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We introduceFibonaccigatesasapolynomial timecomputableprim-

itive, and develop a theory of holographic algorithms based on these

gates. The Fibonacci gates play the role of matchgates in Valiant’s

theory (Valiant (2008) [19]). They give rise to polynomial time com-

putable counting problems on general graphs, while matchgates

mainly work over planar graphs only. We develop a signature the-

ory and characterize all realizable signatures for Fibonacci gates. For

bases of arbitrary dimensionsweprove a basis collapse theorem.We

apply this theory to give new polynomial time algorithms for cer-

tain counting problems. We also use this framework to prove that

someslight variationsof these countingproblemsare#P-hard.Holo-

graphic algorithms with Fibonacci gates prove to be useful as a gen-

eral tool for classification results of counting problems (dichotomy

theorems (Cai et al. (2009) [7])).

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

LeslieValiant [18,19] introducedamarvelously original algorithmicdesign technique, calledmatch-

gate computations and holographic algorithms. This methodology has produced some exotic P-time

algorithms for counting problems.

Roughly speaking, a counting problem in complexity theory is as follows: An input instance such

as a graph is given, the question is to count the number of certain configurations or solutions. For
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Fig. 1. A matchgate with signature 1
4
(0, 1, 1, 0, 1, 0, 0, 1).

example, the counting problem can be to count the number of perfect matchings in an input graph.

Frequently it is possible to translate this quantity as a pairing of a vector in a vector space (often of

dimension exponential in the size of the input) with a vector in the dual space. This in general gives

only an exponential time algorithm for the problem (computing this pairing takes exponential time).

However, sometimes it is possible to evaluate this pairing much more efficiently (in time polynomial

in the size of the input). Holographic algorithms try to achieve this speed-up of computation.

There are two main ingredients to Valiant’s theory. The first is to use planar perfect matchings and

Pfaffians to encode and process information. The second is to create a weighted sum of exponential

size with these perfect matchings in a “holographic mix”, and achieve exponential cancelations in

the process. Ultimately it is reduced to the problem of counting the number of perfect matchings

over planar graphs, and can be solved in polynomial time via the Fisher–Kasteleyn–Temperley (FKT)

algorithm [12–14].

Holographic algorithms are found for a variety of problems, ranging from certain restricted Satisfia-

bility type problems, to Vertex Cover, to other graph problems such as edge orientation and node/edge

deletion. The full version of Satisfiability (Sat) is “Input: a Boolean formula; Output: the number of

satisfying assignments”. The full version of Vertex Cover (Vc) is “Input: a graph G(V, E); Output: the
number of S ⊆ V such that every e ∈ E is incident to some v ∈ S”. The P-time algorithms only

solve these problems on restricted classes of inputs. Nevertheless, the restricted versions were not

known previously to be in P, and some minor variations are known to be NP-hard. For example, let

#Pl-Rtw-Mon-3CNF denote the problem of counting the number of satisfying assignments, where

the input formula is in 3-Conjunctive-Normal-Form, each variable appears twice (called read-twice)

and without negation (called monotone), and furthermore the incidence graph of this formula (which

variable appears in which clause) is planar. This restricted Sat problem is still #P-complete, which

means that it is as hard as the unrestricted Sat problem. Moreover, the restricted problem mod 2,

#2Pl-Rtw-Mon-3CNF, which decides whether the number of satisfying assignments is even or odd, is

NP-hard. Using holographic algorithms Valiant [20] showed that surprisingly, counting modulo 7 for

this restricted Sat problem, #7Pl-Rtw-Mon-3CNF, is in P.

We will illustrate with an example the idea of creating a “holographic mix” by values of per-

fect matchings. Fig. 1 shows a finite planar weighted graph �, called a matchgate, with 3 external

nodes v1, v2, v3. For any b1b2b3 ∈ {0, 1}3, we can remove a subset S = {vi|bi = 1} and all incident

edges; we denote the remaining graph � − S. Now we compute the “perfect matching polynomial”∑
M

∏
e∈M w(e), whereM ranges over all perfectmatchings of�−S, andw(e) is theweight of the edge

e. This value will be denoted by �b1b2b3 . Putting them together we get a “signature” of the matchgate

(�b1b2b3) = 1
4
(0, 1, 1, 0, 1, 0, 0, 1)b1b2b3∈{0,1}3 . This represents a function on 3 Boolean variables,

which takes value 1/4 if there are exactly one or three variables set to 1, and it takes value 0 otherwise.

(Note that the perfectmatching polynomial counts the number of perfectmatchings if all edgeweights

w(e) = 1.)

Now suppose we wish to represent the Boolean Or function of 3 inputs. In the framework of holo-

graphic algorithms this means that we want the “signature” (0, 1, 1, 1, 1, 1, 1, 1) indexed by three

bits b1b2b3 ∈ {0, 1}3. This signature is a vector of dimension 8, representing the truth table of the Or

function of 3 inputs. While this signature is not directly expressible by perfect matchings, it is possible

to express it indirectly as a linear “superposition” of perfect matchings using the matchgate �. We
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choose two linearly independent basis vectors β =
⎡
⎣

⎛
⎝1 + ω

1 − ω

⎞
⎠ ,

⎛
⎝1

1

⎞
⎠

⎤
⎦, where ω = e2π i/3. In the

tensor product space spanned by β⊗3, we can represent the Or signature (0, 1, 1, 1, 1, 1, 1, 1) by

perfect matchings as follows: We have

⎛
⎜⎝

⎡
⎣1 + ω 1

1 − ω 1

⎤
⎦

−1
⎞
⎟⎠

⊗3

= 1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 1 −1 1 1 −1

−1 + ω 1 + ω 1 − ω −1 − ω 1 − ω −1 − ω −1 + ω 1 + ω

−1 + ω 1 − ω 1 + ω −1 − ω 1 − ω −1 + ω −1 − ω 1 + ω

−3ω −2 − ω −2 − ω ω 3ω 2 + ω 2 + ω −ω

−1 + ω 1 − ω 1 − ω −1 + ω 1 + ω −1 − ω −1 − ω 1 + ω

−3ω −2 − ω 3ω 2 + ω −2 − ω ω 2 + ω −ω

−3ω 3ω −2 − ω 2 + ω −2 − ω 2 + ω ω −ω

3 + 6ω 3 3 −1 − 2ω 3 −1 − 2ω −1 − 2ω −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and therefore (adding up the last 7 rows)

(0, 1, 1, 1, 1, 1, 1, 1)

⎛
⎜⎝

⎡
⎣1 + ω 1

1 − ω 1

⎤
⎦

−1
⎞
⎟⎠

⊗3

= 1

4
(0, 1, 1, 0, 1, 0, 0, 1) = (�b1b2b3).

It follows that (0, 1, 1, 1, 1, 1, 1, 1) = (�b1b2b3)β
⊗3. In this way each logical value 0 or 1 in the

Boolean Or function (0, 1, 1, 1, 1, 1, 1, 1) is expressed as a “superposition”, or a linear combination,

of perfect matching values in (�b1b2b3).
Holographic algorithms with matchgates can only be applied to planar problems, since they ulti-

mately use Fisher–Kasteleyn–Temperley (FKT) algorithm for planar perfect matchings. 3 In this paper

we go beyond matchgates, and extend the reach of holographic algorithms to general graphs, without

the planarity condition. In Section 5 we will show how to solve in polynomial time a certain edge

coloring problem. Such problems should be thought of as members of a class of general counting

problems on graphs in the following framework. Let us assign a Boolean function Fv at each node v.

