CS 880: Complexity of Counting Problems 03/20/2012
Lecture 17: Reduction to Discrete Unitary Matrix (Step 2.1)

Instructor: Jin-Yi Cai Scribe: Chetan Rao

Let matrix A be the bipartization of an m x n matrix B i.e. A is the (m+n) x (m+n)

matrix -
0 B
A= (w )

Let pu = {p1, o, ..., s} and v = {vy,1v5,..., 14} be two decreasing sequences of positive
rational numbers of lengths s > 1 and ¢t > 1, respectively i.e. p and v satisfy pu; > po >
o> psand vy > v > ... > vy Let mo= {my, ma,...,ms} and n = {ny,na,...,n} be two
sequences of positive integers such that m =7  m; and n = Zzzl n;.

The rows of B are indexed by x = (21, x2) where x; € [s] and x5 € [m,,] and the columns
of B are indexed by y = (y1,y2) where y; € [t] and y2 € [n,,]. Then, for all x,y, we have

Bx7y = B(I1,x2)7(y1,y2) = Mxlyylsxb’

where S = {Sxy} is an m X n matrix in which every entry (Sxy) is a root of unity (power
of wN).

1L, S(1,0),(1,)S (1,5),(2,6)" * * S(1,%),(t%) v,
B polm, S(2,6),(1,6)S(2,5),24)" " S (2,5),(t,%) voln,
T I S (65), (1) S (5,5),(2,5) "+ S (5,0),(1,%) l,,

where I denotes the k£ X k identity matrix.
Also let

I=|J{G)li€ml} and J={J{G)j€ ]}

i€[s] i€t]

Given a vector x € I and j € [t], we let Sy (;) denote the j block of the x™ row vector
of S:

Sx.(j) = (Sx(i.1)s -+ Sx(iiny)) € C
Similarly, given y € J and i € [s], we let S(; )y denote the i*" block of the y™ column
vector of S:

Sty = (San)ys - -+ » Simay) € C™

Suppose (A, (N, p,v,m,n) are as defined above. Then we have the following lemma -
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Figure 1: [2] Gadget for constructing graph G\, p > 1.

Lemma 1. EVAL(A) is #P—hard or the following conditions are satisfied by (A, (N, p, v, m,n):

o For all two rows x,x" € I, either Sy, = wh - Sy for some integer k or for every

Jj € [t],
(Sx,(j,4)s Sxr,(j0)) = 0

e For all two columnsy,y’ € J, either S,y = wk; - S,y for some integer k or for every
i €1s),
(Stm.y:Samy) =0

Proof. Assume that EVAL(A) is not #P-hard. We prove that any two given rows are linearly
dependent by w¥ for some integer k. The proofs for the columns is similar.

Let G = (V, E) be an undirected graph. For each p > 1, we construct a new graph G
by replacing every edge e = (u,v) € E with a gadget as shown in Figure 1. More precisely,
we add two vertices a,, b, for every edge e € E. GIP! = (VIP) ElPl) is defined as follows -

V=V U {a,,bele € E}
and EP! contains the following edges for every edge e = (u,v) € E:
e single edges (u, a.) and (b, v).
e (pN — 1) multiple edges between (u, b.) and (a,v).

The construction of G! for each p > 1, gives us an (m +n) x (m + n) matrix AP such
that for all undirected graphs G, we have -

Zpw(G) = Za(GP)

Hence, we have EVAL(AP!) < EVAL(A) and EVAL(AP)) is also not #P-hard. The entries
of EVAL(AP)) are as follows -

- AE?],V),(O,U) =0, Yuel,velJ
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Thus, AP is a block diagonal matrix with 2 blocks of m x m and n x n i.e.

w_(* 0
A= (50

with the upper-left m x m block having the following entries:

[»] [p] N—1 [p] N—1 4P|
A(O,u), (Z A (0,u),(1,a) A(O v),(1 a))p ) <Z<A(O,u),(1,b))p A(O,v),(l,b))

acJ beJ
= (Z Bu,a<BV,a)pN—1) (Z(Bu,b)pN‘le,b>
acJ beJ

for all u,v € I. The factor By, is -

Bu,a = HuVa,y Su,a
which leads to -

Z Bu,a(Bv,a)pNi1 = Z Moy Vay Su,a(,um Va,y )prlm

aceJ aeJ
N—1 N
= Mu1M€1 Z Vgl Su,asv,a
acJ
pN— 12 : pN
- ,Uul,uvl v; u (3,%) v (z,*))
ieft]

and

Z(Bu,b)pN_le,b = ,uﬁ]lv l,uvl Z V Su (i,*)Sv,(i,*)>

beJ ie(t]

As a result, we have

A[]())]u) (o) — = (fus fon )pN Z VZPN<Su,(i,*)SV7(i7*)> (1)

i€ft]

We can prove a similar result for the lower-right n x n block. Thus, AP is a non-negative

real matrix. Also, if u = v, then the inner product in equation 1 is equal to n;.
Since EVAL(A)) is not #P-hard, by the dichotomy theorem of Bulatov and Grohe [1],

0
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If the vectors Sy, and Sy . are linearly dependent, then there must exist an integer

fuv € [0, N — 1] such that Sy, = Wi - Sy, (as the entries of S are all powers of unity -
wn). Moreover, we need all these 6, = 6 for all vectors u, v to get the equality:

