CS 880: Complexity of Counting Problems03/15/2012Lecture 16: CS 880: Complexity of Counting ProblemsInstructor: Jin-Yi CaiScribe: Chen Zeng

For a symmetric, bipartite matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$, we want to prove the following theorem:

Theorem 1. If $EVAL(\mathbf{A})$ is not #P-hard, then there exists an $m \times m$ purified bipartite matrix \mathbf{A}' such that $EVAL(\mathbf{A}) \equiv EVAL(\mathbf{A}')$.

Recall the definition of the *purified bipartite matrix*:

Definition 1. Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a symmetric, connected and bipartite matrix. \mathbf{A} is called a purified bipartite matrix if there exists positive rational numbers μ_1, \ldots, μ_m , and an integer $1 \leq k < m$ such that

$$\mathbf{A} = \begin{pmatrix} 0 & \mathbf{B} \\ \mathbf{B}^T & 0 \end{pmatrix}$$

where **B** is $k \times (m - k)$, and of the following form:

$$\mathbf{B} = \begin{pmatrix} \mu_{1} & & \\ & \mu_{2} & \\ & & \ddots & \\ & & & \mu_{k} \end{pmatrix} \begin{pmatrix} \zeta_{1,1} & \zeta_{1,2} & \cdots & \zeta_{1,m-k} \\ \zeta_{2,1} & \zeta_{2,2} & \cdots & \zeta_{2,m-k} \\ \vdots & \vdots & \ddots & \vdots \\ \zeta_{k,1} & \zeta_{k,2} & \cdots & \zeta_{k,m-k} \end{pmatrix} \begin{pmatrix} \mu_{k+1} & & \\ & \mu_{k+2} & \\ & & \ddots & \\ & & & \mu_{m} \end{pmatrix}$$

where every $\zeta_{i,j}$ is a root of unity.

We shall prove Theorem 1 by constructing the matrix \mathbf{B} . First, we need to define the notion of a *generating set*.

Definition 2. Let $\mathcal{A} = \{a_j\}_{j \in [n]}$ be a set of *n* non-zero algebraic numbers, for some $n \ge 1$. Then we say $\{g_1, \ldots, g_d\}$, for some integer $d \ge 0$, is a generating set of \mathcal{A} if

- 1. Every g_i is a non-zero algebraic number in $\mathbb{Q}(\mathcal{A})$.
- 2. For all $(k_1, \ldots, k_d) \in \mathbb{Z}^d$ such that $(k_1, \ldots, k_d) \neq \mathbf{0}$, then $g_1^{k_1} \cdots g_d^{k_d}$ is not a root of unity.
- 3. For every $a \in \mathcal{A}$, there exists a unique $(k_1, \ldots, k_d) \in \mathbb{Z}^d$ such that $a/g1^{k_1} \cdots g_d^{k_d}$ is a root of unity.

We shall utilize the following lemma to construct the matrix **B**.

Lemma 1. Let \mathcal{A} be a set of non-zero algebraic numbers, then it has a generating set.

Let \mathcal{A} denote the set of all non-zero entries $A_{i,j}$ from \mathbf{A} , by Lemma 1, \mathcal{A} has a generating set $\mathcal{G} = \{g_1, \ldots, g_d\}$. By Definition 2, for each $A_{i,j}$ there exists a unique tuple $(k_1, \ldots, k_d) \in \mathbb{Z}^d$ such that $A_{i,j}/g_1^{k_1} \cdots g_d^{k_d}$ is a root of unity, and we shall denote it by $\zeta_{i,j}$. Next, we construct the matrix $\mathbf{B} = (B_{i,j})^{m \times m} \in \mathbb{C}^{m \times m}$ as follows: Let $p_1 < \cdots < p_d$ denote the dsmallest primes. Then,

$$B_{i,j} = \begin{cases} 0 & \text{if } A_{i,j} = 0\\ p_1^{k_1} \cdots p_d^{k_d} \cdot \zeta_{i,j} & \text{if } A_{i,j} = g_1^{k_1} \cdots g_d^{k_d} \cdot \zeta_{i,j} \end{cases}$$
(1)