Edges are considered as Boolean variables. Wewant to compute
∑

σ :E→{0,1}
∏

v Fv(σ |E(v)), where the

evaluation Fv(σ |E(v)) is on the incident edges of v. E.g., if we take Fv to be the At-Most-One function,

then this is the counting problem of all matchings. Perfect matching corresponds to the Exact-One

function.

We will consider symmetric functions on Boolean variables. The functions can take arbitrary real

or complex values. A symmetric function on d Boolean variables is denoted by [f0, f1, . . . , fd], where

fk is the value of the function where the number of input variables assigned to one is k. E.g., the Exact-

One function of arity 3 is [0, 1, 0, 0]. If we consider all 3-regular graphs G, then counting perfect

matchings can be denoted as #[0, 1, 0, 0]; this corresponds to the problem of evaluating the quantity∑
σ :E→{0,1}

∏
v Fv(σ |E(v)) where every function Fv is the Exact-One function [0, 1, 0, 0]. It can be

shown that the class of 2–3 regular graphs (bipartite graphs with degree 2 and 3 on the left and right

respectively) can simulate all 3-regular graphs. In terms of 2–3 regular graphs G = (U, V, E), counting
PerfectMatching is #[1, 0, 1]|[0, 1, 0, 0], where all vertices of U are given the binary Equality func-

tion [1, 0, 1] and all vertices of V are given [0, 1, 0, 0]. Counting Vertex Cover for 3-regular graphs is

#[0, 1, 1]|[1, 0, 0, 1]. The problem mentioned earlier #Rtw-Mon-3CNF is #[1, 0, 1]|[0, 1, 1, 1].
3 A more intrinsic understanding has been achieved lately [8].
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Expressed in this language, Valiant [19] showed that the problem #[1, 0, 1]|[0, 1, 1, 0] can be

solved in Pwith holographic algorithms based onmatchgates over planar graphs. This problem counts

the number of valid 2-colorings of edges such that at each vertex it is notmonochromatic. In this paper

wewill show that the problem #[1, 0, −1]|[0, 1, 1, 0] can be solved in P with holographic algorithms

based on Fibonacci gates. This can be thought of as counting the number of even minus odd valid 2-

colorings, where a Black/White coloring is even (resp. odd) if the total number of Black edges is even

(resp. odd). Of course the number of even plus odd valid 2-colorings is just the number of all valid

2-colorings, thus Valiant’s problem.Wewill further show that Valiant’s problem#[1, 0, 1]|[0, 1, 1, 0]
is #P-complete for non-planar graphs.Wenote that there is no planarity restriction for Fibonacci gates.

Our main contribution in this paper is to extend the framework of holographic algorithms by in-

troducing Fibonacci gates. They play a similar role as matchgates in Valiant’s theory, and constitute

another class of P-time computable primitives. We develop a corresponding theory of holographic

algorithms based on these Fibonacci gates. To understand what these Fibonacci gates can do in a com-

putational setting we must understand its signature theory. We derive a complete characterization of

all realizable signatures of Fibonacci gates under any choice of bases in GL2. We then apply this theory

to some non-trivial counting problems to obtain P-time algorithms. We note that the signatures used

in these holographic algorithms are not realizable by matchgates under any basis transformation, and

therefore we have properly extended the reach of holographic algorithms. (However, Fibonacci gates

do not encompass matchgates; their applicabilities are incomparable.)

We believe that holographic algorithms based on Fibonacci gates provide a unifying perspec-

tive on such counting problems (when not restricting to planar graphs). In [7] (see also [6]) we

show that Fibonacci gates can be used to prove dichotomy theorems, which state for a wide class

of problems, every single member is either in P or #P-hard. For example, every problem in the class

of #[a0, a1, a2]|[b0, b1, b2, b3] with Boolean signatures is proved either #P-complete (using holo-

graphic reductions and interpolations) or in P, where all proofs (other than trivial ones) of mem-

bership in P use holographic algorithms based on either Fibonacci gates or matchgates over planar

graphs. Problems which can be proved [6] to be in P by Fibonacci gates include: #[1, 1, 0]|[1, 1, 0, 1],
#[0, 1, 1]|[1, 0, 1, 1], #[1, 0, 1]|[0, 1, 0, 1], #[1, 0, 1]|[1, 0, 1, 0], #[1, 0, 1]|[1, 0, 1, 1], #[1, 0, 1]|
[1, 1, 0, 1], #[0, 1, 0]|[0, 1, 0, 1], #[0, 1, 0]|[1, 0, 1, 0], etc.While it is feasible to derive for each prob-

lema separate algorithm, basedonFibonacci gates introducedhere, thederivationbecomes automatic:

e.g., for the first problem listed above, #[1, 1, 0]|[1, 1, 0, 1], the verification is simply that both signa-

tures satisfy fi+2 = (−1)fi+1 + fi, for i ≥ 0. More details can be found in Section 8.

Next we consider the signature theory under more general bases. Here we prove a general basis

collapse theorem, showing that, for holographic algorithms based on Fibonacci gates, any holographic

algorithm using a two-vector basis in arbitrary dimension can be simulated by a two-vector basis in

dimension 2.

Finally we prove some hardness results. We prove a minor variation of the problem we solved in

polynomial time using holographic algorithms based on Fibonacci gates is #P-hard. Our framework

of counting problems can discuss signatures which (unlike matchgates and Fibonacci gates) do not

necessarily correspond to P-time computable primitives. We use a technique called interpolation to

prove this hardness. In particular wemake use of a technical lemma due to Vadhan [15]. An interesting

feature of these reductions is that they provide some natural examples where the Karp-type mapping

(or many-one) reductions seem to be weaker than the oracle query Cook-type reductions.

This paper is organized as follows: In Section2wedefine the frameworkof countingproblemsbased

on signatures. In Section 3we introduce Fibonacci gates, and prove that they forma P-time computable

primitive. In Section 4 we develop the signature theory for these Fibonacci gates. In Section 5, we

consider some counting problems solvable in polynomial time using the theory just developed. In

Section 6 we prove hardness results using interpolation reductions. In Section 7 we further develop

the signature theory and prove a general basis collapse theorem.

2. Counting problems and holographic reductions

Many counting problems can be formulated in the following framework.
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H

Fig. 2. An example of an F-gate with five dangling edges.

A signature grid� = (H,F) is a tuple, whereH = (V, E) is a graph, andF are functions assigned to

vertices of H. We consider every edge e ∈ E as a Boolean variable, and every vertex v ∈ V is assigned

a function Fv from F , where Fv : {0, 1}d(v) → F, for some field F and d(v) is the degree of v. (In this

paper our field Fwill be either R or C.) The d(v) input variables of Fv are in 1–1 correspondence with

the incident edges of v. Given an assignment σ : E → {0, 1} of all the edges, we have a valuation at

each vertex v, which is the value of Fv on σ restricted to the edges incident to v. The value of � (or we

simply say the value of H) under σ is the product of Fv on σ over all v ∈ V , and the value of � is the

sum over all assignments σ . The counting problem on � is to compute this value.

Formally let E = {1, 2, . . . ,m}, the edges connected to vertex v are denoted by iv1, i
v
2, . . . , i

v
d(v).

Then we define

Holant� = ∑
x1x2···xm∈{0,1}m

∏
v∈V

Fv

(
xiv1 , xi

v
2
, . . . , xivd(v)

)
.

