## CS 880: Complexity of Counting Problems <br> Lecture 15: CS 880: Complexity of Counting Problems <br> Instructor: Jin-Yi Cai <br> Scribe: Chen Zeng

Let $\mathbf{C}$ be the bipartisation of $\mathbf{F} \in \mathbb{C}^{m \times m}$ where $\mathbf{C}=\left(\begin{array}{c}0 \\ \mathbf{F}^{T} \\ 0\end{array}\right)$. Let $\mathfrak{D}=\left\{\mathbf{D}^{0}, \ldots, \mathbf{D}^{[N-1]}\right\}$ be a sequence of $N 2 m \times 2 m$ diagonal matrices. We use $\operatorname{EVALP}(\mathbf{C}, \mathfrak{D})$ to denote the following problem: The input is a triple $(G, w, i)$, where $G=(V, E)$ is an undirected graph with $w \in V$, and $i \in[2 m]$; The output is:

$$
\begin{equation*}
Z_{\mathbf{C}, \mathfrak{D}}(G, w, i)=\sum_{\xi: V \rightarrow[2 m], \xi(w)=i} w t_{\mathbf{C}, \mathfrak{D}}(\xi) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
w t_{\mathbf{C}, \mathfrak{D}}(\xi)=\left(\prod_{(u, v) \in E} \mathbf{C}_{\xi(u), \xi(v)}\right)\left(\prod_{v \in V} D_{\xi(v)}^{[\operatorname{deg}(v) \bmod N]}\right) \tag{2}
\end{equation*}
$$

The difference between $\operatorname{EVALP}(\mathbf{C}, \mathfrak{D})$ and $\operatorname{EVAL}(\mathbf{C}, \mathfrak{D})$ is that $\operatorname{EVALP}(\mathbf{C}, \mathfrak{D})$ fixes the value of a vertex $w$ by $i$. We want to prove $\operatorname{EVALP}(\mathbf{C}, \mathfrak{D}) \equiv \operatorname{EVAL}(\mathbf{C}, \mathfrak{D})$. It is easy to see that $\operatorname{EVAL}(\mathbf{C}, \mathfrak{D}) \leq \operatorname{EVALP}(\mathbf{C}, \mathfrak{D})$. Thus, we only need to prove the other direction. First, we define the notion of a discrete unitary matrix.

Definition 1. Let $\mathbf{F} \in \mathbb{C}^{m \times m}$ be a matrix. We say $\mathbf{F}$ is $M$-discrete unitary for some positive integer $M$ if

1. Every entry $F_{i, j}$ is a root of unity, and $M=l c m\left\{\right.$ the order of $\left.F_{i, j}: i, j \in[m]\right\}$
2. $F_{1, i}=F_{i, 1}=1$ for all $i \in[m]$
3. For any $i, j \in[m], i \neq j,\left\langle\mathbf{F}_{i, *}, \mathbf{F}_{j, *}\right\rangle=0$ and $\left\langle\mathbf{F}_{*, i}, \mathbf{F}_{*, j}\right\rangle=0$

We can prove Lemma 1 by assuming the following pinning condition on the pair ( $\mathbf{C}, \mathfrak{D})$ :

1. Every entry of $\mathbf{F}$ is a power of $w_{N}$ where $w_{N}=e^{2 \pi i / N}$ for some positive integer $N$.
2. $\mathbf{F}$ is a discrete unitary matrix.
3. $\mathbf{D}^{[0]}$ is the $2 m \times 2 m$ identity matrix.

Lemma 1. If $(\mathbf{C}, \mathfrak{D})$ satisfies the pinning condition, then $\operatorname{EVALP}(\mathbf{C}, \mathfrak{D}) \equiv \operatorname{EVAL}(\mathbf{C}, \mathfrak{D})$.
To prove Lemma 1, we define the following equivalence relation over $[2 m]$ :
$i \sim j$ if for any undirected graph $G=(V, E)$ and $w \in V, Z_{\mathbf{C}, \mathfrak{D}}(G, w, i)=Z_{\mathbf{C}, \mathfrak{B}}(G, w, j)$

Suppose this equivalence relation divides $[2 m]$ into $s$ equivalence classes $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{s}$ for some positive integer $s$. If $s=1$, Lemma 1 is trivially true. If $s \geq 2$, for any $t \neq t^{\prime} \in[s]$, there exists a $P_{t, t^{\prime}}=(G, w)$, where $G$ is an undirected graph and $w$ is a vertex, such that for any $j \in \mathcal{A}_{t}, j^{\prime} \in \mathcal{A}_{t^{\prime}}$

$$
Z_{\mathbf{C}, \mathfrak{D}}(G, w, j) \neq Z_{\mathbf{C}, \mathfrak{D}}\left(G, w, j^{\prime}\right)
$$

