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Let C be the bipartisation of F € C™*™ where C = (& § ). Let © = {D°,...,DIVN-1}
be a sequence of N 2m x 2m diagonal matrices. We use EVALP(C,®) to denote the following
problem: The input is a triple (G, w, i), where G = (V, E) is an undirected graph with w € V,
and i € [2m]; The output is:

ZC7@(G> w, Z) = Z wtc7@(§) (1)
£V [2m] £ (w)=i
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The difference between EVALP(C,®) and EVAL(C,®) is that EVALP(C, D) fixes the
value of a vertex w by i. We want to prove EVALP(C,®) = EVAL(C,®). It is easy to see
that EVAL(C,®) < EVALP(C,®). Thus, we only need to prove the other direction. First,
we define the notion of a discrete unitary matrix.

Definition 1. Let F € C™*" be a matriz. We say F is M-discrete unitary for some positive
integer M if

1. Every entry F;; is a root of unity, and M = lem{ the order of F;;:1,j € [m]}
2. Fi;=F,, =1 foralliec |m]
3. For anyi,j € [m],i# 7, (Fi.,Fj.) =0 and (F.;,F.;) =0
We can prove Lemma 1 by assuming the following pinning condition on the pair (C,D):
1. Every entry of F is a power of wy where wy = e*™/N for some positive integer N.
2. F is a discrete unitary matrix.
3. D is the 2m x 2m identity matrix.
Lemma 1. If (C,®) satisfies the pinning condition, then EVALP (C,®) = EVAL(C,D).
To prove Lemma 1, we define the following equivalence relation over [2m]:

i ~ j if for any undirected graph G = (V, E) and w € V, Zc o(G,w,i) = Zco(G,w, )
(3)



Suppose this equivalence relation divides [2m] into s equivalence classes A, Ao, ..., A
for some positive integer s. If s = 1, Lemma 1 is trivially true. If s > 2, for any t # t' € [s],
there exists a P,y = (G, w), where G is an undirected graph and w is a vertex, such that for
any J € Ay, j' € Ay

ZC,@(Gv w>]) 7é ZC,@(G> waj/)
For any subset S C [s], we define:

Zeo(G w, S) = Z wic»(§)

&V —[2m],&(w)EUe s At
We will prove the following claim:

Claim 1. If S C [s] and |S| > 2, then there exists a partition {Sy,...,Sk} of S for some
k > 1 such that
EVAL(C,®, S;) < EVAL(C,®,S) for alld € [K]

Proof. Let t # t' be two different integers in S, and P,y = (G*, w*) where G* = (V*, E*). It
defines the following equivalence relation over S: For a,b € S,

a~"bif Zeco(G*,w* i) = Zco(G*,w*, j) where i € A, and j € A,

This gives us equivalence classes {51, ..., Sk}, also a partition of S, which is independent
of the choice of i (j) aslong asi € A,(j € Ab) The reason is that by (3), for any i,y € A,,
ZC,@(G aw y 0 ) ZC,@(G aw )2 )

By our definition of Py, t and t' belong to different classes. Thus, & > 2. For each
d € [k], let

Y= Zco(G*,w", i), whereie A, and a € Sy (4)

Our definition of Y is independent of both a and 7. That is because for any a;, as € Sy,
and any i1 € Aa1 and iy € Aa2> ZC7@(G*,’LU*,Z.1) = ZC7®(G*,’LU*,Z.2).

Let G be an undirected graph and w be a vertex. For each integer p € [0 : k — 1], we
construct a graph Gl = (VIPI EPl) as follows: GP! contains one copy of the undirected
graph G and p independent copies of G*. For each integer i € [p], we add two vertices z; and
yi, and then we connect edges as shown in Figure 1: one edge between (wﬁ-}, x;) and (y;, w);

N — 1 edges between (z;,w) and (wa},yi). Therefore, Ze (G, w, S) is equal to

/4 P
Z ZC,D(G*>QU*aij)(H ZQ@(G*,’LU*,Z']' H Z sz Z ij, y (5)

i€UaesAa Jj=1 =1 z€[2m)] y€E[2m)]

By the pinning condition, if i; # 4, then



N-1 edges

1 edge

Figure 1: Graph G

Z Cij,xm == <Fij,*7 Fz,*) =0
x€[2m]
By our construction of Figure 1, deg(z;) = deg(y;) = N, and thus, the changes to the
degrees of w and wp; are all multiples of N. Also by the pinning condition, D% is the
identity matrix, and thus, there are no new vertex weight contributions from 2. Therefore,

ZC,’D(G|p|7 w, S) = mQ;D Z ZC,”D(Gv w, i)(ZC,”D(G*v ’UJ*, Z))p = m2p (n>pZC,©(G7 w, Sd)

i€UqesAa delk]

By our definition of Y; in (4), Y; # Y, unless d = d’, and thus, this is a Vandermonde
system with row indexed by p and column indexed by d. Because both k and the size of the
graph G* are constants that are independent of GG, this claim then follows. O

Then, the proof of Lemma 1 is similar to the first pinning lemma in the last lecture, and
we omit the details here.