Wealsowrite HolantH when there is no confusion.We can view each function Fv as a vector in F2
d(v)

, or

a tensor in (F2)⊗d(v): We take the basis e0 =
⎛
⎝1

0

⎞
⎠ , e1 =

⎛
⎝0

1

⎞
⎠ of F2 corresponding to 0 and 1. Then in

(F2)⊗d(v) with respect to the basis eb1 ⊗eb2 ⊗ . . .⊗ebd(v) , where bi = 0, 1, the function Fv corresponds

to the vector whose coefficient at eb1 ⊗ eb2 ⊗ . . . ⊗ ebd(v) is the function value F(b1, b2, . . . , bd(v)).
This vector is called a signature.

Many important countingproblemscanbeviewedas computingHolant� for appropriate signatures

at each vertex. Denote by wt(σ ) the Hamming weight wt(σ ) = |σ−1(1)| (or if we represent σ by a

0–1 sequence, thenwt(σ ) is the number of 1’s). Let Fv(σ ) = 1 ifwt(σ ) = 1, and Fv(σ ) = 0 otherwise.

Then Holant� counts the number of perfect matchings inH. Suppose instead Fv(σ ) = 1 if wt(σ ) � 1,

and Fv(σ ) = 0 otherwise, then we are counting all (not necessarily perfect) matchings of the graph

H. Many counting problems not directly defined in terms of graphs can also be formulated as holant

problems. For example, the well-known #3Sat problem asks for the number of satisfying assignments

in a given Boolean formula ϕ on Boolean variables x1, . . . , xn. Here ϕ has the form
∧

j Cj , where each

Cj (called a clause) is a disjunction (Boolean Or) of three literals (variables or their negations). For any

instance ϕ, we can draw a bipartite graph, where a variable node xi is connected to a clause node Cj
iff xi (or its negation) appears in the clause Cj . Then, to count #Sat, for each variable xi we assign the

Equality function, and for each clause Cj we assign the truth table of Cj .

Now we define the notion of an F-gate � = (H,F), where H = (V, E,D) is a graph with some

dangling edges D. (See Fig. 2 for one example.) Other than these dangling edges, an F-gate is the same

as a signature grid. The role of dangling edges is similar to that of external nodes inValiant’s notion [19],

however we allow more than one dangling edges for a node. Consider a graph with dangling edges

H = (V, E,D), where each node is assigned a function in F (we do not consider “dangling” leaf nodes

at the end of a dangling edge among these), E are the regular edges, denoted as 1, 2, . . . ,m, and D

are the dangling edges, denoted as m + 1,m + 2, . . . ,m + n. Then we can define a function for this

F-gate � = (H,F),
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�(y1, y2, . . . , yn) = ∑
(x1,x2,...,xm)∈{0,1}m

H(x1, x2, . . . , xm, y1, y2, . . . , yn),

where (y1, y2, . . . , yn) ∈ {0, 1}n denotes an assignment on the dangling edges andH(x1, x2, . . . , xm,
y1, y2, . . . , yn) denotes the value of the signature grid on an assignment of all edges. We will also call

this function�(y1, y2, . . . , yn) the signature of theF-gate�. AnF-gate can be used in a signature grid

as if it is just a single node with the particular signature. We note that even for a very simple signature

set F , the signatures for all F-gates can be quite complicated and expressive. Matchgate signatures

are an example.

Suppose�1 = (H1,F1) and�2 = (H2,F2) areF-gates with dangling edge sets D1 and D2. We can

form a new F-gate � = (H,F) by merging some of their dangling edges to form regular edges. (See

Fig. 3 for one example.) Suppose |D1| = k + p, |D2| = k + q and the first k dangling edges of D1 are

merged with the first k dangling edges of D2 correspondingly. Then

�(y1, y2, . . . , yp, z1, z2, . . . , zq)

= ∑

(x1,...,xk)∈{0,1}k
�1(x1, . . . , xk, y1, y2, . . . , yp)�2(x1, . . . , xk, z1, z2, . . . , zq).

We remark that a single node with a number of dangling edges can be viewed as the simplest

F-gate; also the whole signature grid � = (H,F) can be viewed as an F-gate with zero dangling

edges, and its Holant� is exactly its signature (here it is only a single value).

A signature is called symmetric, if each signature entry only depends on the Hamming weight of

the input. The signatures we defined above for matching or perfect matching or Boolean OR all have

this property. We use a more compact notation [f0, f1, . . . , fn] to denote a symmetric signature on n

inputs, where fi is the value on inputs of Hamming weight i. In terms of the tensor expression, fi is the

coefficient ine
n−i
0 ⊗ei1, and is the samecoefficient ineb1⊗eb2⊗. . .⊗ebn as longaswt(b1b2 . . . bn) = i.

A counting problem is now generally defined to be the computation of Holant� for some signature

grids � from some family of graphs and signatures on its vertices.

Wewill mostly consider bipartite graphsH = (V1, V2, E) here. For any general graph, we canmake

it bipartite by adding an additional vertex on each edge. The signature for each new vertex is the

Equality function (1, 0, 0, 1) on 2 inputs. Note that (1, 0, 0, 1) = (1, 0)⊗2 + (0, 1)⊗2. In symmetric

notation, it is [1, 0, 1].
We use #H : G|R to denote all the counting problems, expressed as holant problems on bipartite

graphs H = (V1, V2, E), where the graph H is from the graph familyH, G andR are sets of signatures,

and each signature for a vertex in V1 or V2 is from G or R, respectively. If H consists of all bipartite

graphs, or the restriction is clear, we will simply use #G|R to denote the holant problem. E.g., when

G consists of a single signature of arity two: G = {[x0, x1, x2]}, and R consists of a single signature

Fig. 3. Two F-gates compose into one.
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of arity three: R = {[y0, y1, y2, y3]}, we will simply write #[x0, x1, x2]|[y0, y1, y2, y3] to denote the

counting problem where the class of graphs consists of all 2–3 regular graphs, and every node on

the left (resp. right) is attached the signature [x0, x1, x2] (resp. [y0, y1, y2, y3]). An input instance of

the holant problem is a signature grid and is denoted as � = (H, G|R). Signatures in G are called

generators, which are denoted by column vectors (or contravariant tensors); signatures inR are called

recognizers, which are denoted by row vectors (or covariant tensors) [9].

Much of the power of holographic algorithms is derived from carefully designed cancelations in

tensor spaces, as illustrated in Section 1. Let T = [n, p], where n and p are two linearly independent

vectors in the vector space F2
k

of dimension 2k over F. When k = 1, such a two-vector set is a linear

basis of F2 in the usual sense. For most of this paper, k = 1. When k > 1, such a two-vector set has

also been called a basis in [19], and it is called a basis of size k; we will follow this usage, although it is

not a linear basis in the usual sense. Then we can define a holographic reduction as follows. Suppose

#H : G|R and #H : G′|R′ are two holant problems defined for the same family of graphs. Suppose

there exists a basis T of size k and a polynomial time computable mapping σ , such that: for every

generator G ∈ G of arity g, σ(G) is an F-gate with gk dangling edges (not necessary a single node)

and with signature G′ ∈ G′, for every recognizer R ∈ R of arity r, σ(R) is an F-gate with rk dangling

edges andwith signature R′ ∈ R′, and furthermore G′ = T⊗gG and R = R′T⊗r . Thenwe say that there

is a holographic reduction from #H : G|R to #H : G′|R′. (Notice the reversal of directions when the

transformation T⊗n is applied. This is the meaning of contravariance and covariance.)

Theorem2.1 (Valiant’s holant theorem). Suppose in aholographic reduction a signature grid� ismapped

to a signature grid �′, then
Holant� = Holant�′ .

