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For a symmetric, bipartite matrix A ∈ Cm×m, we want to prove the following theorem:

Theorem 1. If EVAL(A) is not #P-hard, then there exists an m × m purified bipartite
matrix A′ such that EVAL(A) ≡ EVAL(A′).

Recall the definition of the purified bipartite matrix :

Definition 1. Let A ∈ Cm×m be a symmetric, connected and bipartite matrix. A is called a
purified bipartite matrix if there exists positive rational numbers µ1, . . . , µm, and an integer
1 ≤ k < m such that

A =

(

0 B

BT 0

)

where B is k × (m − k), and of the following form:

B =











µ1

µ2

. . .

µk





















ζ1,1 ζ1,2 · · · ζ1,m−k

ζ2,1 ζ2,2 · · · ζ2,m−k

...
...

. . .
...

ζk,1 ζk,2 · · · ζk,m−k





















µk+1

µk+2

. . .

µm











where every ζi,j is a root of unity.

We shall prove Theorem 1 by constructing the matrix B. First, we need to define the
notion of a generating set.

Definition 2. Let A = {aj}j∈[n] be a set of n non-zero algebraic numbers, for some n ≥ 1.
Then we say {g1, . . . , gd}, for some integer d ≥ 0, is a generating set of A if

1. Every gi is a non-zero algebraic number in Q(A).

2. For all (k1, . . . , kd) ∈ Zd such that (k1, . . . , kd) 6= 0, then gk1
1 · · · gkd

d is not a root of
unity.

3. For every a ∈ A, there exists a unique (k1, . . . , kd) ∈ Zd such that a/g1k1 · · · gkd

d is a
root of unity.

We shall utilize the following lemma to construct the matrix B.

Lemma 1. Let A be a set of non-zero algebraic numbers, then it has a generating set.
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Let A denote the set of all non-zero entries Ai,j from A, by Lemma 1, A has a generating
set G = {g1, . . . , gd}. By Definition 2, for each Ai,j there exists a unique tuple (k1, . . . , kd) ∈
Zd such that Ai,j/g

k1
1 · · · gkd

d is a root of unity, and we shall denote it by ζi,j. Next, we
construct the matrix B = (Bi,j)

m×m ∈ Cm×m as follows: Let p1 < · · · < pd denote the d
smallest primes. Then,

Bi,j =

{

0 if Ai,j = 0

pk1
1 · · · pkd

d · ζi,j if Ai,j = gk1
1 · · · gkd

d · ζi,j

(1)

Note that this construction is in 1-to-1 correspondence: Bi,j is well-defined by the unique-
ness of (k1, . . . , kd) ∈ Zd and conversely by taking the prime factorization of |Bi,j|, and then
recover Ai,j. We will prove that EVAL(A) ≡ EVAL(B). By the last lemma from our last
lecture, it suffices to prove COUNT(A) ≡ COUNT(B). Recall the problem COUNT(A) is
defined as follows:

Definition 3. Let A ∈ Cm×m be a fixed symmetric matrix with algebraic entries, then the
input of the problem COUNT(A) is a pair (G, x) where G = (V, E) is an undirected graph,
and x is a complex number. The output is:

#A(G, x) = |{assignment ξ : V → [m]|wtA(ξ) = x}|

Lemma 2. COUNT(A) ≡ COUNT(B)

Proof. We will only prove COUNT(A) ≤ COUNT(B) as the other direction is proved simi-
larly. Let (G, x) be an input of COUNT(A) where G = (V, E), and n = |E|. Let

X = {
∏

i,j∈[m]

A
ki,j

i,j |ki,j ∈ N1 and
∑

i,j∈[m]

ki,j = n}

Recall that X is polynomial in n, and for any x /∈ X, #A(G, x) = 0. For any x ∈ X,
we can find a sequence of non-negative integers {k∗

i,j}i,j∈[m] in polynomial time such that
∑

i,j k∗

i,j = n and

x =
∏

i,j∈[m]

A
k∗

i,j

i,j (2)

We define y by

y =
∏

i,j∈[m]

B
k∗

i,j

i,j (3)