Note that this construction is in 1-to-1 correspondence: $B_{i,j}$ is well-defined by the uniqueness of $(k_1, \ldots, k_d) \in \mathbb{Z}^d$ and conversely by taking the prime factorization of $|B_{i,j}|$, and then recover $A_{i,j}$. We will prove that EVAL(\mathbf{A}) \equiv EVAL(\mathbf{B}). By the last lemma from our last lecture, it suffices to prove COUNT(\mathbf{A}) \equiv COUNT(\mathbf{B}). Recall the problem COUNT(\mathbf{A}) is defined as follows:

Definition 3. Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a fixed symmetric matrix with algebraic entries, then the input of the problem $\operatorname{COUNT}(\mathbf{A})$ is a pair (G, x) where G = (V, E) is an undirected graph, and x is a complex number. The output is:

$$\#_{\mathbf{A}}(G, x) = |\{assignment \ \xi : V \to [m] | wt_{\mathbf{A}}(\xi) = x\}|$$

Lemma 2. $COUNT(\mathbf{A}) \equiv COUNT(\mathbf{B})$

Proof. We will only prove $\text{COUNT}(\mathbf{A}) \leq \text{COUNT}(\mathbf{B})$ as the other direction is proved similarly. Let (G, x) be an input of $\text{COUNT}(\mathbf{A})$ where G = (V, E), and n = |E|. Let

$$X = \{\prod_{i,j\in[m]} A_{i,j}^{k_{i,j}} | k_{i,j} \in \mathbb{N}^1 \text{ and } \sum_{i,j\in[m]} k_{i,j} = n\}$$

Recall that X is polynomial in n, and for any $x \notin X$, $\#_{\mathbf{A}}(G, x) = 0$. For any $x \in X$, we can find a sequence of non-negative integers $\{k_{i,j}^*\}_{i,j\in[m]}$ in polynomial time such that $\sum_{i,j} k_{i,j}^* = n$ and

$$x = \prod_{i,j\in[m]} A_{i,j}^{k_{i,j}^*} \tag{2}$$

We define y by

$$y = \prod_{i,j \in [m]} B_{i,j}^{k_{i,j}^*}$$
(3)

Thus, x = 0 iff y = 0, which happens iff when some $k_{i,j}^* > 0$ for some entry $A_{i,j} = 0$. To prove COUNT(**A**) \leq COUNT(**B**), it suffices to prove the claim $\#_{\mathbf{A}}(G, x) = \#_{\mathbf{B}}(G, y)$. To prove that claim, we only need to show that for any assignment $\xi : V \to [m]$,

$$wt_{\mathbf{A}}(\xi) = x \Leftrightarrow wt_{\mathbf{B}}(\xi) = y$$

¹In this write-up, \mathbb{N} is the set of non-negative integers.

We shall only prove $wt_{\mathbf{A}}(\xi) = x \Rightarrow wt_{\mathbf{B}}(\xi) = y$ as the other direction is proved similarly. Let $\xi : V \to [m]$ be an assignment, for every $i, j \in [m]$, let $k_{i,j}$ be the number of edges $(u, v) \in E$ such that $(\xi(u), \xi(v)) = (i, j)$ or (j, i), then

$$wt_{\mathbf{A}}(\xi) = \prod_{i,j \in [m]} A_{i,j}^{k_{i,j}} \tag{4}$$

and

$$wt_{\mathbf{B}}(\xi) = \prod_{i,j \in [m]} B_{i,j}^{k_{i,j}}$$
(5)

For x = 0, $wt_{\mathbf{A}}(\xi) = 0$ iff for some zero entry $A_{i,j} = 0$, $k_{i,j} > 0$. By our construction of **B**, $A_{i,j} = 0$ iff $B_{i,j} = 0$, and thus, $wt_{\mathbf{B}}(\xi) = 0$. Next, we assume both $x, y \neq 0$. Let $\mathcal{G} = \{g_1, \ldots, g_d\}$ be the generating set of the set of all non-zero entries in **A**. By Definition 2, there exists integers $e_{1,(ij)}, \ldots, e_{d,(ij)}$ such that:

$$A_{i,j} = \prod_{\ell=1}^{d} g_{\ell}^{e_{\ell,(ij)}} \cdot \zeta_{i,j}$$

$$\tag{6}$$

and

$$B_{i,j} = \prod_{\ell=1}^{d} p_{\ell}^{e_{\ell,(ij)}} \cdot \zeta_{i,j} \tag{7}$$

for $A_{i,j} \neq 0$ where $\zeta_{i,j}$ is a root of unity. By (4) and (6),

$$wt_{\mathbf{A}}(\xi) = x \Rightarrow \prod_{\ell=1}^{d} g_{\ell}^{\sum_{i,j}(k_{i,j}-k_{i,j}^{*})e_{\ell,(ij)}}$$
 is a root of unity

By the second requirement of a generating set in Definition 2, for any $\ell \in [d]$

$$\sum_{i,j} (k_{i,j} - k_{i,j}^*) e_{\ell,(ij)} = 0$$

which implies that

$$\prod_{i,j} (\zeta_{i,j})^{k_{i,j}} = \prod_{i,j} (\zeta_{i,j})^{k_{i,j}^*}$$

By (3), (5) and (7), it follows that $wt_{\mathbf{B}}(\xi) = y$.

Next, we construct the matrix \mathbf{B}' by $B'_{i,j} = |B_{i,j}|$, and we will show:

Lemma 3. $EVAL(\mathbf{B}') \leq EVAL(\mathbf{B})$

Proof. It suffices to show $\text{COUNT}(\mathbf{B}') \leq \text{COUNT}(\mathbf{B})$. Let

$$Y = \{\prod_{i,j \in [m]} B_{i,j}^{k_{i,j}} | k_{i,j} \in \mathbb{N} \text{ and } \sum_{i,j \in [m]} k_{i,j} = n\}$$

 $Y_x = \{y | y \in Y \text{ and } |y| = x\}.$ Thus,

$$\#_{\mathbf{B}'}(G, x) = \sum_{y \in Y_x} \#_{\mathbf{B}}(G, y)$$

the lemma then follows.

Next, we will prove Theorem 1.

Proof. As both **B** and **B'** are connected and bipartite, there is always a permutation \prod of [m] such that $\mathbf{B}_{\prod,\prod}$ is the bipartisation of a $k \times (m-k)$ matrix **F** for some $k \in [m]$: $\mathbf{B}_{\prod,\prod} = \begin{pmatrix} 0 & \mathbf{F} \\ \mathbf{F}^T & 0 \end{pmatrix}$ and $\mathbf{B}'_{\prod,\prod}$ is the bipartisation of **F'** where $F'_{i,j} = |F_{i,j}|$. Since permuting **B** does not affect the complexity of EVAL(**B**), then

$$\text{EVAL}(\mathbf{B}'_{\Pi,\Pi}) \leq \text{EVAL}(\mathbf{B}_{\Pi,\Pi}) \equiv \text{EVAL}(\mathbf{B}) \equiv \text{EVAL}(\mathbf{A})$$

If EVAL($\mathbf{B}'_{\Pi,\Pi}$) is #P-hard, then EVAL(\mathbf{A}) is also #P-hard. If EVAL($\mathbf{B}'_{\Pi,\Pi}$) is not #P-hard, then since every entry in $\mathbf{B}'_{\Pi,\Pi}$ is non-negative, by Bulatov and Grohe's theorem, the rank of \mathbf{F}' must be 1. Therefore, there exists non-negative rational numbers $\mu_1, \ldots, \mu_k, \ldots, \mu_m$ such that $F'_{i,j} = \mu_i \mu_{j+k}$ for all $i \in [k]$ and $j \in [m-k]$. Furthermore, for all $i \in [m]$, μ_i can not be 0 or else $\mathbf{B}'_{\Pi,\Pi}$ is not connected. Since every entry in $\mathbf{B}_{\Pi,\Pi}$ is the product of the corresponding entry in $\mathbf{B}'_{\Pi,\Pi}$ and some root of unity, $\mathbf{B}_{\Pi,\Pi}$ is also a purified bipartite matrix. The theorem then follows.