Theproof of this theorem follows fromgeneral principles of contravariant and covariant tensors and

their contractions [2]. In particular, if there is a holographic reduction from #H : G|R to #H : G′|R′,
and there is a P-time algorithm for #H : G′|R′, then there is a P-time algorithm for #H : G|R. Similarly,

if the first holant problem is #P-hard, then so is the second.

In holographic algorithms proposed by Valiant [19], one reduces a given problem to the planar

perfect matching problem, which has the FKT algorithm. Using that, many interesting problems are

proved to be polynomial time solvable [19,20,1,3]. But in the framework of holographic reductions,

we can reduce a given problem to any other holant problem, which is polynomial time solvable. In the

next section, we will introduce another family of polynomial time solvable holant problems.

3. Fibonacci gates

In this section, we introduce a new set of signatures called Fibonacci gates. Then we give a poly-

nomial time algorithm for holant problems on these signatures. A first form of this idea appeared

in [21].

Let {fk}nk=0 be a sequence, satisfying fk+2 = fk+1+fk for allk = 0, 1, . . . , n−2. For any initial values

f0 and f1, such a sequence will be called a Fibonacci sequence. For any arity n a Fibonacci sequence

defines a symmetric signature F = [f0, f1, . . . , fn]. (We consider any symmetric signature of arity less

than 2 to be Fibonacci as well.) This defines a function on n Boolean inputs F : {0, 1}n → F such that

F(σ ) = fwt(σ ), for all σ ∈ {0, 1}n. We call such functions Fibonacci gates or Fibonacci signatures. We

use F to denote all the Fibonacci signatures.

Theorem 3.1. For any graph H, the holant problem #(H,F) can be computed in polynomial time.

Proof. IfH1,H2, . . . ,Hl are all the connected components of a graphH, thenHolantH =∏l
i=1 HolantHi

.

So we only need to consider connected graphs as inputs.

Suppose H has n nodes and m edges. First we cut all the edges in H. A node with degree d can be

viewed as an F-gate with d dangling edges. Now step by step we connect two dangling edges into
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Fig. 4. First operation.
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Fig. 5. Second operation.

one regular edge in the original graph, until we recover H after m steps. Our plan is to prove that

all the intermediate F-gates still have Fibonacci signatures and at every step we can compute the

intermediate signature (we only need to compute the first two values of the signature) in polynomial

time. Finally we get H, an F-gate without any dangling edges, its signature (only one value) is the

holant we want to compute. To carry out this plan, we only need to prove that it is true for one single

step. There are two cases, depending on whether the two dangling edges to be connected are in the

same component or not. These two operations are illustrated in Figs. 4 and 5.

In the first case, the two dangling edges belong to two components before their merging (Fig. 4).

Let F have dangling edges y1, . . . , ys, z and G have dangling edges ys+1, . . . , ys+t, z
′. After merging

z with z′, we have a new gate H with dangling edges y1, . . . , ys, . . . , ys+t . Inductively the signatures

of gates F and G are both Fibonacci functions. We show that the resulting gate H also has a Fibonacci

signature.

We first prove H is symmetric. We only need to show that the value of H is not changed if the value

of two inputs are exchanged. Because F and G are symmetric, if both inputs are from {y1, . . . , ys} or

from {ys+1, . . . , ys+t}, the value of H is clearly not changed. Suppose one input is from {y1, . . . , ys}
and the other is from {ys+1, . . . , ys+t}. By symmetry of F and G we may assume these two inputs are

y1 and ys+1. Thus we will fix an arbitrary assignment for y2, . . . , ys, ys+2, . . . , ys+t , and we want to

show H(0, y2, . . . , ys, 1, ys+2, . . . , ys+t) = H(1, y2, . . . , ys, 0, ys+2, . . . , ys+t).
We can suppress the fixed y2, . . . , ys, ys+2, . . . , ys+t and denote Fy1z = F(y1, y2, . . . , ys, z),

Gys+1z = G(ys+1, ys+2, . . . , ys+t, z), and Hy1ys+1
= H(y1, . . . , ys, ys+1, . . . , ys+t). Then by the de-

finition of holant, Hab = Fa0Gb0 + Fa1Gb1, for a, b ∈ {0, 1}. In particular, H01 = F00G10 + F01G11, and

H10 = F10G00 + F11G01.

Because F and G are Fibonacci functions, F11 = F01 + F00 and G11 = G01 + G00. We have

H01 = F00G10 + F01G01 + F01G00, and H10 = F10G00 + F01G01 + F00G01.

By symmetry of F and G, H01 = H10.

Now we show that H(y1, . . . , ys+t) is also a Fibonacci function. Since we have proved that H is

symmetric, we can choose any two inputs to prove it being Fibonacci. Again, we choose y1 and ys+1.

(This assumes that y1 and ys+1 exist. If after the merging, either the part from F or G has no dangling

edges left, the proof is just as easy. This also includes the case when the arity of H is less than 2.) For

any fixed values of all the other inputs, we have H00 = F00G00 + F01G01, H01 = F00G10 + F01G11, and
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H11 = F10G10 + F11G11. Now using the fact that both F and G are Fibonacci functions, it is easy to show

that H00 + H01 = H11.

If the first two terms of the signatures of F and G are f0, f1 and g0, g1 respectively, then the first two

terms of the signatureH can be easily computed as following: h0 = f0g0+ f1g1 and h1 = f1g0+ f2g1 =
f1g0 + (f0 + f1)g1.

Next we consider the second case, where the two dangling edges to be merged are in the same

component (Fig. 5). Obviously, the signature for the newgateH is also symmetric. If F = [f0, f1, . . . , fn]
is the Fibonacci signature before themerging operation, then the signature after themerging operation

isH = [f0+ f2, f1+ f3, . . . , fn−2+ fn]. It follows thatH is also Fibonacci andwe have already computed

its signature. �

Beforemoving on, we comment that we did not stop at two-term recurrence by choice. If one starts

with a higher order recurrence, the above proof no longer works. Moreover, trivially one can interpo-

late any symmetric signature [f0, f1, f2, f3] of arity 3 by a third order recurrence. Later in Section 6 we

will prove #P-hardness for some of these problems. Assuming #P �= P, which is weaker than NP �= P,

this shows that there is an essential difficulty extending these two-term recurrence to higher order

ones.

Nowwe can use Fibonacci signatures to solve newproblems. The goal is to use these Fibonacci gates

in conjunction with holographic reductions to give P-time algorithms for various counting problems.

For that we need the following

Definition 3.1. A generator G (resp. recognizer R) with arity n is realizable as a Fibonacci gate on basis

T iff there exists a Fibonacci signature F such that FT = T⊗nG (resp. R = FT⊗n).

4. Realizability

In this section, we characterize all holant problems which can be solved by holographic algorithms

with Fibonacci gates. Here we only consider bases of size 1, but the result is actually valid for any

two-vector basis of size k, for any k. In Section 7, we will prove a basis collapse theorem, which shows

that any holographic algorithmwith Fibonacci gates using a basis of size k can be simulated on a basis

of size 1.

Let φ (the golden ratio) and φ̄ be the two roots of X2 − X − 1 = 0. Then for any Fibonacci sequence

{fi}ni=0, there exist two numbers A and B such that fi = Aφi + Bφ̄i, where i = 0, 1, . . . , n. It follows

that for any Fibonacci signature F , there exist two numbers A and B such that F = A(1, φ)⊗n +
B(1, φ̄)⊗n. (The notation (1, φ)⊗n denotes the vector of length 2n, where any entry indexed by an

n-bit 0–1 sequence of Hamming weight k is φk . The symmetric signature notation for (1, φ)⊗n is

[1, φ, φ2, . . . , φn].)

