CS 880: Complexity of Counting Problems	$03 / 15 / 2012$
Lecture 16: CS 880: Complexity of Counting Problems	
Instructor: Jin-Yi Cai	Scribe: Chen Zeng

For a symmetric, bipartite matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$, we want to prove the following theorem:
Theorem 1. If $E V A L(\mathbf{A})$ is not $\# P$-hard, then there exists an $m \times m$ purified bipartite matrix \mathbf{A}^{\prime} such that $E V A L(\mathbf{A}) \equiv E V A L\left(\mathbf{A}^{\prime}\right)$.

Recall the definition of the purified bipartite matrix:
Definition 1. Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a symmetric, connected and bipartite matrix. \mathbf{A} is called a purified bipartite matrix if there exists positive rational numbers μ_{1}, \ldots, μ_{m}, and an integer $1 \leq k<m$ such that

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & \mathbf{B} \\
\mathbf{B}^{T} & 0
\end{array}\right)
$$

where \mathbf{B} is $k \times(m-k)$, and of the following form:

$$
\mathbf{B}=\left(\begin{array}{cccc}
\mu_{1} & & & \\
& \mu_{2} & & \\
& & \ddots & \\
& & & \mu_{k}
\end{array}\right)\left(\begin{array}{cccc}
\zeta_{1,1} & \zeta_{1,2} & \cdots & \zeta_{1, m-k} \\
\zeta_{2,1} & \zeta_{2,2} & \cdots & \zeta_{2, m-k} \\
\vdots & \vdots & \ddots & \vdots \\
\zeta_{k, 1} & \zeta_{k, 2} & \cdots & \zeta_{k, m-k}
\end{array}\right)\left(\begin{array}{cccc}
\mu_{k+1} & & & \\
& \mu_{k+2} & & \\
& & \ddots & \\
& & & \mu_{m}
\end{array}\right)
$$

where every $\zeta_{i, j}$ is a root of unity.
We shall prove Theorem 1 by constructing the matrix B. First, we need to define the notion of a generating set.

Definition 2. Let $\mathcal{A}=\left\{a_{j}\right\}_{j \in[n]}$ be a set of n non-zero algebraic numbers, for some $n \geq 1$. Then we say $\left\{g_{1}, \ldots, g_{d}\right\}$, for some integer $d \geq 0$, is a generating set of \mathcal{A} if

1. Every g_{i} is a non-zero algebraic number in $\mathbb{Q}(\mathcal{A})$.
2. For all $\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}^{d}$ such that $\left(k_{1}, \ldots, k_{d}\right) \neq 0$, then $g_{1}^{k_{1}} \cdots g_{d}^{k_{d}}$ is not a root of unity.
3. For every $a \in \mathcal{A}$, there exists a unique $\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}^{d}$ such that $a / g 1^{k_{1}} \cdots g_{d}^{k_{d}}$ is a root of unity.

We shall utilize the following lemma to construct the matrix \mathbf{B}.
Lemma 1. Let \mathcal{A} be a set of non-zero algebraic numbers, then it has a generating set.

Let \mathcal{A} denote the set of all non-zero entries $A_{i, j}$ from \mathbf{A}, by Lemma $1, \mathcal{A}$ has a generating set $\mathcal{G}=\left\{g_{1}, \ldots, g_{d}\right\}$. By Definition 2 , for each $A_{i, j}$ there exists a unique tuple $\left(k_{1}, \ldots, k_{d}\right) \in$ \mathbb{Z}^{d} such that $A_{i, j} / g_{1}^{k_{1}} \cdots g_{d}^{k_{d}}$ is a root of unity, and we shall denote it by $\zeta_{i, j}$. Next, we construct the matrix $\mathbf{B}=\left(B_{i, j}\right)^{m \times m} \in \mathbb{C}^{m \times m}$ as follows: Let $p_{1}<\cdots<p_{d}$ denote the d smallest primes. Then,

$$
B_{i, j}=\left\{\begin{array}{cl}
0 & \text { if } A_{i, j}=0 \tag{1}\\
p_{1}^{k_{1}} \cdots p_{d}^{k_{d}} \cdot \zeta_{i, j} & \text { if } A_{i, j}=g_{1}^{k_{1}} \cdots g_{d}^{k_{d}} \cdot \zeta_{i, j}
\end{array}\right.
$$

