## CS 880: Complexity of Counting Problems Lecture 15: CS 880: Complexity of Counting Problems Instructor: Jin-Yi Cai Scribe: Chen Zeng

Let **C** be the bipartisation of  $\mathbf{F} \in \mathbb{C}^{m \times m}$  where  $\mathbf{C} = \begin{pmatrix} 0 & \mathbf{F} \\ \mathbf{F}^T & 0 \end{pmatrix}$ . Let  $\mathfrak{D} = \{\mathbf{D}^0, \dots, \mathbf{D}^{[N-1]}\}$ be a sequence of  $N \ 2m \times 2m$  diagonal matrices. We use EVALP( $\mathbf{C}, \mathfrak{D}$ ) to denote the following problem: The input is a triple (G, w, i), where G = (V, E) is an undirected graph with  $w \in V$ , and  $i \in [2m]$ ; The output is:

$$Z_{\mathbf{C},\mathfrak{D}}(G,w,i) = \sum_{\xi: V \to [2m], \xi(w)=i} w t_{\mathbf{C},\mathfrak{D}}(\xi)$$
(1)

where

$$wt_{\mathbf{C},\mathfrak{D}}(\xi) = (\prod_{(u,v)\in E} \mathbf{C}_{\xi(u),\xi(v)})(\prod_{v\in V} D_{\xi(v)}^{[deg(v)modN]})$$
(2)

The difference between  $\text{EVALP}(\mathbf{C}, \mathfrak{D})$  and  $\text{EVAL}(\mathbf{C}, \mathfrak{D})$  is that  $\text{EVALP}(\mathbf{C}, \mathfrak{D})$  fixes the value of a vertex w by i. We want to prove  $\text{EVALP}(\mathbf{C}, \mathfrak{D}) \equiv \text{EVAL}(\mathbf{C}, \mathfrak{D})$ . It is easy to see that  $EVAL(\mathbf{C}, \mathfrak{D}) \leq EVALP(\mathbf{C}, \mathfrak{D})$ . Thus, we only need to prove the other direction. First, we define the notion of a *discrete unitary matrix*.

**Definition 1.** Let  $\mathbf{F} \in \mathbb{C}^{m \times m}$  be a matrix. We say  $\mathbf{F}$  is M-discrete unitary for some positive integer M if

- 1. Every entry  $F_{i,j}$  is a root of unity, and  $M = lcm\{$  the order of  $F_{i,j} : i, j \in [m]\}$
- 2.  $F_{1,i} = F_{i,1} = 1$  for all  $i \in [m]$
- 3. For any  $i, j \in [m], i \neq j, \langle \mathbf{F}_{i,*}, \mathbf{F}_{j,*} \rangle = 0$  and  $\langle \mathbf{F}_{*,i}, \mathbf{F}_{*,i} \rangle = 0$

We can prove Lemma 1 by assuming the following *pinning* condition on the pair  $(\mathbf{C}, \mathfrak{D})$ :

- 1. Every entry of **F** is a power of  $w_N$  where  $w_N = e^{2\pi i/N}$  for some positive integer N.
- 2. **F** is a discrete unitary matrix.
- 3.  $\mathbf{D}^{[0]}$  is the  $2m \times 2m$  identity matrix.

**Lemma 1.** If  $(\mathbf{C}, \mathfrak{D})$  satisfies the pinning condition, then  $\mathrm{EVALP}(\mathbf{C}, \mathfrak{D}) \equiv \mathrm{EVAL}(\mathbf{C}, \mathfrak{D})$ .

To prove Lemma 1, we define the following equivalence relation over [2m]:

 $i \sim j$  if for any undirected graph G = (V, E) and  $w \in V, Z_{\mathbf{C}, \mathfrak{D}}(G, w, i) = Z_{\mathbf{C}, \mathfrak{D}}(G, w, j)$ (3)

03/13/2012

Suppose this equivalence relation divides [2m] into s equivalence classes  $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_s$ for some positive integer s. If s = 1, Lemma 1 is trivially true. If  $s \ge 2$ , for any  $t \ne t' \in [s]$ , there exists a  $P_{t,t'} = (G, w)$ , where G is an undirected graph and w is a vertex, such that for any  $j \in \mathcal{A}_t, j' \in \mathcal{A}_{t'}$ 

$$Z_{\mathbf{C},\mathfrak{D}}(G,w,j) \neq Z_{\mathbf{C},\mathfrak{D}}(G,w,j')$$

For any subset  $S \subseteq [s]$ , we define:

$$Z_{\mathbf{C},\mathfrak{D}}(G,w,S) = \sum_{\xi: V \to [2m], \xi(w) \in \cup_{t \in S} A_t} wt_{\mathbf{C},\mathfrak{D}}(\xi)$$

