Lecture 17: Reduction to Discrete Unitary Matrix (Step 2.1)

Instructor: Jin-Yi Cai
Scribe: Chetan Rao

Let matrix \mathbf{A} be the bipartization of an $m \times n$ matrix \mathbf{B} i.e. \mathbf{A} is the $(m+n) \times(m+n)$ matrix -

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & \mathbf{B} \\
\mathbf{B}^{T} & 0
\end{array}\right)
$$

Let $\boldsymbol{\mu}=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{s}\right\}$ and $\boldsymbol{\nu}=\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{t}\right\}$ be two decreasing sequences of positive rational numbers of lengths $s \geq 1$ and $t \geq 1$, respectively i.e. $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ satisfy $\mu_{1}>\mu_{2}>$ $\ldots>\mu_{s}$ and $\nu_{1}>\nu_{2}>\ldots>\nu_{t}$. Let $\boldsymbol{m}=\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}$ and $\boldsymbol{n}=\left\{n_{1}, n_{2}, \ldots, n_{t}\right\}$ be two sequences of positive integers such that $m=\sum_{i=1}^{s} m_{i}$ and $n=\sum_{i=1}^{t} n_{i}$.

The rows of \mathbf{B} are indexed by $\mathbf{x}=\left(x_{1}, x_{2}\right)$ where $x_{1} \in[s]$ and $x_{2} \in\left[m_{x_{1}}\right]$ and the columns of \mathbf{B} are indexed by $\mathbf{y}=\left(y_{1}, y_{2}\right)$ where $y_{1} \in[t]$ and $y_{2} \in\left[n_{y_{1}}\right]$. Then, for all \mathbf{x}, \mathbf{y}, we have

$$
B_{\mathbf{x}, \mathbf{y}}=B_{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)}=\mu_{x_{1}} \nu_{y_{1}} S_{\mathbf{x}, \mathbf{y}}
$$

where $\mathbf{S}=\left\{S_{\mathbf{x}, \mathbf{y}}\right\}$ is an $m \times n$ matrix in which every entry $\left(S_{\mathbf{x}, \mathbf{y}}\right)$ is a root of unity (power of ω_{N}).

$$
\mathbf{B}=\left(\begin{array}{cccc}
\mu_{1} \mathbf{I}_{m_{1}} & & & \\
& \mu_{2} \mathbf{I}_{m_{2}} & & \\
& & \ddots & \\
& & & \mu_{s} \mathbf{I}_{m_{s}}
\end{array}\right)\left(\begin{array}{cccc}
\mathbf{S}_{(1, *),(1, *)} & \mathbf{S}_{(1, *),(2, *)} & \cdots & \mathbf{S}_{(1, *),(t, *)} \\
\mathbf{S}_{(2, *),(1, *)} \mathbf{S}_{(2, *),(2, *)} & \cdots & \mathbf{S}_{(2, *),(t, *)} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{S}_{(s, *),(1, *)} \mathbf{S}_{(s, *),(2, *)} & \cdots & \mathbf{S}_{(s, *),(t, *)}
\end{array}\right)\left(\begin{array}{lll}
\nu_{1} \mathbf{I}_{n_{1}} & & \\
& \nu_{2} \mathbf{I}_{n_{2}} & \\
& & \ddots \\
& & \\
& & \nu_{t} \mathbf{I}_{n_{t}}
\end{array}\right)
$$

where \mathbf{I}_{k} denotes the $k \times k$ identity matrix.
Also let

$$
I \equiv \bigcup_{i \in[s]}\left\{(i, j) \mid j \in\left[m_{i}\right]\right\} \quad \text { and } \quad J \equiv \bigcup_{i \in[t]}\left\{(i, j) \mid j \in\left[n_{i}\right]\right\}
$$