Next, we turn to the following problem: assume A is connected and bipartite, obtain the
conditions on A such that Z, is not #P-hard. Our roadmap to solve that problem consists
of the following steps: first, we define a purification of a matrix A.

Definition 2. Let A € C"™*™ be a symmetric, connected and bipartite matriz. A is called a
purified bipartite matrix if there exists positive rational numbers iy, ..., fiym, and an integer

1 <k < m such that
0 B
A= o)

where B is k x (m — k), and of the following form:

241 Cl,l Cia - Cl,m—k Hk+1
2 C2,1 C2,2 T C2,m—k Hk+2
B= _ , . .
23 Ck,1 Ck,z T Ck,m—k Hm



where every (; j s a root of unity.
If A is a purified, bipartite and connected matrix, we can prove the following theorem:

Theorem 1. If EVAL(A) is not #P-hard, then there exists an m x m purified bipartite
matriz A’ such that EVAL(A) = EVAL(A').

Now let A € C"™*™ be a purified bipartite matrix. We will prove that EVAL(A) is either
#P-hard or can be reduced to EVAL(C,®) in polynomial time for some C and ©, and the
matrix C is the bipartisation of a discrete unitary matriz. Then we can prove the following
theorem.

Theorem 2. Let A € C™*™ be a purified bipartite matriz. Then either
1. EVAL(A) is tractable or
2. EVAL(A) is #P-hard or

3. There exists a triple (C,®, (M, N)) satisfying the following conditions:

e M and N are positive integers that satisfy 2|N and M|N, and ® is a sequence of N
2n x 2n diagonal matrices over C, and C € C*"**" for some n > 1.

C= ( 0 F) where F € C"*" 4s M-discrete unitary.

FT 0
e D’ =1. Forallr € [N — 1], if there exists an integer i € [n]([n + 1 : 2n]) such that
Dy] # 0, then there exists another integer i’ € [n]([n + 1 : 2n]) such that DZW = 1.
o Forallr € [N —1] and all i € [2n], DI € Q(wy) and |D!"| € {0,1}.

So far, we have shown the original problem EVAL(A) is either tractable; or #P-hard; or
polynomial-time equivalence to a new problem EVAL(C, D).

Theorem 3. Suppose ((M, N),C,D) satisfies (1) — (p4) and the integer M > 1, then either
the problem EVAL(C,®) is #P-hard or every entry of D) is either 0 or a power of w,

The next theorem shall explores the structures in F as well as the diagonal matrices in
®. Before that, we defines the notion of a Fourier decomposition.

Definition 3. Let ¢ > 1 be a prime power, and k > 1 be an integer such that ged(k,q) = 1.
We call the following q x q matriz F,}. a (g, k)-Fourier matrix where the (x,y)" entry is:

wquxy — 2milkay/q)

Then we will prove Theorem 5.4 on page 24. That concludes the roadmap of our proof.
Next, to prove Theorem 1, we first define a class of counting problems:



Definition 4. Let A € C™ "™ be a fixed symmetric matriz with algebraic entries, then the
input of the problem COUNT (A ) is a pair (G,z) where G = (V, E) is an undirected graph,
and x 1s a complexr number. The output is:

#a(G,) = [{assignment € : V — [m]uwta(€) = 2}

Suppose A is a symmetric matrix with algebraic entries, we will show that EVAL(A) =
COUNT(A).

Proof. Let G = (V, E) and n = |E|, and

X = {HA lkij € Nand > kij =n}

1,J€E[m i,j€[m]

By combinatorics, |X| = (":1"2"”:1) By our assumption that m is a constant, |X| is thus in

polynomial in n. Recall the definition of wta (§) where:

th H Ag ),£(v)

(u,v)eE

Therefore, for any = ¢ X, #a(G,x) = 0, and thus,

= Zx #A(G7x>

zeX

Therefore, EVAL(A) < COUNT(A). For the other direction, we construct a graph by
thickening: for any p € [|X|], a new undirected graph G/ is generated from G by replacing
every edge (u,v) of G with p parallel edges between u and v. Then for any assignment &, if
its weight over G is x, then its weight over Gl must be x7. Hence, for every p € [|X|], and
any undirected graph,

A(GP) = pr #a(G, 1)
reX

which constitutes a Vandermonde system. By querying EVAL(A) for the graph G, we can
solve it and get #a (G, x) for every non-zero z € X. For z = 0, we observe that:

Z #A(G,SL’) =

Since | X| is in polynomial in n, this gives a polynomial-time reduction, COUNT(A) <
EVAL(A). 0