Let T =
⎡
⎣n0 p0

n1 p1

⎤
⎦ ∈ GL2. Then for any realizable recognizer signature R, we have

R = (A(1, φ)⊗n + B(1, φ̄)⊗n)T⊗n

= A((1, φ)T)⊗n + B((1, φ̄)T)⊗n

= A(n0 + n1φ, p0 + p1φ)⊗n + B(n0 + n1φ̄, p0 + p1φ̄)⊗n.

So R is also symmetric, and writing in symmetric notation R = [x0, x1, . . . , xn], we have

xi = A(n0 + n1φ)n−i(p0 + p1φ)i + B(n0 + n1φ̄)n−i(p0 + p1φ̄)i. (1)

A matrix T ∈ GL2 defines a Möbius function 	T (z) = p1z+p0
n1z+n0

, then xi = A′(	T (φ))i + B′(	T (φ̄))i, for

some constants A′ = A(n0 + n1φ)n and B′ = B(n0 + n1φ̄)n.
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When we replace T by (T−1)T, all results for recognizers work for generators. In particular, if G =
[x0, x1, . . . , xn]T is realizable as a Fibonacci gate on a basis T , then

xi = A(p1 − p0φ)n−i(−n1 + n0φ)i + B(p1 − p0φ̄)n−i(−n1 + n0φ̄)i. (2)

Theorem 4.1. A symmetric signature [x0, x1, . . . , xn] (for generator or recognizer) is realizable as a

Fibonacci gate on some basis of size 1 iff there exist three constants a, b and c, such that b2 − 4ac �= 0,

and for all k, where 0 � k � n − 2,

axk + bxk+1 + cxk+2 = 0. (3)

Proof. Here we only prove it for recognizers; the case for generator is similar.

“⇒": From (1), we choose a = (p0+p1φ)(p0+p1φ̄), b = −(n0+n1φ)(p0+p1φ̄)−(p0+p1φ)(n0+
n1φ̄) and c = (n0 + n1φ)(n0 + n1φ̄). Then b2 − 4ac �= 0 and we can verify that (3) is satisfied.

“⇐": If c �= 0, then {xi} is a second-orderhomogeneous linear recurrencesequence. Sinceb2−4ac �= 0,

{xi} has the form xi = A′αi + B′β i for some α �= β . By the theory of Möbius transformations, there

exists a T ∈ GL2 such that 	T (φ) = α and 	T (φ̄) = β . More explicitly, in (1), we can choose A = A′,
B = B′, n0 = 1, n1 = 0, p0 = βφ−αφ̄

φ−φ̄
and p1 = α−β

φ−φ̄
. This implies that {xi} is realizable. The case

a �= 0 is similar. If a = c = 0, then b �= 0. In this case all the xi = 0 except x0 and xn. Then in (1),

choosing A = x0
(φ̄−φ)n

, B = xn
(φ−φ̄)n

, n0 = φ̄, n1 = −1, p0 = φ and p1 = −1, we can show that {xi} is
realizable. �

Theorem 4.2. A set of symmetric generators G1, G2, . . . , Gs and recognizers R1, R2, . . . , Rt are simulta-

neously realizable as Fibonacci gates on some basis of size 1 iff there exist three constants a, b and c, such

that b2 − 4ac �= 0 and the following two conditions are satisfied:

1. For any recognizer Ri = [x(i)
1 , x

(i)
2 , . . . , x

(i)
ni ] and any k = 0, 1, . . . , ni − 2, ax

(i)
k + bx

(i)
k+1 + cx

(i)
k+2 = 0.

2. For any generator Gj = [y(j)
1 , y

(j)
2 , . . . , y

(j)
mj ] and any k = 0, 1, . . . ,mj −2, cy

(j)
k −by

(j)
k+1 +ay

(j)
k+2 = 0.

Proof. “⇒": Let T =
⎡
⎣n0 p0

n1 p1

⎤
⎦ be a basis on which they are simultaneously realizable. Then all the

recognizersRi = [x(i)
1 , x

(i)
2 , . . . , x

(i)
ni ]have the form (1),with only the coefficientsA and Bmaybediffer-

ent. For each Ri, we can choose the same a, b and c as in Theorem4.1. Then for any k = 0, 1, . . . , ni−2,

ax
(i)
k + bx

(i)
k+1 + cx

(i)
k+2 = 0.

For the generators, replace T by (T−1)T, we have the same result. If we define a′, b′ and c′ according
to (T−1)T, thenwe can verify that a′ = −c/ det2(T), b′ = b/ det2(T) and c′ = −a/ det2(T). This uses

properties of φ and φ̄, where φ is the golden ratio. It follows that cy
(j)
k − by

(j)
k+1 + ay

(j)
k+2 = 0.

“⇐": If c �= 0, then each recognizer sequence satisfies the same second-order homogeneous linear

recurrence. Since b2 − 4ac �= 0, let α, β be the two distinct roots of cX2 + bX + a. Each {x(i)
k } has the

form x
(i)
k = Aiα

k + Biβ
k . Then all the Ri = [x(i)

1 , x
(i)
2 , . . . , x

(i)
ni ] are realizable on T =

⎡
⎢⎣
1

βφ−αφ̄

φ−φ̄

0
α−β

φ−φ̄

⎤
⎥⎦ as

in the above proof.

Since cy
(j)
k − by

(j)
k+1 + ay

(j)
k+2 = 0 and c �= 0, each reversed generator sequence is a second-order

homogeneous linear recurrence sequence. Then −α and −β are the two roots of cX2 − bX + a. As a

result, we know that each generator {y(j)
k } has the form y

(j)
k = A′

j(−α)mj−k + B′
j(−β)mj−k . Then it is

easy to verify that they are also realizable on T as generators.
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The case a �= 0 is similar. Finally if a = c = 0, then b �= 0. In this case all the sequences have the

form [∗, 0, . . . , 0, ∗], and they are all realizable on T =
⎡
⎣ φ̄ φ

−1 −1

⎤
⎦. �

We note in particular when a = −c �= 0, then both the generator side and the recognizer side

take the same form: for some m, fk+2 = mfk+1 + fk , for k = 0, . . . , arity(f ) − 2. These signatures

can be used on general (not necessarily bipartite) graphs. One way to see this is as follows: Turn a

general graph G into a bipartite graph, by adding a new vertex in the middle of every edge, and attach

a binary Equality [1, 0, 1] at each new vertex. (Equivalently we form the incidence graph of G, where

the left-hand are the edges of G, each given [1, 0, 1], and the right-hand are the vertices of G.) We note

that [1, 0, 1] satisfies f2 = mf1 + f0. See Section 8 for more discussions.

5. Some problems

In a formal sense, we already have a complete characterization of the power and expressibility

of holographic algorithms with Fibonacci gates. In this section, we show some concrete problems

formulatedasholantproblemscanbesolvedbyournewholographicalgorithms.All theproblems, even

restricted to planar structures are not solvable by original holographic algorithms with matchgates, in

the sense that the required signatures are not realizable by matchgates. Furthermore, some variations

of theproblemsare#P-complete,whichwill beproved inSection6.Morediscussionsof theseproblems

are given Section 8.

5.1. A coloring problem

Given a 3-regular graph, a 2-coloring (Black/White) of the edges is called valid if at each vertex the

incident edges are not monochromatic. It is an even (resp. odd) coloring if it is a valid 2-coloring with

an even (resp. odd) number of Black edges.

Input: A 3-regular graph.

Output: The number of even colorings minus the number of odd colorings.

