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Lecture 15: CS 880: Complexity of Counting Problems

Instructor: Jin-Yi Cai Scribe: Chen Zeng

Let C be the bipartisation of F ∈ Cm×m where C =
(

0 F

FT 0

)

. Let D = {D0, . . . ,D[N−1]}
be a sequence of N 2m×2m diagonal matrices. We use EVALP(C, D) to denote the following
problem: The input is a triple (G, w, i), where G = (V, E) is an undirected graph with w ∈ V ,
and i ∈ [2m]; The output is:

ZC,D(G, w, i) =
∑

ξ:V →[2m],ξ(w)=i

wtC,D(ξ) (1)

where

wtC,D(ξ) = (
∏

(u,v)∈E

Cξ(u),ξ(v))(
∏

v∈V

D
[deg(v)modN ]
ξ(v) ) (2)

The difference between EVALP(C, D) and EVAL(C, D) is that EVALP(C, D) fixes the
value of a vertex w by i. We want to prove EVALP(C, D) ≡ EVAL(C, D). It is easy to see
that EVAL(C, D) ≤ EVALP(C, D). Thus, we only need to prove the other direction. First,
we define the notion of a discrete unitary matrix.

Definition 1. Let F ∈ Cm×m be a matrix. We say F is M-discrete unitary for some positive
integer M if

1. Every entry Fi,j is a root of unity, and M = lcm{ the order of Fi,j : i, j ∈ [m]}

2. F1,i = Fi,1 = 1 for all i ∈ [m]

3. For any i, j ∈ [m], i 6= j, 〈Fi,∗,Fj,∗〉 = 0 and 〈F∗,i,F∗,j〉 = 0

We can prove Lemma 1 by assuming the following pinning condition on the pair (C, D):

1. Every entry of F is a power of wN where wN = e2πi/N for some positive integer N .

2. F is a discrete unitary matrix.

3. D[0] is the 2m × 2m identity matrix.

Lemma 1. If (C, D) satisfies the pinning condition, then EVALP(C, D) ≡ EVAL(C, D).

To prove Lemma 1, we define the following equivalence relation over [2m]:

i ∼ j if for any undirected graph G = (V, E) and w ∈ V , ZC,D(G, w, i) = ZC,D(G, w, j)
(3)
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Suppose this equivalence relation divides [2m] into s equivalence classes A1,A2, . . . ,As

for some positive integer s. If s = 1, Lemma 1 is trivially true. If s ≥ 2, for any t 6= t′ ∈ [s],
there exists a Pt,t′ = (G, w), where G is an undirected graph and w is a vertex, such that for
any j ∈ At, j′ ∈ At′

ZC,D(G, w, j) 6= ZC,D(G, w, j′)

For any subset S ⊆ [s], we define:

ZC,D(G, w, S) =
∑

ξ:V →[2m],ξ(w)∈∪t∈SAt

wtC,D(ξ)

We will prove the following claim:

Claim 1. If S ⊆ [s] and |S| ≥ 2, then there exists a partition {S1, . . . , Sk} of S for some
k > 1 such that

EVAL(C, D, Sd) ≤ EVAL(C, D, S) for all d ∈ [k]

Proof. Let t 6= t′ be two different integers in S, and Pt,t′ = (G∗, w∗) where G∗ = (V ∗, E∗). It
defines the following equivalence relation over S: For a, b ∈ S,

a ∼∗ b if ZC,D(G∗, w∗, i) = ZC,D(G∗, w∗, j) where i ∈ Aa and j ∈ Ab

This gives us equivalence classes {S1, . . . , Sk}, also a partition of S, which is independent
of the choice of i (j) as long as i ∈ Aa(j ∈ Ab). The reason is that by (3), for any i1, i2 ∈ Aa,
ZC,D(G∗, w∗, i1) = ZC,D(G∗, w∗, i2).

By our definition of Pt,t′ , t and t′ belong to different classes. Thus, k ≥ 2. For each
d ∈ [k], let

Yd = ZC,D(G∗, w∗, i), where i ∈ Aa and a ∈ Sd (4)

Our definition of Yd is independent of both a and i. That is because for any a1, a2 ∈ Sd,
and any i1 ∈ Aa1

and i2 ∈ Aa2
, ZC,D(G∗, w∗, i1) = ZC,D(G∗, w∗, i2).

Let G be an undirected graph and w be a vertex. For each integer p ∈ [0 : k − 1], we
construct a graph G[p] = (V [p], E[p]) as follows: G[p] contains one copy of the undirected
graph G and p independent copies of G∗. For each integer i ∈ [p], we add two vertices xi and
yi, and then we connect edges as shown in Figure 1: one edge between (w∗

[i], xi) and (yi, w);

N − 1 edges between (xi, w) and (w∗
[i], yi). Therefore, ZC,D(G|p|, w, S) is equal to

∑

i∈∪a∈SAa

i1,...,ip∈[2m]

ZC,D(G∗, w∗, ij)(

p
∏

j=1

ZC,D(G∗, w∗, ij))

p
∏

j=1

(
∑

x∈[2m]

Cij ,xCi,x

∑

y∈[2m]

Cij ,yCi,y) (5)

By the pinning condition, if ij 6= i, then
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Figure 1: Graph G[p]

∑

x∈[2m]

Cij ,xCi,x = 〈Fij ,∗,Fi,∗〉 = 0

By our construction of Figure 1, deg(xi) = deg(yi) = N , and thus, the changes to the
degrees of w and w∗

[i] are all multiples of N . Also by the pinning condition, D[0] is the
identity matrix, and thus, there are no new vertex weight contributions from D. Therefore,

ZC,D(G|p|, w, S) = m2p
∑

i∈∪a∈SAa

ZC,D(G, w, i)(ZC,D(G∗, w∗, i))p = m2p
∑

d∈[k]

(Yd)
pZC,D(G, w, Sd)

By our definition of Yd in (4), Yd 6= Y ′
d unless d = d′, and thus, this is a Vandermonde

system with row indexed by p and column indexed by d. Because both k and the size of the
graph G∗ are constants that are independent of G, this claim then follows.