Thus, x = 0 iff y = 0, which happens iff when some k∗

i,j > 0 for some entry Ai,j = 0. To
prove COUNT(A) ≤ COUNT(B), it suffices to prove the claim #A(G, x) = #B(G, y). To
prove that claim, we only need to show that for any assignment ξ : V → [m],

wtA(ξ) = x ⇔ wtB(ξ) = y

1In this write-up, N is the set of non-negative integers.
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We shall only prove wtA(ξ) = x ⇒ wtB(ξ) = y as the other direction is proved similarly.
Let ξ : V → [m] be an assignment, for every i, j ∈ [m], let ki,j be the number of edges

(u, v) ∈ E such that (ξ(u), ξ(v)) = (i, j) or (j, i), then

wtA(ξ) =
∏

i,j∈[m]

A
ki,j

i,j (4)

and
wtB(ξ) =

∏

i,j∈[m]

B
ki,j

i,j (5)

For x = 0, wtA(ξ) = 0 iff for some zero entry Ai,j = 0, ki,j > 0. By our construction
of B, Ai,j = 0 iff Bi,j = 0, and thus, wtB(ξ) = 0. Next, we assume both x, y 6= 0. Let
G = {g1, . . . , gd} be the generating set of the set of all non-zero entries in A. By Definition 2,
there exists integers e1,(ij), . . . , ed,(ij) such that:

Ai,j =
d

∏

ℓ=1

g
eℓ,(ij)

ℓ · ζi,j (6)

and

Bi,j =

d
∏

ℓ=1

p
eℓ,(ij)

ℓ · ζi,j (7)

for Ai,j 6= 0 where ζi,j is a root of unity. By (4) and (6),

wtA(ξ) = x ⇒

d
∏

ℓ=1

g
P

i,j(ki,j−k∗

i,j)eℓ,(ij)

ℓ is a root of unity

By the second requirement of a generating set in Definition 2, for any ℓ ∈ [d]

∑

i,j

(ki,j − k∗

i,j)eℓ,(ij) = 0

which implies that
∏

i,j

(ζi,j)
ki,j =

∏

i,j

(ζi,j)
k∗

i,j

By (3), (5) and (7), it follows that wtB(ξ) = y.

Next, we construct the matrix B′ by B′

i,j = |Bi,j|, and we will show:

Lemma 3. EVAL(B′) ≤ EVAL(B)

Proof. It suffices to show COUNT(B′) ≤ COUNT(B). Let

Y = {
∏

i,j∈[m]

B
ki,j

i,j |ki,j ∈ N and
∑

i,j∈[m]

ki,j = n}
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Yx = {y|y ∈ Y and |y| = x}. Thus,

#B′(G, x) =
∑

y∈Yx

#B(G, y)

the lemma then follows.

Next, we will prove Theorem 1.

Proof. As both B and B′ are connected and bipartite, there is always a permutation
∏

of [m] such that BQ

,
Q is the bipartisation of a k × (m − k) matrix F for some k ∈ [m]:

BQ

,
Q =

(

0 F

FT 0

)

and B′
Q

,
Q is the bipartisation of F′ where F ′

i,j = |Fi,j|. Since permuting B

does not affect the complexity of EVAL(B), then

EVAL(B′
Q

,
Q) ≤ EVAL(BQ

,
Q) ≡ EVAL(B) ≡ EVAL(A)

If EVAL(B′
Q

,
Q) is #P-hard, then EVAL(A) is also #P-hard. If EVAL(B′

Q

,
Q) is not

#P-hard, then since every entry in B′
Q

,
Q is non-negative, by Bulatov and Grohe’s the-

orem, the rank of F′ must be 1. Therefore, there exists non-negative rational numbers
µ1, . . . , µk, . . . , µm such that F ′

i,j = µiµj+k for all i ∈ [k] and j ∈ [m − k]. Furthermore, for
all i ∈ [m], µi can not be 0 or else B′

Q

,
Q is not connected. Since every entry in BQ

,
Q is the

product of the corresponding entry in B′
Q

,
Q and some root of unity, BQ

,
Q is also a purified

bipartite matrix. The theorem then follows.
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