Solution: For every edge we use the signature [1, 0, −1]T as a generator, and for every vertex we use

the signature [0, 1, 1, 0] as a recognizer. By choosing a = c = 1, b = −1 in Theorem 4.2, we know

that they are simultaneously realizable. So we have a holographic algorithm with Fibonacci gates for

this problem.

To see that this signature pair solves our problem, i.e., the problem is simply#[1, 0, −1]|[0, 1, 1, 0],
we reason as follows. The input 3-regular graph G is replaced first by its incidence graph; this makes it

bipartite. Every edge ofG has the signature [1, 0, −1], whichmeans that it transmits a consistent color

(Black/White), but with a multiplicative factor −1 if it is Black. At each vertex of G the requirement is

that the number of Black edges, among three incident edges, is either one or two.

Here we have some comments for this problem:

1. The same signatures [1, 0, −1] and [0, 1, 1, 0] are not simultaneous realizable as matchgates.

2. Computing the number of all valid colorings is #P-hard. This problem can be denoted as #(3-

regular-graphs, {[1, 0, 1]} | {[0, 1, 1, 0]}), and the proof is in Theorem 6.1.

3. Ifweonly considerplanar graphs, then thenumberof all valid colorings canbe computed inpoly-

nomial time by a holographic algorithm with matchgates. (Signatures [1, 0, 1] and [0, 1, 1, 0]
are simultaneous realizable as matchgates.)

It has also been pointed out that this result implies that ⊕Rtw-Mon-NAE is in P, i.e., the parity of

the number of solutions of Monotone formulae with Not-All-Equal gates (each Not-All-Equal gate is

of arity 3 and each variable appears twice). If we replace the Not-All-Equal gates by OR, the problem

is known to be ⊕P-complete, even in the planar case; but without the replacement, the problem is in

P for the planar case, shown by holographic algorithms using matchgates [19,20].
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5.2. A satisfiability problem

WeconsiderRtw-CNF formulas,whereRtw(which stands for “read twice")means that eachvariable

appears in exact 2 clauses, but it may appear both positively or negatively. A variable may lie when it

transmits inconsistent values to its clauses; when that happens, we call it a lying variable. An even-

lying (resp. odd-lying) assignment is an assignment with an even number (resp. odd number) of lying

variables. Each variable xi is also associated with a weightwi, such that when the transmitted value of

xi satisfies both clauses it is weighted with a factor wi. The weight of an assignment is the product of

weights wi over such variables.

Input: A Rtw-CNF formula.

Output: The sum of weights of even-lying satisfying assignments minus the sum of weights of odd-

lying satisfying assignments.

Solution: For each variable xi, if it appears as a positive literal (xi) in both clauses, or as a negative

literal (¬xi) in both clauses, we use the signature [1, −1,wi]T as a generator; if xi appears once as a

positive literal and once as a negative literal, we use the signature [−1, 1, −wi]T as a generator. For

every clause with k variables, we use the signature [0, 1, 1, . . . , 1] (k 1’s) as a recognizer. By choosing

a = 0, b = 1, c = −1 in Theorem 4.2, we know that they are all simultaneously realizable. So we

have a holographic algorithm with Fibonacci gates for this problem.

To see that these signatures capture thisproblem,wenote the following. Thereare threepossibilities

as to how a variable may appear in a Read-Twice CNF formula, as stated. If a variable x appears as the

negative literal ¬x in both clauses C and C′, we may replace x by a new variable x′ which appears

positively in both C and C′. The notion of lying and weight are unchanged by this substitution; since

it is the consistency, and the satisfaction of the clauses, of the transmitted values that count. Now

according to the four caseswhen the received values are 00, 01, 10, 11,wemay easily check our assigned

generator signature works for either (1) when x appears both positively, or (2) when x appears once

positively and once negatively. The clauses all have the Boolean Or signature.

5.3. A family of parity problems

Here we consider a family of holant problems � = (G,P), where each function in P has the

property that its value only depends on the parity of its input. Thus we have signatures of the form

[a, b, a, b, . . .]. We show that these problems can all be solved by holographic algorithms with Fi-

bonacci gates.

Input: A signature grid � = (G,P) with parity signatures.

Output: Holant� .

Solution: We apply the standard method to make the problem bipartite. For every edge in G we use

the signature [1, 0, 1]T as a generator. For every vertex in G, we keep its signature and is viewed as a

recognizer. By choosing a = 1, b = 0, c = −1 in Theorem 4.2, we know that they are all simultane-

ously realizable. So we have a holographic algorithm with Fibonacci gates for this problem. We note

that the choice of Fibonacci gates are different from the previous problems as different parameters

a, b and c are used.

6. Hardness of some problems

In this section, we prove that counting all valid colorings in the coloring problem introduced in

Section 5 is #P-complete. In the holant language, we prove the following theorem.

Theorem 6.1. The holant problem #(3-regular-graphs, {[0, 1, 1, 0]}) is #P-complete.

Note that each edge in a 3-regular graph is assigned a truth value, which corresponds to a

Black/White edge coloring, and at every vertex it is subjected to the Not-All-Equal gate [0, 1, 1, 0].
Our starting point is #NAE-3SAT. This is the well-known problem of counting the number of so-

lutions to a Boolean formula which is a conjunction of clauses, each of which is the Not-All-Equal
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Fig. 6. The signature for every node in this {[0, 1, 1, 0], [1, 0, 0, 1]}-gate is [1, 0, 0, 1]. And the signature of the gate is [1, 1].

Fig. 7. An {[0, 1, 1, 0], [1, 0, 0, 1]}-gate with signature [0, 1, 0].

Fig. 8. This gate realizes the equality signature [1, 0, 0, . . . , 0, 1] of at least 3 variables. The signature for every node in this is

[1, 0, 0, 1]. There are d − 2 nodes in the gate if we want to realize the equality signature for d variables.

function on 3 literals. It is #P-complete by the dichotomy theorem [10] on Constraint Satisfiability

Counting Problems. Our hardness result will be a reduction from this problem.

Our first step is to represent this problem #NAE-3SAT as a holant problem over the signature

set {[0, 1, 1, 0], [1, 0, 0, 1]}. Given an instance of #NAE-3SAT we represent it by a graph with vari-

able nodes and NAE-clause nodes as follows: For each NAE-clause node, we use the NAE signature

[0, 1, 1, 0]. For a variable node, if it occurs just once, we use the gadget in Fig. 6 to realize the equality

gate [1, 1]. If a variable occurs twice, we can represent it by an edge, and append it with the gadget in

Fig. 7 if it is once positive and once negative. If a variable occurs in d ≥ 3 clauses as literals, we use

the gadget in Fig. 8, and each negated literal occurrence is further appended by the gadget in Fig. 7.

Note that the holant of this signature grid evaluates to exactly the answer of #NAE-3SAT instance. It

follows that

Lemma 6.1. The holant problem #(3-regular-graph, {[0, 1, 1, 0], [1, 0, 0, 1]}) is #P-complete.

The next step in the proof uses a technique called interpolation [16,17]. Given a signature grid

� for the above holant problem, we will construct a sequence of signature grids �i for the holant

problem #(3-regular-graph, {[0, 1, 1, 0]}). And we show that from a polynomial number of queries

to Holtant�i
, where i = 0, 1, . . ., we can compute Holtant� in polynomial time. This will prove

Theorem 6.1.

