures.

The tractability for general graphs (that is, (2,3)-regular graphs that are not necessarily
planar) is covered by holographic algorithms with Fibonacci signatures as well as some
trivial cases. The cases tractable for planar graphs but #P-hard in general are covered by
holographic algorithms with matchgates. To show #P-hardness for the remaining pairs of
signatures, even when restricted to planar graphs, the gadget constructions must be planar.2

Consider the problem Holant([0, 1, 1] | [1, 1, 0, 0]). This is an example of a problem
tractable for a trivial reason. The arity two signature on the left says that at least half of
the bits must be 1. On the right side, the arity three signature says that at most one-third
of the bits can be 1. Since there is no assignment that can satisfy these two conditions
simultaneously, the Holant must be 0, thus trivially tractable.

There were many papers published before [1] in this line of work on counting problems.
However, this paper was the one where we had the first inkling that dichotomy theorems
were possible. When trying to prove a new dichotomy theorem, you do not always know
which cases are tractable and which cases are hard. You may start by trying to prove that
a particular case is hard. If the hardness proof will not go through, then you switch and try
to prove that it is tractable. Eventually you succeed in proving one or the other.

Definition 1. A symmetric signature f = [x0, x1, . . . , xn] is non-degenerate if

rank

[
x0, x1, . . . , xn−1

x1, x2, . . . , xn

]
= 2

and degenerate if f = [s0tn, s1tn−1, . . . , snt0] = (t, s)⊗n.

If Ω is a signature grid with a vertex v assigned a degenerate signature f = (t, s)⊗k of
arity k, then we modify Ω by replacing v with k vertices of degree 1, one attached to each of
the edges of v, and assigned the unary signature (t, s) to form a signature gird Ω′. The reason
for this modification is that the Holant on each of these signature grids is the same! Thus,
if all signatures are degenerate, the Holant becomes a product of |E| many terms (where E
is the set of edges in the graph), each term computable in constant time. This shows that
the complexity is derived from the non-degenerate signatures.

2The gadgets used to prove #P-hardness for the problems that are tractable for planar graphs also happen
to be planar. One might expect that the gadgets would be (or even need to be) non-planar. However, this
is not the case because we reduce from a problem that is known to be #P-hard for planar graphs.
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3 Proving Hardness

Consider the non-degenerate signature [y0, y1, y2, y3]. We can express y2 and y3 as linear
combinations of y0 and y1, a linear recurrence relation of order 2.3 If the characteristic
polynomial of the recurrence relation has distance eigenvalues, then there exists α1, α2, β1,
and β2 such that yi = α3−i

1 αi
2 + β3−i

1 βi
2. If instead there is a double root α, then there exists

A 6= 0 and B such that yi = Aiαi−1 +Bαi (if A = 0, then the signature is degenerate).
For the first case with yi = α3−i

1 αi
2 + β3−i

1 βi
2, we have

[y0, y1, y2, y3]T =

[
α1

α2

]⊗3

+

[
β1

β2

]⊗3

=

[
α1 β1

α2 β2

]⊗3
([

1
0

]⊗3

+

[
0
1

]⊗3
)

=

[
α1 β1

α2 β2

]⊗3

[1, 0, 0, 1]T ,

so [y0, y1, y2, y3] is just a holographic mixture of [1, 0, 0, 1], the equality function of arity 3.
To keep the Holant value unchanged, we must do the inverse transformation to the signature
on the other side, namely [x0, x1, x2]. We do not know what this signature becomes under
this transformation, we just write

[x0, x1, x2]

([
α1 β1

α2 β2

]−1
)⊗2

= [a0, a1, a2].

Thus, our original problem is equivalent to Holant([a0, a1, a2] | [1, 0, 0, 1]), which is a question
about (weighted) graph homomorphisms from 3-regular graphs to a target graph with two
vertices, connected by an edge, each with a self loop. Although we started with signature
with Boolean weights, notice that the ai’s could be complex numbers!