For any subset $S \subseteq[s]$, we define:

$$
Z_{\mathbf{C}, \mathfrak{D}}(G, w, S)=\sum_{\xi: V \rightarrow[2 m], \xi(w) \in \cup_{t \in S} A_{t}} w t_{\mathbf{C}, \mathfrak{D}}(\xi)
$$

We will prove the following claim:
Claim 1. If $S \subseteq[s]$ and $|S| \geq 2$, then there exists a partition $\left\{S_{1}, \ldots, S_{k}\right\}$ of $S$ for some $k>1$ such that

$$
\operatorname{EVAL}\left(\mathbf{C}, \mathfrak{D}, S_{d}\right) \leq \operatorname{EVAL}(\mathbf{C}, \mathfrak{D}, S) \text { for all } d \in[k]
$$

Proof. Let $t \neq t^{\prime}$ be two different integers in $S$, and $P_{t, t^{\prime}}=\left(G^{*}, w^{*}\right)$ where $G^{*}=\left(V^{*}, E^{*}\right)$. It defines the following equivalence relation over $S$ : For $a, b \in S$,

$$
a \sim^{*} b \text { if } Z_{\mathbf{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i\right)=Z_{\mathbf{C}, \mathfrak{D}}\left(G^{*}, w^{*}, j\right) \text { where } i \in \mathcal{A}_{a} \text { and } j \in \mathcal{A}_{b}
$$

This gives us equivalence classes $\left\{S_{1}, \ldots, S_{k}\right\}$, also a partition of $S$, which is independent of the choice of $i(j)$ as long as $i \in A_{a}\left(j \in A_{b}\right)$. The reason is that by (3), for any $i_{1}, i_{2} \in A_{a}$, $Z_{\mathbf{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i_{1}\right)=Z_{\mathbf{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i_{2}\right)$.

By our definition of $P_{t, t^{\prime}}, t$ and $t^{\prime}$ belong to different classes. Thus, $k \geq 2$. For each $d \in[k]$, let

$$
\begin{equation*}
Y_{d}=Z_{\mathbf{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i\right), \text { where } i \in \mathcal{A}_{a} \text { and } a \in S_{d} \tag{4}
\end{equation*}
$$

Our definition of $Y_{d}$ is independent of both $a$ and $i$. That is because for any $a_{1}, a_{2} \in \mathcal{S}_{d}$, and any $i_{1} \in A_{a_{1}}$ and $i_{2} \in A_{a_{2}}, Z_{\mathbf{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i_{1}\right)=Z_{\mathbf{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i_{2}\right)$.

Let $G$ be an undirected graph and $w$ be a vertex. For each integer $p \in[0: k-1]$, we construct a graph $G^{[p]}=\left(V^{[p]}, E^{[p]}\right)$ as follows: $G^{[p]}$ contains one copy of the undirected graph $G$ and $p$ independent copies of $G^{*}$. For each integer $i \in[p]$, we add two vertices $x_{i}$ and $y_{i}$, and then we connect edges as shown in Figure 1: one edge between ( $w_{[i]}^{*}, x_{i}$ ) and ( $\left.y_{i}, w\right)$; $N-1$ edges between $\left(x_{i}, w\right)$ and $\left(w_{[i]}^{*}, y_{i}\right)$. Therefore, $Z_{\mathcal{C}, \mathfrak{D}}\left(G^{|p|}, w, S\right)$ is equal to

$$
\begin{equation*}
\sum_{\substack{i \in \cup_{a \in S} A_{a} \\ i_{1}, \ldots, i_{p} \in[2 m]}} Z_{\mathcal{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i_{j}\right)\left(\prod_{j=1}^{p} Z_{\mathcal{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i_{j}\right)\right) \prod_{j=1}^{p}\left(\sum_{x \in[2 m]} C_{i_{j}, x} \overline{C_{i, x}} \sum_{y \in[2 m]} \overline{C_{i_{j}, y}} C_{i, y}\right) \tag{5}
\end{equation*}
$$

By the pinning condition, if $i_{j} \neq i$, then


Figure 1: Graph $G^{[p]}$

$$
\sum_{x \in[2 m]} C_{i_{j}, x} \overline{C_{i, x}}=\left\langle\mathbf{F}_{i_{j}, *}, \mathbf{F}_{i, *}\right\rangle=0
$$