Given a vector $\mathbf{x} \in I$ and $j \in[t]$, we let $\mathbf{S}_{\mathbf{x},(j, *)}$ denote the $j^{t h}$ block of the $\mathbf{x}^{t h}$ row vector of \mathbf{S} :

$$
\mathbf{S}_{\mathbf{x},(j, *)}=\left(S_{\mathbf{x},(j, 1)}, \ldots, S_{\mathbf{x},\left(j, n_{j}\right)}\right) \in \mathbb{C}^{n_{j}}
$$

Similarly, given $\mathbf{y} \in J$ and $i \in[s]$, we let $\mathbf{S}_{(i, *), \mathbf{y}}$ denote the $i^{\text {th }}$ block of the $\mathbf{y}^{\text {th }}$ column vector of \mathbf{S} :

$$
\mathbf{S}_{(i, *), \mathbf{y}}=\left(S_{(i, 1), \mathbf{y}}, \ldots, S_{\left(i, m_{i}\right), \mathbf{y}}\right) \in \mathbb{C}^{m_{i}}
$$

Suppose $(\mathbf{A},(N, \boldsymbol{\mu}, \boldsymbol{\nu}, \mathbf{m}, \mathbf{n})$ are as defined above. Then we have the following lemma -

Figure 1: [2] Gadget for constructing graph $G^{[p]}, p \geq 1$.
Lemma 1. $\operatorname{EVAL}(\mathbf{A})$ is $\# \mathrm{P}$-hard or the following conditions are satisfied by $(\mathbf{A},(N, \boldsymbol{\mu}, \boldsymbol{\nu}, \mathbf{m}, \mathbf{n})$:

- For all two rows $\mathbf{x}, \mathbf{x}^{\prime} \in I$, either $\mathbf{S}_{\mathbf{x}, *}=\omega_{N}^{k} \cdot \mathbf{S}_{\mathbf{x}^{\prime}, *}$ for some integer k or for every $j \in[t]$,

$$
\left\langle\mathbf{S}_{\mathbf{x},(j, *)}, \mathbf{S}_{\mathbf{x}^{\prime},(j, *)}\right\rangle=0
$$

- For all two columns $\mathbf{y}, \mathbf{y}^{\prime} \in J$, either $\mathbf{S}_{*, \mathbf{y}}=\omega_{N}^{k} \cdot \mathbf{S}_{*, \mathbf{y}^{\prime}}$ for some integer k or for every $i \in[s]$,

$$
\left\langle\mathbf{S}_{(i, *), \mathbf{y}}, \mathbf{S}_{(i, *), \mathbf{y}^{\prime}}\right\rangle=0
$$

Proof. Assume that $\operatorname{EVAL}(\mathbf{A})$ is not \#P-hard. We prove that any two given rows are linearly dependent by ω_{N}^{k} for some integer k. The proofs for the columns is similar.

Let $G=(V, E)$ be an undirected graph. For each $p \geq 1$, we construct a new graph $G^{[p]}$ by replacing every edge $e=(u, v) \in E$ with a gadget as shown in Figure 1. More precisely, we add two vertices a_{e}, b_{e} for every edge $e \in E . G^{[p]}=\left(V^{[p]}, E^{[p]}\right)$ is defined as follows -

$$
V^{[p]}=V \cup\left\{a_{e}, b_{e} \mid e \in E\right\}
$$

and $E^{[p]}$ contains the following edges for every edge $e=(u, v) \in E$:

- single edges $\left(u, a_{e}\right)$ and $\left(b_{e}, v\right)$.
- $(p N-1)$ multiple edges between $\left(u, b_{e}\right)$ and $\left(a_{e}, v\right)$.