Note that this construction is in 1-to-1 correspondence: $B_{i, j}$ is well-defined by the uniqueness of $\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}^{d}$ and conversely by taking the prime factorization of $\left|B_{i, j}\right|$, and then recover $A_{i, j}$. We will prove that $\operatorname{EVAL}(\mathbf{A}) \equiv \operatorname{EVAL}(\mathbf{B})$. By the last lemma from our last lecture, it suffices to prove $\operatorname{COUNT}(\mathbf{A}) \equiv \operatorname{COUNT}(\mathbf{B})$. Recall the problem $\operatorname{COUNT}(\mathbf{A})$ is defined as follows:

Definition 3. Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a fixed symmetric matrix with algebraic entries, then the input of the problem $\operatorname{COUNT}(\mathbf{A})$ is a pair (G, x) where $G=(V, E)$ is an undirected graph, and x is a complex number. The output is:

$$
\#_{\mathbf{A}}(G, x)=\mid\left\{\text { assignment } \xi: V \rightarrow[m] \mid w t_{\mathbf{A}}(\xi)=x\right\} \mid
$$

Lemma 2. $\operatorname{COUNT}(\mathbf{A}) \equiv \operatorname{COUNT}(\mathbf{B})$
Proof. We will only prove $\operatorname{COUNT}(\mathbf{A}) \leq \operatorname{COUNT}(\mathbf{B})$ as the other direction is proved similarly. Let (G, x) be an input of $\operatorname{COUNT}(\mathbf{A})$ where $G=(V, E)$, and $n=|E|$. Let

$$
X=\left\{\prod_{i, j \in[m]} A_{i, j}^{k_{i, j}} \mid k_{i, j} \in \mathbb{N}^{1} \text { and } \sum_{i, j \in[m]} k_{i, j}=n\right\}
$$

Recall that X is polynomial in n, and for any $x \notin X, \#_{\mathbf{A}}(G, x)=0$. For any $x \in X$, we can find a sequence of non-negative integers $\left\{k_{i, j}^{*}\right\}_{i, j \in[m]}$ in polynomial time such that $\sum_{i, j} k_{i, j}^{*}=n$ and

$$
\begin{equation*}
x=\prod_{i, j \in[m]} A_{i, j}^{k_{i, j}^{*}} \tag{2}
\end{equation*}
$$

We define y by

$$
\begin{equation*}
y=\prod_{i, j \in[m]} B_{i, j}^{k_{i, j}^{*}} \tag{3}
\end{equation*}
$$

Thus, $x=0$ iff $y=0$, which happens iff when some $k_{i, j}^{*}>0$ for some entry $A_{i, j}=0$. To prove $\operatorname{COUNT}(\mathbf{A}) \leq \operatorname{COUNT}(\mathbf{B})$, it suffices to prove the claim $\#_{\mathbf{A}}(G, x)=\#_{\mathbf{B}}(G, y)$. To prove that claim, we only need to show that for any assignment $\xi: V \rightarrow[\mathrm{~m}]$,

$$
w t_{\mathbf{A}}(\xi)=x \Leftrightarrow w t_{\mathbf{B}}(\xi)=y
$$

[^0]We shall only prove $w t_{\mathbf{A}}(\xi)=x \Rightarrow w t_{\mathbf{B}}(\xi)=y$ as the other direction is proved similarly.
Let $\xi: V \rightarrow[m]$ be an assignment, for every $i, j \in[m]$, let $k_{i, j}$ be the number of edges $(u, v) \in E$ such that $(\xi(u), \xi(v))=(i, j)$ or (j, i), then

$$
\begin{equation*}
w t_{\mathbf{A}}(\xi)=\prod_{i, j \in[m]} A_{i, j}^{k_{i, j}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
w t_{\mathbf{B}}(\xi)=\prod_{i, j \in[m]} B_{i, j}^{k_{i, j}} \tag{5}
\end{equation*}
$$

For $x=0, w t_{\mathbf{A}}(\xi)=0$ iff for some zero entry $A_{i, j}=0, k_{i, j}>0$. By our construction of $\mathbf{B}, A_{i, j}=0$ iff $B_{i, j}=0$, and thus, $w t_{\mathbf{B}}(\xi)=0$. Next, we assume both $x, y \neq 0$. Let $\mathcal{G}=\left\{g_{1}, \ldots, g_{d}\right\}$ be the generating set of the set of all non-zero entries in A. By Definition 2, there exists integers $e_{1,(i j)}, \ldots, e_{d,(i j)}$ such that:

$$
\begin{equation*}
A_{i, j}=\prod_{\ell=1}^{d} g_{\ell}^{e_{\ell,(i j)}} \cdot \zeta_{i, j} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{i, j}=\prod_{\ell=1}^{d} p_{\ell}^{e_{\ell,(i j)}} \cdot \zeta_{i, j} \tag{7}
\end{equation*}
$$

for $A_{i, j} \neq 0$ where $\zeta_{i, j}$ is a root of unity. By (4) and (6),

$$
w t_{\mathbf{A}}(\xi)=x \Rightarrow \prod_{\ell=1}^{d} g_{\ell}^{\sum_{i, j}\left(k_{i, j}-k_{i, j}^{*}\right) e_{\ell,(i j)}} \text { is a root of unity }
$$