By our construction of Figure 1, $\operatorname{deg}\left(x_{i}\right)=\operatorname{deg}\left(y_{i}\right)=N$, and thus, the changes to the degrees of $w$ and $w_{[i]}^{*}$ are all multiples of $N$. Also by the pinning condition, $\mathbf{D}^{[0]}$ is the identity matrix, and thus, there are no new vertex weight contributions from $\mathfrak{D}$. Therefore,

$$
Z_{\mathcal{C}, \mathfrak{D}}\left(G^{|p|}, w, S\right)=m^{2 p} \sum_{i \in \cup_{a \in S} A_{a}} Z_{\mathcal{C}, \mathfrak{D}}(G, w, i)\left(Z_{\mathcal{C}, \mathfrak{D}}\left(G^{*}, w^{*}, i\right)\right)^{p}=m^{2 p} \sum_{d \in[k]}\left(Y_{d}\right)^{p} Z_{\mathcal{C}, \mathfrak{D}}\left(G, w, S_{d}\right)
$$

By our definition of $Y_{d}$ in (4), $Y_{d} \neq Y_{d}^{\prime}$ unless $d=d^{\prime}$, and thus, this is a Vandermonde system with row indexed by $p$ and column indexed by $d$. Because both $k$ and the size of the graph $G^{*}$ are constants that are independent of $G$, this claim then follows.

Then, the proof of Lemma 1 is similar to the first pinning lemma in the last lecture, and we omit the details here.

Next, we turn to the following problem: assume $\mathbf{A}$ is connected and bipartite, obtain the conditions on $\mathbf{A}$ such that $Z_{\mathbf{A}}$ is not \#P-hard. Our roadmap to solve that problem consists of the following steps: first, we define a purification of a matrix $\mathbf{A}$.

Definition 2. Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a symmetric, connected and bipartite matrix. A is called a purified bipartite matrix if there exists positive rational numbers $\mu_{1}, \ldots, \mu_{m}$, and an integer $1 \leq k<m$ such that

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & \mathbf{B} \\
\mathbf{B}^{T} & 0
\end{array}\right)
$$

where $\mathbf{B}$ is $k \times(m-k)$, and of the following form:

$$
\mathbf{B}=\left(\begin{array}{cccc}
\mu_{1} & & & \\
& \mu_{2} & & \\
& & \ddots & \\
& & & \mu_{k}
\end{array}\right)\left(\begin{array}{cccc}
\zeta_{1,1} & \zeta_{1,2} & \cdots & \zeta_{1, m-k} \\
\zeta_{2,1} & \zeta_{2,2} & \cdots & \zeta_{2, m-k} \\
\vdots & \vdots & \ddots & \vdots \\
\zeta_{k, 1} & \zeta_{k, 2} & \cdots & \zeta_{k, m-k}
\end{array}\right)\left(\begin{array}{cccc}
\mu_{k+1} & & & \\
& \mu_{k+2} & & \\
& & \ddots & \\
& & & \mu_{m}
\end{array}\right)
$$

where every $\zeta_{i, j}$ is a root of unity.
If $\mathbf{A}$ is a purified, bipartite and connected matrix, we can prove the following theorem:
Theorem 1. If $E V A L(\mathbf{A})$ is not $\# P$-hard, then there exists an $m \times m$ purified bipartite matrix $\mathbf{A}^{\prime}$ such that $E V A L(\mathbf{A}) \equiv E V A L\left(\mathbf{A}^{\prime}\right)$.

Now let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a purified bipartite matrix. We will prove that $\operatorname{EVAL}(\mathbf{A})$ is either \#P-hard or can be reduced to $\operatorname{EVAL}(\mathbf{C}, \mathfrak{D})$ in polynomial time for some $\mathbf{C}$ and $\mathfrak{D}$, and the matrix $\mathbf{C}$ is the bipartisation of a discrete unitary matrix. Then we can prove the following theorem.

Theorem 2. Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a purified bipartite matrix. Then either

1. $\operatorname{EVAL}(\mathbf{A})$ is tractable or
2. $\operatorname{EVAL}(\mathbf{A})$ is \#P-hard or
3. There exists a triple $(\mathcal{C}, \mathfrak{D},(M, N))$ satisfying the following conditions:

- $M$ and $N$ are positive integers that satisfy $2 \mid N$ and $M \mid N$, and $\mathfrak{D}$ is a sequence of $N$ $2 n \times 2 n$ diagonal matrices over $\mathbb{C}$, and $\mathbf{C} \in \mathbb{C}^{2 n \times 2 n}$ for some $n \geq 1$.
- $\mathbf{C}=\left(\begin{array}{rr}0 & \mathbf{F} \\ \mathbf{F}^{T} & 0\end{array}\right)$ where $\mathbf{F} \in \mathbb{C}^{n \times n}$ is $M$-discrete unitary.
- $\mathbf{D}^{0}=I$. For all $r \in[N-1]$, if there exists an integer $i \in[n]([n+1: 2 n])$ such that $\mathbf{D}_{i}^{[r]} \neq 0$, then there exists another integer $i^{\prime} \in[n]([n+1: 2 n])$ such that $\mathbf{D}_{i^{\prime}}^{[r]}=1$.
- For all $r \in[N-1]$ and all $i \in[2 n], \mathbf{D}_{i}^{[r]} \in \mathbb{Q}\left(w_{N}\right)$ and $\left|\mathbf{D}_{i}^{|r|}\right| \in\{0,1\}$.