Z VpN u,(4,%) v,(i,*)> - Z V?an Z n; - z'

ie[t] ieft] ic[t]

and we are done.
On the other hand, assuming that the vectors S, . and S, , are linearly independent, we
have

ZVPN (i) Sv, (5,4)) <an vi™,  for any p > 1.

icft] ie(t]

otherwise it contradicts the assumption that the vectors are linearly independent. The only
other possible value of this term is 0 and hence:

Z v (Sui,0Sv i) =0, forall p>1.

icft]

Since v; > vy > ... > 14 is strictly distinct and decreasing, by using the Vandermonde
matrix, we have

<Su7(i’*)Sv7(i,*)) =0, for all 7 > [t]

This leads to the following corollary:

Corollary 1. For alli € [s| and j € [t], the rank of the (i, )" block matriz S . . of S
has exactly the same rank as S.

Proof. We make use of Lemma, 1 to establish that rank(S +) ,+)) = rank(S). Without loss
of generality, this is sufficient to prove the corollary.
First, we use Lemma 1 to show that

S(1,),(1,4)

S0, = rank(S)

rank

S(s,*),(l,*)



Consider any h (= rank(S)) rows of S which are linearly independent. Among them, since
any two, Sy («x) and Sy (. ), are linearly independent, the two subvectors Sy (1,+) and Sy (1 4)
are orthogonal. Therefore, the corresponding h rows of the matrix on the left-hand side are
pairwise orthogonal and the rank is at least h. Since it cannot be greater than the rank of
the matrix S, it must be exactly the same.

Following a similar argument, we can show that

S(1,4),(1,%)
S(2,4),(1.%)
rank(S(l,*),(L*)) = rank .
S(s,*),(l,*)
which completes the proof that rank(Sq +),1,4)) = rank(S). O

If h = rank(S), then by Corollary 1, there must exist h indices 1 < i3 < ... < i, <
my and 1 < j; < ... < jn < ng such that the sub-matrix of S - {(1,41),...,(1,in)} X
{(1,71),...,(1, )} has full rank h. Without loss of generality we can assume that these
indices are the first h indices i.e. i, = jp = k for all k& € [h]. The matrix H is used to
represent the h x h matrix: H;; = S(1,),1,5)-

By Lemma 1 and Corollary 1, for every index x € I, there exists two unique integers
j € [h] and k € [0: N — 1] such that

Sx’* = wf\, . S(Lj),* (2)

Similarly, for every index y € J, there exists two unique integers j € [h] and k € [0: N — 1]
such that

Sy = Wi - Su (1) (3)
This gives us a partition set of {0} x I and {1} x J respectively:
Ro = {Ro,ijxli €[s],7 €[h,k€[0: N —1]}
Rl = {R(17i7j)7k|’i S [t],j - {h],/{? - [0 : N — 1]}

as follows: For every x € I, (0,x) € R if i = 1 and x, j, k satisfy (2) and for every
y€J,(1,y) € Raijxif i =y and y, j, k satisfy (3) respectively.
By Corollary 1, we have

U Roigpw#¢,  forallic[s],je[h]
ke[0:N—1]

U Ruipw#¢,  foralliel[t],je[h]

ke[0:N—1]

Further, we define (C,®) and use the Cyclotomic Reduction Lemma (refer previous
lectures) to show that

EVAL(C,®) = EVAL(A)
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Firstly, we define a matrix F (of size sh x th) and represent C as a bipartisation of this
matrix.

,ull HH .--- H VlI
sl HH --- H vl

where I is the h x h identity matrix. Alternately, F is defined as

Fay = toVyy Hay o = Hay Vi1 S 20), (1,45 fOr all x = (21 € [s], 22 € [h]),y = (11 € [t],y2 € [R])

0 F
(e 1)

The term ® is defined as ® = {D[O], ...,DIV _1]} is a sequence of N diagonal matrices
with the same size of C and defined by:

The matrix C is defined as

N-1 -1
DEQ,x - Z ’R(01$11z2)7k| 'w]’ilr and DETHy = ‘R(lvylﬂlﬁ)vk’ 'w?\fr
k=0 k=0

forall r € [0: N —1],x = (21,22) € [s] X [h] and y = (y1,12) € [t] X [h].
Applying the Cyclotomic Reduction Lemma, we then have

Lemma 2. EVAL(A) = EVAL(C, D)

Proof. We show that the matrix A can be generated by the partition (of [m]) R = RoUR;.
This is sufficient to prove the lemma (with the aid of Cyclotomic Reduction Lemma).

Let x,x’ € I, (0,x) € R, )k and (0,x) € R(o4 jo - Since A and C are bipartisations
of B and F, respectively, we have

A0x),0x) = Cloz1,9),0.,57) =0

As a result, we have

k/
A0.x0,0x) = Cloarg 0t " WN

Let x € 1,(0,x) € Rz )5y € J,(1,y) € Ry, o for some j. k, 5 k'. Then by (2)
and (3),
A(O,X),(Ly) = M‘leyls)gy = Mmlyyls(lvj)vy ’ chv = Mmlyyls(lvj)7(1vjl) ’ wégv—‘rk = O(O,.Z’1,j),(07y17j/) : w]k\:[—i_k
Similarly, we can generate the lower-left block of A from C using R. Also, the construction
of ® resulted from R = RqUR; and hence the lemma follows from the Cyclotomic Reduction
Lemma. O
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