Let n be the number of nodes in � with the signature [1, 0, 0, 1]. Let xj be the number of truth

assignments to all edges of � where there are exactly j nodes among those n nodes which receive

an assignment (0, 0, 0) or (1, 1, 1) on its three incident edges, and on all nodes other than these n

nodes in � (which have a signature [0, 1, 1, 0]) the truth assignment satisfies the local ternary NAE

condition. Clearly the answer we seek is Holtant� = xn.
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 i  1
N

0N 1N iN

Fig. 9. The recursive construction of the {[0, 1, 1, 0]}-gates Ni . The signature for every node in these gates is [0, 1, 1, 0].

Consider the sequence of {[0, 1, 1, 0]}-gate Ni in Fig. 9. The sequence Ni is recursively constructed.

N0 is simply a single node with the signature [0, 1, 1, 0] and 3 dangling edges. For i ≥ 1, we construct

Ni by inscribing a copy of Ni−1 inside of a triangle as shown in Fig. 9. Every node in the {[0, 1, 1, 0]}-
gate Ni is assigned the signature [0, 1, 1, 0] as we must. Obviously Ni has a symmetric signature as

can be seen recursively by a geometric rotation or reflection directly on the picture. If we denote the

signature of Ni by [ai, bi, ci, di], there is in fact a further symmetry. We claim that ai = di and bi = ci,

whichweprove recursively. ClearlyN0 has this property. Assume this holds forNi−1. ForNi, if we flip all

0 and 1 bits, we get a 1–1 map on all satisfiable truth assignments counted in ai and di, and also a 1–1

map on all satisfiable truth assignments counted in bi and ci. Thus the signature of Ni is [ai, bi, bi, ai].
Nowweconstruct our sequenceof signaturegrids�i: For eachof thosennodes in�witha signature

[1, 0, 0, 1], we replace it by a copy ofNi. It is easy to see that Holtant�i
= ∑n

j=0 xja
j
ib

n−j
i . Thus from the

values Holtant�i
for i = 0, 1, . . . , n, we get a linear system in x0, x1, . . . , xn. Provided the coefficient

matrix is non-singular, we can compute all these xj , and Holtant� = xn is what we want.

To show that it is non-singular, we derive a recurrence relation for (ai, bi). To compute ai+1, fix all

three inputs xi+1, yi+1, zi+1 of the gateNi+1 to 1, and then fix one of the eight possible assignments to

xi, yi, zi, the inputs of Ni, then multiply the number of satisfiable truth assignments for the remaining

six edges in Ni+1 with the value of Ni on this input (it is either ai or bi), then sum over all eight

assignments, we get ai+1 = 20ai + 60bi. (This takes some careful accounting.) And similarly we have

bi+1 = 20ai + 75bi. By this relation and Lemma 9.2 by Vadhan [15], we know that the coefficient

matrix of the above linear system is non-singular (Vandemonde). This finishes the hardness proof.

7. Basis collapse

In this section, we prove a basis collapse theorem for holographic algorithms with Fibonacci gates.

These results parallel those obtained formatchgate signatures [4,5]. Themotivation for allowing bases

of higher dimension, at least in the case ofmatchgates,was that theymaypotentially increase the scope

of holographic algorithms based onmatchgates. We showed that in the case of two-vector bases, they

do not actually increase the power of holographic algorithms.

Here we do the same for Fibonacci gates. But the proof techniques are quite different. In the proof

for matchgates, we construct size 1 bases and matchgates from the given high dimensional bases

and matchgates, then prove that they realize the same signatures. Here we make use of Theorem 4.2,

which characterizes all the signatures simultaneously realizable on a size 1basis.Weprove the collapse
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theorem by showing that signatures realizable on high dimensional bases also satisfy the conditions

of Theorem 4.2. Here the properties of the golden ratio φ and its conjugate φ̄ are crucial.

Theorem 7.1. Let T = [n, p] be a basis of size k. Suppose a set of symmetric generators G1, G2, . . . , Gs

and recognizers R1, R2, . . . , Rt are simultaneously realizable as Fibonacci gates on T. Then they are also

simultaneously realizable on a basis of size 1.

Proof. For any recognizer Ri, there exists some Fibonacci signature Fi such that Ri = FiT
⊗n.

Ri = (Ai(1, φ)⊗nk + Bi(1, φ̄)⊗nk)T⊗n

= Ai(1, φ)⊗nkT⊗n + Bi(1, φ̄)⊗nkT⊗n

= Ai(〈(1, φ)⊗k, n〉, 〈(1, φ)⊗k, p〉)⊗n + Bi(〈(1, φ̄)⊗k, n〉, 〈(1, φ̄)⊗k, p〉)⊗n,

where we denote 〈·, ·〉 for inner product (or the tensor contraction function between a dual pair).

Let � = (1, φ)⊗k , �̄ = (1, φ̄)⊗k be row vectors, and Ri = [x(i)
1 , x

(i)
2 , . . . , x

(i)
ni ]. Then x

(i)
h =

Ai〈�, n〉ni−h〈�, p〉h + Bi〈�̄, n〉ni−h〈�̄, p〉h. Choose a = 〈�, p〉〈�̄, p〉 = pT�T�̄p, b = −〈�, p〉
〈�̄, n〉 − 〈�, n〉〈�̄, p〉 = −pT�T�̄n − nT�T�̄p, and c = 〈�, n〉〈�̄, n〉 = nT�T�̄n, we can verify

that ax
(i)
k + bx

(i)
k+1 + cx

(i)
k+2 = 0 are satisfied for all recognizers.

For the generators, we have FTj = T⊗mjGj . If mj = 1, then Gj is of arity 1 and it is realizable on

any size 1 basis. Now we consider the case mj = 2. Then Gj is of arity 2 and we can assume that

Gj = (g0, g1, g1, g2)
T. Then we have

FTj = (T ⊗ T)Gj = g0n ⊗ n + g1(n ⊗ p + p ⊗ n) + g2p ⊗ p.

Assume FTj = A′
j

⎡
⎣1

φ

⎤
⎦

⊗2k

+ B′
j

⎡
⎣1

φ̄

⎤
⎦

⊗2k

, we have for any x, y ∈ {0, 1}k ,

g0nxny + g1(nxpy + pxny) + g2pxpy = A′
jφ

wt(x)+wt(y) + B′
jφ̄

wt(x)+wt(y). (4)

By the sufficiency condition of Theorem4.2,weonly need to prove cg0−bg1+ag2 = 0. Substituting

a, b and c in the above equation, we have the following:

cg0 − bg1 + ag2

= ∑

x,y∈{0,1}k

[
g0nxnyφ

wt(x)φ̄wt(y) + g1(pxnyφ
wt(x)φ̄wt(y) + nxpyφ

wt(x)φ̄wt(y))

+ g2pxpyφ
wt(x)φ̄wt(y)

]

= ∑

x,y∈{0,1}k
φwt(x)φ̄wt(y)(g0nxny + g1(nxpy + pxny) + g2pxpy)

= ∑

x,y∈{0,1}k
φwt(x)φ̄wt(y)

(
A′
jφ

wt(x)+wt(y) + B′
jφ̄

wt(x)+wt(y)
)

= A′
j

∑

x,y∈{0,1}k
φ2wt(x)(−1)wt(y) + B′

j

∑

x,y∈{0,1}k
(−1)wt(x)φ̄2wt(y)

= A′
j

∑

x∈{0,1}k
φ2wt(x)

∑

y∈{0,1}k
(−1)wt(y) + B′

j

∑

x∈{0,1}k
(−1)wt(x)

∑

y∈{0,1}k
φ̄2wt(y) = 0,

proving the theorem for mj = 2. Here we used the crucial relation φφ̄ = −1.
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Now we can assume that mj � 3. Again we have FTj = T⊗mjGj . Since rank(T) = 2, we can find

some T̃ =
⎡
⎣ñ

p̃

⎤
⎦, where ñ and p̃ are 2k dimensional row vectors, such that T̃T = I. So Gj = T̃⊗mjFTj .