So far, we have shown the original problem $\operatorname{EVAL}(\mathbf{A})$ is either tractable; or \#P-hard; or polynomial-time equivalence to a new problem $\operatorname{EVAL}(\mathbf{C}, \mathfrak{D})$.

Theorem 3. Suppose $((M, N), \mathbf{C}, \mathfrak{D})$ satisfies $\left(\mu_{1}\right)-\left(\mu_{4}\right)$ and the integer $M>1$, then either the problem $E V A L(\mathbf{C}, \mathfrak{D})$ is \#P-hard or every entry of $\mathbf{D}^{[r]}$ is either 0 or a power of $\omega_{n}$

The next theorem shall explores the structures in $\mathbf{F}$ as well as the diagonal matrices in $\mathfrak{D}$. Before that, we defines the notion of a Fourier decomposition.

Definition 3. Let $q>1$ be a prime power, and $k \geq 1$ be an integer such that $\operatorname{gcd}(k, q)=1$. We call the following $q \times q$ matrix $\mathcal{F}_{q, k} a(q, k)$-Fourier matrix where the $(x, y)^{\text {th }}$ entry is:

$$
w_{q}^{k x y}=e^{2 \pi i(k x y / q)}
$$

Then we will prove Theorem 5.4 on page 24. That concludes the roadmap of our proof. Next, to prove Theorem 1, we first define a class of counting problems:

Definition 4. Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a fixed symmetric matrix with algebraic entries, then the input of the problem COUNT(A) is a pair $(G, x)$ where $G=(V, E)$ is an undirected graph, and $x$ is a complex number. The output is:

$$
\#_{\mathbf{A}}(G, x)=\mid\left\{\text { assignment } \xi: V \rightarrow[m] \mid w t_{\mathbf{A}}(\xi)=x\right\} \mid
$$

Suppose $\mathbf{A}$ is a symmetric matrix with algebraic entries, we will show that $\operatorname{EVAL}(\mathbf{A}) \equiv$ COUNT(A).

Proof. Let $G=(V, E)$ and $n=|E|$, and

$$
X=\left\{\prod_{i, j \in[m]} A_{i, j}^{k_{i, j}} \mid k_{i, j} \in \mathbb{N} \text { and } \sum_{i, j \in[m]} k_{i, j}=n\right\}
$$

By combinatorics, $|X|=\binom{n+m^{2}-1}{m^{2}-1}$. By our assumption that $m$ is a constant, $|X|$ is thus in polynomial in $n$. Recall the definition of $w t_{\mathbf{A}}(\xi)$ where:

$$
w t_{\mathbf{A}}(\xi)=\prod_{(u, v) \in E} A_{\xi(u), \xi(v)}
$$

Therefore, for any $x \notin X, \#_{\mathbf{A}}(G, x)=0$, and thus,

$$
Z_{\mathbf{A}}(G)=\sum_{x \in X} x \cdot \#_{\mathbf{A}}(G, x)
$$

Therefore, $\operatorname{EVAL}(\mathbf{A}) \leq \operatorname{COUNT}(\mathbf{A})$. For the other direction, we construct a graph by thickening: for any $p \in[|X|]$, a new undirected graph $G^{[p]}$ is generated from $G$ by replacing every edge $(u, v)$ of $G$ with $p$ parallel edges between $u$ and $v$. Then for any assignment $\xi$, if its weight over $G$ is $x$, then its weight over $G^{[p]}$ must be $x^{p}$. Hence, for every $p \in[|X|]$, and any undirected graph,

$$
Z_{\mathbf{A}}\left(G^{|p|}\right)=\sum_{x \in X} x^{p} \cdot \#_{\mathbf{A}}(G, x)
$$

which constitutes a Vandermonde system. By querying $\operatorname{EVAL}(\mathbf{A})$ for the graph $G^{[p]}$, we can solve it and get $\#_{\mathbf{A}}(G, x)$ for every non-zero $x \in X$. For $x=0$, we observe that:

$$
\sum_{x \in X} \#_{\mathbf{A}}(G, x)=m^{|V|}
$$

Since $|X|$ is in polynomial in $n$, this gives a polynomial-time reduction, $\operatorname{COUNT}(\mathbf{A}) \leq$ $\operatorname{EVAL}(\mathbf{A})$.