Now, consider the problem Holant([0, 1, 1] | [1, 0, 0, 1]). Can you tell what problem this
is? It is a well-known problem. The signature on the right is the equality signature, so we
might as well think that assignments are happening on those vertices instead of the edges.
On the left side is a vertex of degree two. It is “happy” if one or two of its neighbor vertices
is selected but “unhappy” if neither of them are selected. This is the #VertexCover
problem on 3-regular graphs where the vertex of degree two on the left side is really acting
like an edge between two vertices. That is, the signature grid contains the edge-vertex
indicent graph of the graph for which vertex covers are being counted. This problem is
#P-hard even for planar graphs. Thus, our strategy will be to reduce #VertexCover to
our original problem via polynomial interpolation.

3Actually, this is only true as long as y0 or y1 is not zero. However, if they are both zero, we can y0 and
y1 and a (trivial) linear combination of y2 and y3, which just means that the recurrence relation is in the
opposite direction.
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From #VertexCover, we do the constant time holographic reduction using the basis[
α1 β1

α2 β2

]
. This gives us

[
α1 β1

α2 β2

]⊗3

[1, 0, 0, 1]T = [y0, y1, y2, y3]T

and

[0, 1, 1]

([
α1 β1

α2 β2

]−1
)⊗2

= [x, y, x] = g.

Let Ω be a signature grid with a (2,3)-regular graph and let Vg be the subset of vertices
assigned g with |Vg| = n. Then

HolantΩ =
∑

i+j+k=n

xiyjzkcijk,

where cijk is the sum of products of values of all vertices not in Vg with assignments that
have exactly i vertices of Vg with the input (0,0), j vertices with (0,1) or (1,0), and k vertices
with (1,1). Just as in our first example of polynomial interpolation, we have grouped the
exponentially many terms in the Holant sum into polynomially many groups, each of which
still have exponentially many terms. This time, the number of groups is

(
n+2

2

)
, since we want

to partition n items into three parts.
Since we do not actually have the signature g, we replace it with gs = [xs, ys, zs] to

form a signature grid Ωs where each gs is constructed using our signatures [x0, x1, x2] and
[y0, y1, y2, y3]. Then HolantΩs =

∑
i+j+k=n x

i
sy

j
sz

k
s cijk. Crucially, the cijk remain the same.

Once again, these gs will be constructed recursively, so that the entries in gs+1 can be
expressed as a linear combination of the entries in gs. So,xs

ys

zs

 = A

xs−1

ys−1

zs−1


= T−1

αs 0 0
0 βs 0
0 0 γs

T
x0

y0

z0


= T−1

αsu
βsv
γsw


= T−1

u 0 0
0 v 0
0 0 w

αs

βs

γs


= B

αs

βs

γs

 ,
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where we assume that A has distinct eigenvalues and our initial signature [x0, y0, z0] is not
orthogonal to any row eigenvectors of A, so uvw 6= 0 since the rows of T contain the row
eigenvectors of A.

Now, we define a set of strings κ = {0i1j2k | i+ j + k = n}, so |κ| =
(

n+2
2

)
. Consider the

equation xs

ys

zs

⊗n

= B⊗n

αs

βs

γs

⊗n

.

Since detB 6= 0, detB⊗n = (detB)n3(n−1) 6= 0, B⊗n is non-singular. Now, partition the
columns according to κ and sum the columns in each partition to form a 3n-by-

(
n+2

2

)
matrix

B̂⊗n. Because the column sums are over disjoint sets of columns, B̂⊗n has full rank. Oth-
erwise, there would also be a nontrivial combination of the columns of B⊗n. Now B̂⊗n has
at most

(
n+2

2

)
distinct rows since any two rows with indices that give the same value in κ

are the same. We remove all duplicate rows to form the
(

n+2
2

)
-by-

(
n+2

2

)
matrix B̃⊗n, which

does not lower the rank. Since the rank of B̃⊗n is at least
(

n+2
2

)
, it is a non-singular matrix.

Thus, our Vandermonde system will have full rank.
We pick up from here next time.
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