The construction of $G^{[p]}$ for each $p \geq 1$, gives us an $(m+n) \times(m+n)$ matrix $\mathbf{A}^{[p]}$ such that for all undirected graphs G, we have -

$$
Z_{\mathbf{A}^{[p]}}(G)=Z_{\mathbf{A}}\left(G^{[p]}\right)
$$

Hence, we have $\operatorname{EVAL}\left(\mathbf{A}^{[p]}\right) \leq \operatorname{EVAL}(\mathbf{A})$ and $\operatorname{EVAL}\left(\mathbf{A}^{[p]}\right)$ is also not \#P-hard. The entries of $\operatorname{EVAL}\left(\mathbf{A}^{[p]}\right)$ are as follows -

$$
A_{(0, \mathbf{u}),(1, \mathbf{v})}^{[p]}=A_{(1, \mathbf{v}),(0, \mathbf{u})}^{[p]}=0, \quad \forall \mathbf{u} \in I, \mathbf{v} \in J
$$

Thus, $\mathbf{A}^{[p]}$ is a block diagonal matrix with 2 blocks of $m \times m$ and $n \times n$ i.e.

$$
\mathbf{A}^{[p]}=\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right)
$$

with the upper-left $m \times m$ block having the following entries:

$$
\begin{aligned}
A_{(0, \mathbf{u}),(0, \mathbf{v})}^{[p]} & =\left(\sum_{\mathbf{a} \in J} A_{(0, \mathbf{u}),(1, \mathbf{a})}^{[p]}\left(A_{(0, \mathbf{v}),(1, \mathbf{a})}^{[p]}\right)^{p N-1}\right)\left(\sum_{\mathbf{b} \in J}\left(A_{(0, \mathbf{u}),(1, \mathbf{b})}^{[p]}\right)^{p N-1} A_{(0, \mathbf{v}),(1, \mathbf{b})}^{[p]}\right) \\
& =\left(\sum_{\mathbf{a} \in J} B_{\mathbf{u}, \mathbf{a}}\left(B_{\mathbf{v}, \mathbf{a}}\right)^{p N-1}\right)\left(\sum_{\mathbf{b} \in J}\left(B_{\mathbf{u}, \mathbf{b}}\right)^{p N-1} B_{\mathbf{v}, \mathbf{b}}\right)
\end{aligned}
$$

for all $\mathbf{u}, \mathbf{v} \in I$. The factor $B_{\mathbf{u}, \mathbf{a}}$ is -

$$
B_{\mathbf{u}, \mathbf{a}}=\mu_{u_{1}} \nu_{a_{1}} S_{\mathbf{u}, \mathbf{a}}
$$

which leads to -

$$
\begin{aligned}
\sum_{\mathbf{a} \in J} B_{\mathbf{u}, \mathbf{a}}\left(B_{\mathbf{v}, \mathbf{a}}\right)^{p N-1} & =\sum_{\mathbf{a} \in J} \mu_{u_{1}} \nu_{a_{1}} S_{\mathbf{u}, \mathbf{a}}\left(\mu_{v_{1}} \nu_{a_{1}}\right)^{p N-1} \overline{S_{\mathbf{v}, \mathbf{a}}} \\
& =\mu_{u_{1}} \mu_{v_{1}}^{p N-1} \sum_{\mathbf{a} \in J} \nu_{a_{1}}^{p N} S_{\mathbf{u}, \mathbf{a}} \overline{S_{\mathbf{v}, \mathbf{a}}} \\
& =\mu_{u_{1}} \mu_{v_{1}}^{p N-1} \sum_{\mathbf{i} \in[t]} \nu_{i}^{p N}\left\langle\mathbf{S}_{\mathbf{u},(i, *)} \mathbf{S}_{\mathbf{v},(i, *)}\right\rangle
\end{aligned}
$$

and

$$
\sum_{\mathbf{b} \in J}\left(B_{\mathbf{u}, \mathbf{b}}\right)^{p N-1} B_{\mathbf{v}, \mathbf{b}}=\mu_{u_{1}}^{p N-1} \mu_{v_{1}} \sum_{\mathbf{i} \in[t]} \nu_{i}^{p N} \overline{\left\langle\mathbf{S}_{\mathbf{u},(i, *)} \mathbf{S}_{\mathbf{v},(i, *)}\right\rangle}
$$