Then, the proof of Lemma 1 is similar to the first pinning lemma in the last lecture, and
we omit the details here.

Next, we turn to the following problem: assume A is connected and bipartite, obtain the
conditions on A such that ZA is not #P-hard. Our roadmap to solve that problem consists
of the following steps: first, we define a purification of a matrix A.

Definition 2. Let A ∈ Cm×m be a symmetric, connected and bipartite matrix. A is called a
purified bipartite matrix if there exists positive rational numbers µ1, . . . , µm, and an integer
1 ≤ k < m such that

A =

(

0 B

BT 0

)

where B is k × (m − k), and of the following form:

B =











µ1

µ2

. . .

µk





















ζ1,1 ζ1,2 · · · ζ1,m−k

ζ2,1 ζ2,2 · · · ζ2,m−k
...

...
. . .

...
ζk,1 ζk,2 · · · ζk,m−k





















µk+1

µk+2

. . .

µm










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where every ζi,j is a root of unity.

If A is a purified, bipartite and connected matrix, we can prove the following theorem:

Theorem 1. If EVAL(A) is not #P-hard, then there exists an m × m purified bipartite
matrix A′ such that EVAL(A) ≡ EVAL(A′).

Now let A ∈ Cm×m be a purified bipartite matrix. We will prove that EVAL(A) is either
#P-hard or can be reduced to EVAL(C, D) in polynomial time for some C and D, and the
matrix C is the bipartisation of a discrete unitary matrix. Then we can prove the following
theorem.

Theorem 2. Let A ∈ Cm×m be a purified bipartite matrix. Then either

1. EVAL(A) is tractable or

2. EVAL(A) is #P-hard or

3. There exists a triple (C, D, (M, N)) satisfying the following conditions:

• M and N are positive integers that satisfy 2|N and M |N , and D is a sequence of N
2n × 2n diagonal matrices over C, and C ∈ C2n×2n for some n ≥ 1.

• C =
(

0 F

F
T 0

)

where F ∈ Cn×n is M-discrete unitary.

• D0 = I. For all r ∈ [N − 1], if there exists an integer i ∈ [n]([n + 1 : 2n]) such that

D
[r]
i 6= 0, then there exists another integer i′ ∈ [n]([n + 1 : 2n]) such that D

[r]
i′ = 1.

• For all r ∈ [N − 1] and all i ∈ [2n], D
[r]
i ∈ Q(wN ) and |D

|r|
i | ∈ {0, 1}.

So far, we have shown the original problem EVAL(A) is either tractable; or #P-hard; or
polynomial-time equivalence to a new problem EVAL(C, D).

Theorem 3. Suppose ((M, N),C, D) satisfies (µ1)−(µ4) and the integer M > 1, then either
the problem EVAL(C, D) is #P-hard or every entry of D[r] is either 0 or a power of ωn

The next theorem shall explores the structures in F as well as the diagonal matrices in
D. Before that, we defines the notion of a Fourier decomposition.

Definition 3. Let q > 1 be a prime power, and k ≥ 1 be an integer such that gcd(k, q) = 1.
We call the following q × q matrix Fq,k a (q, k)-Fourier matrix where the (x, y)th entry is:

wkxy
q = e2πi(kxy/q)

Then we will prove Theorem 5.4 on page 24. That concludes the roadmap of our proof.
Next, to prove Theorem 1, we first define a class of counting problems:
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Definition 4. Let A ∈ Cm×m be a fixed symmetric matrix with algebraic entries, then the
input of the problem COUNT(A) is a pair (G, x) where G = (V, E) is an undirected graph,
and x is a complex number. The output is:

#A(G, x) = |{assignment ξ : V → [m]|wtA(ξ) = x}|

Suppose A is a symmetric matrix with algebraic entries, we will show that EVAL(A) ≡
COUNT(A).

Proof. Let G = (V, E) and n = |E|, and

X = {
∏

i,j∈[m]

A
ki,j

i,j |ki,j ∈ N and
∑

i,j∈[m]

ki,j = n}

By combinatorics, |X| =
(

n+m2−1
m2−1

)

. By our assumption that m is a constant, |X| is thus in
polynomial in n. Recall the definition of wtA(ξ) where:

wtA(ξ) =
∏

(u,v)∈E

Aξ(u),ξ(v)

Therefore, for any x /∈ X, #A(G, x) = 0, and thus,

ZA(G) =
∑

x∈X

x · #A(G, x)

Therefore, EVAL(A) ≤ COUNT(A). For the other direction, we construct a graph by
thickening: for any p ∈ [|X|], a new undirected graph G[p] is generated from G by replacing
every edge (u, v) of G with p parallel edges between u and v. Then for any assignment ξ, if
its weight over G is x, then its weight over G[p] must be xp. Hence, for every p ∈ [|X|], and
any undirected graph,

ZA(G|p|) =
∑

x∈X

xp · #A(G, x)

which constitutes a Vandermonde system. By querying EVAL(A) for the graph G[p], we can
solve it and get #A(G, x) for every non-zero x ∈ X. For x = 0, we observe that:

∑

x∈X

#A(G, x) = m|V |

Since |X| is in polynomial in n, this gives a polynomial-time reduction, COUNT(A) ≤
EVAL(A).

5