Gj = T̃⊗mjFTj =
⎡
⎣ñ

p̃

⎤
⎦

⊗mj
⎛
⎜⎝A′

j

⎡
⎣1

φ

⎤
⎦

⊗mjk

+ B′
j

⎡
⎣1

φ̄

⎤
⎦

⊗mjk
⎞
⎟⎠ = A′

j

⎡
⎣ñ�T

p̃�T

⎤
⎦

⊗mj

+ B′
j

⎡
⎣ñ�̄T

p̃�̄T

⎤
⎦

⊗mj

.

Denoting α = ñ�T, β = p̃�T, γ = ñ�̄T and δ = p̃�̄T, we have Gj = A′
j

⎡
⎣α

β

⎤
⎦

⊗mj

+ B′
j

⎡
⎣γ

δ

⎤
⎦

⊗mj

.

Here if A′
j = 0 or B′

j = 0, then Gj can be decomposed into an arity 1 tensor and is realizable on any

size 1 basis. So we can assume that A′
jB

′
j �= 0.

Substituting this back to FTj = T⊗mjGj , we have

A′
j

⎡
⎣1

φ

⎤
⎦

⊗mjk

+ B′
j

⎡
⎣1

φ̄

⎤
⎦

⊗mjk

= A′
j(αn + βp)⊗mj + B′

j(γn + δp)⊗mj .

From Lemma 9.1, we know that αn + βp = ω1�
T, γn + δp = ω2�̄

T, where ω1 and ω2 are

roots of unity ω
mj

1 = ω
mj

2 = 1, or αn + βp = ω′
1�̄

T, γn + δp = ω′
2�

T, where (ω′
1)

mj = B′
j

A′
j

and

(ω′
2)

mj = A′
j

B′
j

.

In the following proof we will assume the first case, the second case is similar. Write Gj =
[y(j)

1 , y
(j)
2 , . . . , y

(j)
mj ], we have y

(j)
h = A′

jα
mj−hβh + B′

jγ
mj−hδh. Now we verify that cy

(j)
h − by

(j)
h+1 +

ay
(j)
h+2 = 0. By the definition of a, b and c,

cy
(j)
h − by

(j)
h+1 + ay

(j)
h+2 = nT�T�̄ny

(j)
h + (pT�T�̄n + nT�T�̄p)y

(j)
h+1 + pT�T�̄py

(j)
h+2.

We substitute y
(j)
h . Here we only do the calculation on the A′

j part here. The B′
j part is similar.

The coefficient of A′
j

= nT�T�̄nαmj−hβh + (pT�T�̄n + nT�T�̄p)αmj−h−1βh+1 + pT�T�̄pαmj−h−2βh+2

= nT�T�̄nαmj−hβh + nT�T�̄pαmj−h−1βh+1 + pT�T�̄nαmj−h−1βh+1

+ pT�T�̄pαmj−h−2βh+2

= αmj−h−1βhnT�T�̄(αn + βp) + αmj−h−2βh+1pT�T�̄(αn + βp)

= αmj−h−1βhω1n
T�T�̄�T + αmj−h−2βh+1ω1p

T�T�̄�T = 0.

The last equation uses the fact that �̄�T = [〈(1, φ̄), (1, φ)〉]⊗k = 0. So by Theorem 4.2, we know

that all the symmetric generators G1, G2, . . . , Gs and recognizers R1, R2, . . . , Rt are simultaneously

realizable as Fibonacci gates on a basis of size 1. This completes the proof. �

8. Some further results and discussions

All results on Fibonacci gates can be extended to generalized Fibonacci gates which also admit

polynomial time algorithms. These are defined as follows: For any fixed parameterm, we consider any

sequence [f0, f1, . . . , fn], where it satisfies the following recurrence, for i = 0, . . . , n − 2,

fi+2 = m · fi+1 + fi.
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One can repeat the proof in Section 3 to show that for all m, the generalized Fibonacci gates with

parameter m define a tractable family of holant problems. If the vertices of a signature grid � are

assigned signatures from this family (with the samem, but all possible initial two values f0 and f1), the

counting problem Holant� can also be computed in polynomial time. Furthermore, based on a set of

generalized Fibonacci gates with parameter m, we can also develop holographic transformations. We

note that the basic Fibonacci gates correspond to takingm = 1.

However, these generalized Fibonacci gates can already be obtained by applying holographic trans-

formations to the basic Fibonacci gates, except in the casesm = ±2i. Therefore they do not constitute

a significant extension of the scope of holographic algorithms based on the basic Fibonacci gates.

However, the form fi+2 = m · fi+1 + fi is very useful in practice.

It can even be proved that this class of generalized Fibonacci gates is precisely those symmetric

function gates which are closed under the compositional closure when we merge signature grids.

It has been pointed to us that there are alternative algorithms for some problems in Section 5. E.g.,

for the first (coloring) problem, one can use the signature [0, i, −1, 0] for each degree 3 vertex, and

then the problem can also be stated as #[1, 0, 1] | [0, i, −1, 0]. Then one applies the generalized

Fibonacci gates with m = i, where fi+2 = mfi+1 + fi. For the third (parity) problem, one can use

generalized Fibonacci gates withm = 0.

For the second problem, in the special case when all weights wi = 1, it is possible to perform the

following diagonal basis transformation
⎡
⎣1 0

0 −1

⎤
⎦ .

Under this basis, the (unweighted) problem #[1, −1, 1] | [0, 1, 1, . . . , 1] is transformed to

#[1, 1, 1]|[0, −1, 1, −1, . . .], which can be solved using generalized Fibonacci gates with m = −1.

(There is also a simpler solution at this point, if one realizes that [1, 1, 1] = (1, 1) ⊗ (1, 1) and the

problemdecouples, and it becomes essentially trivial.) But to our knowledge the problemwithweights

is non-trivial and can not be solved in this alternative fashion.

Our perspective in this paper is to develop a coherent theory based on the basic Fibonacci gates

under holographic reductions. Our viewpoint is that this one singlemethod canbe added to the general

toolkit of algorithm design. One could choose to develop separate algorithms, one problem at a time,

sometimes with clever derivations. But we feel there is an elegance and utility in seeing things in the

uniformway under holographic reductions. There is a value in this approach where the theory gives a

uniform treatment of these problems, even when alternative methods can be found to solve the same

problems individually. We also believe that the usefulness of the theory of holographic algorithms is

validated by the dichotomy theorems we have since obtained [7].
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Appendix

9. Technical lemmas

We quote two lemmas.
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Lemma 9.1. Let a, b, c, d be four vectors and suppose c, d are linearly independent with each other. If for

some n � 3 we have a⊗n + b⊗n = c⊗n + d⊗n. Then a = ω1c and b = ω2d or a = ω1d and b = ω2c

for some ωn
1 = ωn

2 = 1.

This is a special case of more general results; see [11].

Lemma 9.2 (Vadhan). Let A, B, C,D, x0 and y0 be rational numbers. Define the sequences (xi, yi) recur-
sively by xi+1 = Axi + Byi and yi+1 = Cxi + Dyi. Then the sequence {zi = xi/yi} never repeats as long
as all of the following conditions hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AD − BC �= 0

D2 − 2AD + A2 + 4BC �= 0

D + A �= 0

D2 + AD + A2 + BC �= 0

D2 + A2 + 2BC �= 0

D2 − AD + A2 + 3BC �= 0

By20 − Cx20 − (A − D)x0y0 �= 0

.
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