We will prove the following claim:

**Claim 1.** If  $S \subseteq [s]$  and  $|S| \ge 2$ , then there exists a partition  $\{S_1, \ldots, S_k\}$  of S for some k > 1 such that

$$\mathrm{EVAL}(\mathbf{C}, \mathfrak{D}, S_d) \leq \mathrm{EVAL}(\mathbf{C}, \mathfrak{D}, S)$$
 for all  $d \in [k]$ 

*Proof.* Let  $t \neq t'$  be two different integers in S, and  $P_{t,t'} = (G^*, w^*)$  where  $G^* = (V^*, E^*)$ . It defines the following equivalence relation over S: For  $a, b \in S$ ,

$$a \sim^* b$$
 if  $Z_{\mathbf{C},\mathfrak{D}}(G^*, w^*, i) = Z_{\mathbf{C},\mathfrak{D}}(G^*, w^*, j)$  where  $i \in \mathcal{A}_a$  and  $j \in \mathcal{A}_b$ 

This gives us equivalence classes  $\{S_1, \ldots, S_k\}$ , also a partition of S, which is independent of the choice of i (j) as long as  $i \in A_a$  ( $j \in A_b$ ). The reason is that by (3), for any  $i_1, i_2 \in A_a$ ,  $Z_{\mathbf{C},\mathfrak{D}}(G^*, w^*, i_1) = Z_{\mathbf{C},\mathfrak{D}}(G^*, w^*, i_2).$ 

By our definition of  $P_{t,t'}$ , t and t' belong to different classes. Thus,  $k \ge 2$ . For each  $d \in [k]$ , let

$$Y_d = Z_{\mathbf{C},\mathfrak{D}}(G^*, w^*, i), \text{ where } i \in \mathcal{A}_a \text{ and } a \in S_d$$

$$\tag{4}$$

Our definition of  $Y_d$  is independent of both a and i. That is because for any  $a_1, a_2 \in S_d$ , and any  $i_1 \in A_{a_1}$  and  $i_2 \in A_{a_2}$ ,  $Z_{\mathbf{C},\mathfrak{D}}(G^*, w^*, i_1) = Z_{\mathbf{C},\mathfrak{D}}(G^*, w^*, i_2)$ .

Let G be an undirected graph and w be a vertex. For each integer  $p \in [0: k-1]$ , we construct a graph  $G^{[p]} = (V^{[p]}, E^{[p]})$  as follows:  $G^{[p]}$  contains one copy of the undirected graph G and p independent copies of  $G^*$ . For each integer  $i \in [p]$ , we add two vertices  $x_i$  and  $y_i$ , and then we connect edges as shown in Figure 1: one edge between  $(w_{[i]}^*, x_i)$  and  $(y_i, w)$ ; N-1 edges between  $(x_i, w)$  and  $(w_{[i]}^*, y_i)$ . Therefore,  $Z_{\mathcal{C},\mathfrak{D}}(G^{[p]}, w, S)$  is equal to

$$\sum_{\substack{i \in \bigcup_{a \in S} A_a \\ i_1, \dots, i_p \in [2m]}} Z_{\mathcal{C}, \mathfrak{D}}(G^*, w^*, i_j) (\prod_{j=1}^p Z_{\mathcal{C}, \mathfrak{D}}(G^*, w^*, i_j)) \prod_{j=1}^p (\sum_{x \in [2m]} C_{i_j, x} \overline{C_{i, x}} \sum_{y \in [2m]} \overline{C_{i_j, y}} C_{i, y})$$
(5)

By the *pinning* condition, if  $i_j \neq i$ , then



Figure 1: Graph  $G^{[p]}$ 

$$\sum_{x \in [2m]} C_{i_j,x} \overline{C_{i,x}} = \langle \mathbf{F}_{i_j,*}, \mathbf{F}_{i,*} \rangle = 0$$

