For a symmetric, bipartite matrix $A \in \mathbb{C}^{m \times m}$, we want to prove the following theorem:

Theorem 1. If $\text{EVAL}(A)$ is not $\#P$-hard, then there exists an $m \times m$ purified bipartite matrix A' such that $\text{EVAL}(A) \equiv \text{EVAL}(A')$.

Recall the definition of the purified bipartite matrix:

Definition 1. Let $A \in \mathbb{C}^{m \times m}$ be a symmetric, connected and bipartite matrix. A is called a purified bipartite matrix if there exists positive rational numbers μ_1, \ldots, μ_m, and an integer $1 \leq k < m$ such that

$$A = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$$

where B is $k \times (m - k)$, and of the following form:

$$B = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{pmatrix} \begin{pmatrix} \zeta_{1,1} & \zeta_{1,2} & \cdots & \zeta_{1,m-k} \\ \zeta_{2,1} & \zeta_{2,2} & \cdots & \zeta_{2,m-k} \\ \vdots & \vdots & \ddots & \vdots \\ \zeta_{k,1} & \zeta_{k,2} & \cdots & \zeta_{k,m-k} \end{pmatrix} \begin{pmatrix} \mu_{k+1} \\ \mu_{k+2} \\ \vdots \\ \mu_m \end{pmatrix}$$

where every $\zeta_{i,j}$ is a root of unity.

We shall prove Theorem 1 by constructing the matrix B. First, we need to define the notion of a generating set.

Definition 2. Let $A = \{a_j\}_{j \in [n]}$ be a set of n non-zero algebraic numbers, for some $n \geq 1$. Then we say $\{g_1, \ldots, g_d\}$, for some integer $d \geq 0$, is a generating set of A if

1. Every g_i is a non-zero algebraic number in $\mathbb{Q}(A)$.
2. For all $(k_1, \ldots, k_d) \in \mathbb{Z}^d$ such that $(k_1, \ldots, k_d) \neq 0$, then $g_1^{k_1} \cdots g_d^{k_d}$ is not a root of unity.
3. For every $a \in A$, there exists a unique $(k_1, \ldots, k_d) \in \mathbb{Z}^d$ such that $a/g_1^{k_1} \cdots g_d^{k_d}$ is a root of unity.

We shall utilize the following lemma to construct the matrix B.

Lemma 1. Let A be a set of non-zero algebraic numbers, then it has a generating set.
Let \mathcal{A} denote the set of all non-zero entries $A_{i,j}$ from \mathcal{A}, by Lemma 1, \mathcal{A} has a generating set $\mathcal{G} = \{g_1, \ldots, g_d\}$. By Definition 2, for each $A_{i,j}$ there exists a unique tuple $(k_1, \ldots, k_d) \in \mathbb{Z}^d$ such that $A_{i,j}/g_1^{k_1} \cdots g_d^{k_d}$ is a root of unity, and we shall denote it by $\zeta_{i,j}$. Next, we construct the matrix $B = (B_{i,j})_{m \times m} \in \mathbb{C}^{m \times m}$ as follows: Let $p_1 < \cdots < p_d$ denote the d smallest primes. Then,

$$B_{i,j} = \begin{cases} 0 & \text{if } A_{i,j} = 0 \\ p_1^{k_1} \cdots p_d^{k_d} \cdot \zeta_{i,j} & \text{if } A_{i,j} = g_1^{k_1} \cdots g_d^{k_d} \cdot \zeta_{i,j} \end{cases}$$ (1)

Note that this construction is in 1-to-1 correspondence: $B_{i,j}$ is well-defined by the uniqueness of $(k_1, \ldots, k_d) \in \mathbb{Z}^d$ and conversely by taking the prime factorization of $|B_{i,j}|$, and then recover $A_{i,j}$. We will prove that EV AL(\mathcal{A}) \equiv EV AL(\mathcal{B}). By the last lemma from our last lecture, it suffices to prove COUNT(\mathcal{A}) \equiv COUNT(\mathcal{B}). Recall the problem COUNT(\mathcal{A}) is defined as follows:

Definition 3. Let $\mathcal{A} \in \mathbb{C}^{m \times m}$ be a fixed symmetric matrix with algebraic entries, then the input of the problem COUNT(\mathcal{A}) is a pair (G, x) where $G = (V, E)$ is an undirected graph, and x is a complex number. The output is:

$$\#_\mathcal{A}(G, x) = |\{\text{assignment } \xi : V \rightarrow [m] | \text{wt}_\mathcal{A}(\xi) = x\}|$$

Lemma 2. COUNT(\mathcal{A}) \equiv COUNT(\mathcal{B})

Proof. We will only prove COUNT(\mathcal{A}) \leq COUNT(\mathcal{B}) as the other direction is proved similarly. Let (G, x) be an input of COUNT(\mathcal{A}) where $G = (V, E)$, and $n = |E|$. Let

$$X = \{ \prod_{i,j \in [m]} A_{i,j}^{k_{i,j}} | k_{i,j} \in \mathbb{N} \text{ and } \sum_{i,j \in [m]} k_{i,j} = n \}$$

Recall that X is polynomial in n, and for any $x \notin X$, $\#_\mathcal{A}(G, x) = 0$. For any $x \in X$, we can find a sequence of non-negative integers $\{k_{i,j}^*\}_{i,j \in [m]}$ in polynomial time such that $\sum_{i,j} k_{i,j}^* = n$ and

$$x = \prod_{i,j \in [m]} A_{i,j}^{k_{i,j}^*}$$ (2)

We define y by

$$y = \prod_{i,j \in [m]} B_{i,j}^{k_{i,j}^*}$$ (3)

Thus, $x = 0$ iff $y = 0$, which happens iff when some $k_{i,j}^* > 0$ for some entry $A_{i,j} = 0$. To prove COUNT(\mathcal{A}) \leq COUNT(\mathcal{B}), it suffices to prove the claim $\#_\mathcal{A}(G, x) = \#_\mathcal{B}(G, y)$. To prove that claim, we only need to show that for any assignment $\xi : V \rightarrow [m],

$$\text{wt}_\mathcal{A}(\xi) = x \iff \text{wt}_\mathcal{B}(\xi) = y$$

1In this write-up, \mathbb{N} is the set of non-negative integers.
We shall only prove $\wt_A(\xi) = x \Rightarrow \wt_B(\xi) = y$ as the other direction is proved similarly.