By the second requirement of a generating set in Definition 2, for any $\ell \in[d]$

$$
\sum_{i, j}\left(k_{i, j}-k_{i, j}^{*}\right) e_{\ell,(i j)}=0
$$

which implies that

$$
\prod_{i, j}\left(\zeta_{i, j}\right)^{k_{i, j}}=\prod_{i, j}\left(\zeta_{i, j}\right)^{k_{i, j}^{*}}
$$

By (3), (5) and (7), it follows that $w t_{\mathbf{B}}(\xi)=y$.
Next, we construct the matrix \mathbf{B}^{\prime} by $B_{i, j}^{\prime}=\left|B_{i, j}\right|$, and we will show:
Lemma 3. $E V A L\left(\mathbf{B}^{\prime}\right) \leq E V A L(\mathbf{B})$
Proof. It suffices to show $\operatorname{COUNT}\left(\mathbf{B}^{\prime}\right) \leq \operatorname{COUNT}(\mathbf{B})$. Let

$$
Y=\left\{\prod_{i, j \in[m]} B_{i, j}^{k_{i, j}} \mid k_{i, j} \in \mathbb{N} \text { and } \sum_{i, j \in[m]} k_{i, j}=n\right\}
$$

$Y_{x}=\{y \mid y \in Y$ and $|y|=x\}$. Thus,

$$
\#_{\mathbf{B}^{\prime}}(G, x)=\sum_{y \in Y_{x}} \#_{\mathbf{B}}(G, y)
$$

the lemma then follows.
Next, we will prove Theorem 1.
Proof. As both \mathbf{B} and \mathbf{B}^{\prime} are connected and bipartite, there is always a permutation Π of $[m]$ such that $\mathbf{B}_{\Pi, \Pi}$ is the bipartisation of a $k \times(m-k)$ matrix \mathbf{F} for some $k \in[m]$: $\mathbf{B}_{\Pi, \Pi}=\left(\begin{array}{cc}0 & \mathbf{F} \\ \mathbf{F}^{T} & 0\end{array}\right)$ and $\mathbf{B}_{\Pi, \Pi}^{\prime}$ is the bipartisation of \mathbf{F}^{\prime} where $F_{i, j}^{\prime}=\left|F_{i, j}\right|$. Since permuting \mathbf{B} does not affect the complexity of $\operatorname{EVAL}(\mathbf{B})$, then

$$
\operatorname{EVAL}\left(\mathbf{B}_{\Pi, \Pi}^{\prime}\right) \leq \operatorname{EVAL}\left(\mathbf{B}_{\Pi, \Pi}\right) \equiv \operatorname{EVAL}(\mathbf{B}) \equiv \operatorname{EVAL}(\mathbf{A})
$$

If $\operatorname{EVAL}\left(\mathbf{B}_{\Pi, \Pi}^{\prime}\right)$ is \#P-hard, then $\operatorname{EVAL}(\mathbf{A})$ is also \#P-hard. If $\operatorname{EVAL}\left(\mathbf{B}_{\Pi, \Pi}^{\prime}\right)$ is not \#P-hard, then since every entry in $\mathbf{B}_{П, \Pi}^{\prime}$ is non-negative, by Bulatov and Grohe's theorem, the rank of \mathbf{F}^{\prime} must be 1 . Therefore, there exists non-negative rational numbers $\mu_{1}, \ldots, \mu_{k}, \ldots, \mu_{m}$ such that $F_{i, j}^{\prime}=\mu_{i} \mu_{j+k}$ for all $i \in[k]$ and $j \in[m-k]$. Furthermore, for all $i \in[m], \mu_{i}$ can not be 0 or else $\mathbf{B}_{\Pi, \Pi}^{\prime}$ is not connected. Since every entry in $\mathbf{B}_{\Pi, \Pi}$ is the product of the corresponding entry in $\mathbf{B}_{\Pi, \Pi}^{\prime}$ and some root of unity, $\mathbf{B}_{\Pi, \Pi}$ is also a purified bipartite matrix. The theorem then follows.

[^0]: ${ }^{1}$ In this write-up, \mathbb{N} is the set of non-negative integers.