By our construction of Figure 1,  $\deg(x_i) = \deg(y_i) = N$ , and thus, the changes to the degrees of w and  $w_{[i]}^*$  are all multiples of N. Also by the *pinning* condition,  $\mathbf{D}^{[0]}$  is the identity matrix, and thus, there are no new vertex weight contributions from  $\mathfrak{D}$ . Therefore,

$$Z_{\mathcal{C},\mathfrak{D}}(G^{|p|},w,S) = m^{2p} \sum_{i \in \cup_{a \in S} A_a} Z_{\mathcal{C},\mathfrak{D}}(G,w,i) (Z_{\mathcal{C},\mathfrak{D}}(G^*,w^*,i))^p = m^{2p} \sum_{d \in [k]} (Y_d)^p Z_{\mathcal{C},\mathfrak{D}}(G,w,S_d)$$

By our definition of  $Y_d$  in (4),  $Y_d \neq Y'_d$  unless d = d', and thus, this is a Vandermonde system with row indexed by p and column indexed by d. Because both k and the size of the graph  $G^*$  are constants that are independent of G, this claim then follows.

Then, the proof of Lemma 1 is similar to the first pinning lemma in the last lecture, and we omit the details here.

Next, we turn to the following problem: assume **A** is connected and bipartite, obtain the conditions on **A** such that  $Z_{\mathbf{A}}$  is not #P-hard. Our roadmap to solve that problem consists of the following steps: first, we define a *purification* of a matrix **A**.

**Definition 2.** Let  $\mathbf{A} \in \mathbb{C}^{m \times m}$  be a symmetric, connected and bipartite matrix.  $\mathbf{A}$  is called a purified bipartite matrix if there exists positive rational numbers  $\mu_1, \ldots, \mu_m$ , and an integer  $1 \leq k < m$  such that

$$\mathbf{A} = \begin{pmatrix} 0 & \mathbf{B} \\ \mathbf{B}^T & 0 \end{pmatrix}$$

where **B** is  $k \times (m - k)$ , and of the following form:

$$\mathbf{B} = \begin{pmatrix} \mu_1 & & \\ & \mu_2 & \\ & & \ddots & \\ & & & \mu_k \end{pmatrix} \begin{pmatrix} \zeta_{1,1} & \zeta_{1,2} & \cdots & \zeta_{1,m-k} \\ \zeta_{2,1} & \zeta_{2,2} & \cdots & \zeta_{2,m-k} \\ \vdots & \vdots & \ddots & \vdots \\ \zeta_{k,1} & \zeta_{k,2} & \cdots & \zeta_{k,m-k} \end{pmatrix} \begin{pmatrix} \mu_{k+1} & & \\ & \mu_{k+2} & \\ & & \ddots & \\ & & & \mu_m \end{pmatrix}$$

where every  $\zeta_{i,j}$  is a root of unity.

If A is a purified, bipartite and connected matrix, we can prove the following theorem:

**Theorem 1.** If  $EVAL(\mathbf{A})$  is not #P-hard, then there exists an  $m \times m$  purified bipartite matrix  $\mathbf{A}'$  such that  $EVAL(\mathbf{A}) \equiv EVAL(\mathbf{A}')$ .

Now let  $\mathbf{A} \in \mathbb{C}^{m \times m}$  be a purified bipartite matrix. We will prove that  $\mathrm{EVAL}(\mathbf{A})$  is either #P-hard or can be reduced to  $\mathrm{EVAL}(\mathbf{C}, \mathfrak{D})$  in polynomial time for some  $\mathbf{C}$  and  $\mathfrak{D}$ , and the matrix  $\mathbf{C}$  is the bipartisation of a *discrete unitary matrix*. Then we can prove the following theorem.

**Theorem 2.** Let  $\mathbf{A} \in \mathbb{C}^{m \times m}$  be a purified bipartite matrix. Then either

- 1.  $EVAL(\mathbf{A})$  is tractable or
- 2.  $EVAL(\mathbf{A})$  is #P-hard or
- 3. There exists a triple  $(\mathcal{C}, \mathfrak{D}, (M, N))$  satisfying the following conditions:
- *M* and *N* are positive integers that satisfy 2|N and M|N, and  $\mathfrak{D}$  is a sequence of *N*  $2n \times 2n$  diagonal matrices over  $\mathbb{C}$ , and  $\mathbf{C} \in \mathbb{C}^{2n \times 2n}$  for some  $n \ge 1$ .
- $\mathbf{C} = \begin{pmatrix} 0 & \mathbf{F} \\ \mathbf{F}^T & 0 \end{pmatrix}$  where  $\mathbf{F} \in \mathbb{C}^{n \times n}$  is *M*-discrete unitary.
- $\mathbf{D}^0 = I$ . For all  $r \in [N-1]$ , if there exists an integer  $i \in [n]([n+1:2n])$  such that  $\mathbf{D}_i^{[r]} \neq 0$ , then there exists another integer  $i' \in [n]([n+1:2n])$  such that  $\mathbf{D}_{i'}^{[r]} = 1$ .
- For all  $r \in [N-1]$  and all  $i \in [2n]$ ,  $\mathbf{D}_i^{[r]} \in \mathbb{Q}(w_N)$  and  $|\mathbf{D}_i^{|r|}| \in \{0,1\}$ .