Let $\xi : V \to [m]$ be an assignment, for every $i, j \in [m]$, let $k_{i,j}$ be the number of edges $(u, v) \in E$ such that $(\xi(u), \xi(v)) = (i, j)$ or (j, i), then

$$\wt_A(\xi) = \prod_{i,j \in [m]} A_{i,j}^{k_{i,j}} \quad (4)$$

and

$$\wt_B(\xi) = \prod_{i,j \in [m]} B_{i,j}^{k_{i,j}} \quad (5)$$

For $x = 0$, $\wt_A(\xi) = 0$ iff for some zero entry $A_{i,j} = 0$, $k_{i,j} > 0$. By our construction of B, $A_{i,j} = 0$ iff $B_{i,j} = 0$, and thus, $\wt_B(\xi) = 0$. Next, we assume both $x, y \neq 0$. Let $\mathcal{G} = \{g_1, \ldots, g_d\}$ be the generating set of the set of all non-zero entries in A. By Definition 2, there exists integers $e_{1,(ij)}, \ldots, e_{d,(ij)}$ such that:

$$A_{i,j} = \prod_{\ell=1}^d g_{\ell,(ij)} \cdot \zeta_{i,j} \quad (6)$$

and

$$B_{i,j} = \prod_{\ell=1}^d p_{\ell,(ij)} \cdot \zeta_{i,j} \quad (7)$$

for $A_{i,j} \neq 0$ where $\zeta_{i,j}$ is a root of unity. By (4) and (6),

$$\wt_A(\xi) = x \Rightarrow \prod_{\ell=1}^d g_{\ell}^{\sum_{i,j \in [m]} (k_{i,j} - k_{i,j}^\star) e_{\ell,(ij)}} \text{ is a root of unity}$$

By the second requirement of a generating set in Definition 2, for any $\ell \in [d]$

$$\sum_{i,j} (k_{i,j} - k_{i,j}^\star) e_{\ell,(ij)} = 0$$

which implies that

$$\prod_{i,j} (\zeta_{i,j})^{k_{i,j}} = \prod_{i,j} (\zeta_{i,j})^{k_{i,j}^\star}$$

By (3), (5) and (7), it follows that $\wt_B(\xi) = y$. \qed

Next, we construct the matrix B' by $B'_{i,j} = |B_{i,j}|$, and we will show:

Lemma 3. $\text{EVAL}(B') \leq \text{EVAL}(B)$

Proof. It suffices to show $\text{COUNT}(B') \leq \text{COUNT}(B)$. Let

$$Y = \{ \prod_{i,j \in [m]} B_{i,j}^{k_{i,j}} | k_{i,j} \in \mathbb{N} \text{ and } \sum_{i,j \in [m]} k_{i,j} = n \}$$
\[Y_x = \{ y | y \in Y \text{ and } |y| = x \}. \] Thus,
\[\#B'(G, x) = \sum_{y \in Y_x} \#B(G, y) \]
the lemma then follows.

Next, we will prove Theorem 1.

\textit{Proof}. As both \(B \) and \(B' \) are connected and bipartite, there is always a permutation \(\prod \) of \([m]\) such that \(B_{\prod,\prod} \) is the bipartisation of a \(k \times (m - k) \) matrix \(F \) for some \(k \in [m] \):
\[B_{\prod,\prod} = \left(\begin{smallmatrix} F & 0 \\ 0 & F' \end{smallmatrix} \right) \] and \(B'_{\prod,\prod} \) is the bipartisation of \(F' \) where \(F'_{i,j} = |F_{i,j}| \). Since permuting \(B \) does not affect the complexity of \(\text{EVAL}(B) \), then
\[\text{EVAL}(B'_{\prod,\prod}) \leq \text{EVAL}(B_{\prod,\prod}) \equiv \text{EVAL}(B) \equiv \text{EVAL}(A) \]

If \(\text{EVAL}(B'_{\prod,\prod}) \) is \(\#P \)-hard, then \(\text{EVAL}(A) \) is also \(\#P \)-hard. If \(\text{EVAL}(B'_{\prod,\prod}) \) is not \(\#P \)-hard, then since every entry in \(B'_{\prod,\prod} \) is non-negative, by Bulatov and Grohe’s theorem, the rank of \(F' \) must be 1. Therefore, there exists non-negative rational numbers \(\mu_1, \ldots, \mu_k, \ldots, \mu_m \) such that \(F'_{i,j} = \mu_i \mu_{j+k} \) for all \(i \in [k] \) and \(j \in [m - k] \). Furthermore, for all \(i \in [m] \), \(\mu_i \) can not be 0 or else \(B'_{\prod,\prod} \) is not connected. Since every entry in \(B_{\prod,\prod} \) is the product of the corresponding entry in \(B'_{\prod,\prod} \) and some root of unity, \(B_{\prod,\prod} \) is also a purified bipartite matrix. The theorem then follows. \[\square\]