So far, we have shown the original problem  $EVAL(\mathbf{A})$  is either tractable; or #P-hard; or polynomial-time equivalence to a new problem  $EVAL(\mathbf{C}, \mathfrak{D})$ .

**Theorem 3.** Suppose  $((M, N), \mathbf{C}, \mathfrak{D})$  satisfies  $(\mu_1) - (\mu_4)$  and the integer M > 1, then either the problem  $EVAL(\mathbf{C}, \mathfrak{D})$  is #P-hard or every entry of  $\mathbf{D}^{[r]}$  is either 0 or a power of  $\omega_n$ 

The next theorem shall explores the structures in  $\mathbf{F}$  as well as the diagonal matrices in  $\mathfrak{D}$ . Before that, we defines the notion of a *Fourier decomposition*.

**Definition 3.** Let q > 1 be a prime power, and  $k \ge 1$  be an integer such that gcd(k,q) = 1. We call the following  $q \times q$  matrix  $\mathcal{F}_{q,k}$  a (q,k)-Fourier matrix where the  $(x,y)^{th}$  entry is:

$$w_q^{kxy} = e^{2\pi i (kxy/q)}$$

Then we will prove Theorem 5.4 on page 24. That concludes the roadmap of our proof. Next, to prove Theorem 1, we first define a class of counting problems: **Definition 4.** Let  $\mathbf{A} \in \mathbb{C}^{m \times m}$  be a fixed symmetric matrix with algebraic entries, then the input of the problem  $\operatorname{COUNT}(\mathbf{A})$  is a pair (G, x) where G = (V, E) is an undirected graph, and x is a complex number. The output is:

$$\#_{\mathbf{A}}(G, x) = |\{assignment \, \xi : V \to [m] | wt_{\mathbf{A}}(\xi) = x\}|$$

Suppose **A** is a symmetric matrix with algebraic entries, we will show that  $EVAL(\mathbf{A}) \equiv COUNT(\mathbf{A})$ .

*Proof.* Let G = (V, E) and n = |E|, and

$$X = \{\prod_{i,j \in [m]} A_{i,j}^{k_{i,j}} | k_{i,j} \in \mathbb{N} \text{ and } \sum_{i,j \in [m]} k_{i,j} = n\}$$

By combinatorics,  $|X| = \binom{n+m^2-1}{m^2-1}$ . By our assumption that *m* is a constant, |X| is thus in polynomial in *n*. Recall the definition of  $wt_{\mathbf{A}}(\xi)$  where:

$$wt_{\mathbf{A}}(\xi) = \prod_{(u,v)\in E} A_{\xi(u),\xi(v)}$$

Therefore, for any  $x \notin X$ ,  $\#_{\mathbf{A}}(G, x) = 0$ , and thus,

$$Z_{\mathbf{A}}(G) = \sum_{x \in X} x \cdot \#_{\mathbf{A}}(G, x)$$

Therefore, EVAL( $\mathbf{A}$ )  $\leq$  COUNT( $\mathbf{A}$ ). For the other direction, we construct a graph by thickening: for any  $p \in [|X|]$ , a new undirected graph  $G^{[p]}$  is generated from G by replacing every edge (u, v) of G with p parallel edges between u and v. Then for any assignment  $\xi$ , if its weight over G is x, then its weight over  $G^{[p]}$  must be  $x^p$ . Hence, for every  $p \in [|X|]$ , and any undirected graph,

$$Z_{\mathbf{A}}(G^{|p|}) = \sum_{x \in X} x^p \cdot \#_{\mathbf{A}}(G, x)$$

which constitutes a Vandermonde system. By querying EVAL(A) for the graph  $G^{[p]}$ , we can solve it and get  $\#_{\mathbf{A}}(G, x)$  for every non-zero  $x \in X$ . For x = 0, we observe that:

$$\sum_{x \in X} \#_{\mathbf{A}}(G, x) = m^{|V|}$$

Since |X| is in polynomial in n, this gives a polynomial-time reduction, COUNT(A)  $\leq$  EVAL(A).