As a result, we have

$$
\begin{equation*}
A_{(0, \mathbf{u}),(0, \mathbf{v})}^{[p]}=\left(\mu_{u_{1}} \mu_{v_{1}}\right)^{p N}\left|\sum_{\mathbf{i} \in[t]} \nu_{i}^{p N}\left\langle\mathbf{S}_{\mathbf{u},(i, *)} \mathbf{S}_{\mathbf{v},(i, *)}\right\rangle\right|^{2} \tag{1}
\end{equation*}
$$

We can prove a similar result for the lower-right $n \times n$ block. Thus, $\mathbf{A}^{[p]}$ is a non-negative real matrix. Also, if $\mathbf{u}=\mathbf{v}$, then the inner product in equation 1 is equal to n_{i}.

Since $\operatorname{EVAL}\left(\mathbf{A}^{[p]}\right)$ is not \#P-hard, by the dichotomy theorem of Bulatov and Grohe [1],

$$
\left\lvert\, \sum_{\mathbf{i} \in[t]} \nu_{i}^{p N}\left\langle\mathbf{S}_{\mathbf{u},(i, *)} \mathbf{S}_{\mathbf{v},(i, *)}\right|=\left\{\begin{array}{c}
0 \\
\sum_{i \in[t]} n_{i} \cdot \nu_{i}^{p N}
\end{array}\right.\right.
$$

If the vectors $\mathbf{S}_{\mathbf{u}, *}$ and $\mathbf{S}_{\mathbf{v}, *}$ are linearly dependent, then there must exist an integer $\theta_{\mathbf{u}, \mathbf{v}} \in[0, N-1]$ such that $\mathbf{S}_{\mathbf{u}, *}=\omega_{N}^{\theta_{\mathbf{u}, \mathbf{v}}} \cdot \mathbf{S}_{\mathbf{v}, *}$ (as the entries of \mathbf{S} are all powers of unity $\left.\omega_{N}\right)$. Moreover, we need all these $\theta_{\mathbf{u}, \mathbf{v}}=\theta$ for all vectors \mathbf{u}, \mathbf{v} to get the equality:

$$
\left|\sum_{\mathbf{i} \in[t]} \nu_{i}^{p N}\left\langle\mathbf{S}_{\mathbf{u},(i, *)} \mathbf{S}_{\mathbf{v},(i, *)}\right\rangle\right|=\left|\sum_{\mathbf{i} \in[t]} \nu_{i}^{p N} n_{i} \cdot \omega_{N}^{\theta \mathbf{u}, \mathbf{v}}\right|=\sum_{\mathbf{i} \in[t]} n_{i} \cdot \nu_{i}^{p N}
$$

and we are done.
On the other hand, assuming that the vectors $\mathbf{S}_{\mathbf{u}, *}$ and $\mathbf{S}_{\mathbf{v}, *}$ are linearly independent, we have

$$
\left|\sum_{\mathbf{i} \in[t]} \nu_{i}^{p N}\left\langle\mathbf{S}_{\mathbf{u},(i, *)} \mathbf{S}_{\mathbf{v},(i, *)}\right\rangle\right|<\sum_{\mathbf{i} \in[t]} n_{i} \cdot \nu_{i}^{p N}, \quad \text { for any } p \geq 1 .
$$

otherwise it contradicts the assumption that the vectors are linearly independent. The only other possible value of this term is 0 and hence:

$$
\sum_{\mathbf{i} \in[t]} \nu_{i}^{p N}\left\langle\mathbf{S}_{\mathbf{u},(i, *)} \mathbf{S}_{\mathbf{v},(i, *)}\right\rangle=0, \quad \text { for all } p \geq 1 .
$$

Since $\nu_{1}>\nu_{2}>\ldots>\nu_{t}$ is strictly distinct and decreasing, by using the Vandermonde matrix, we have

$$
\left\langle\mathbf{S}_{\mathbf{u},(i, *)} \mathbf{S}_{\mathbf{v},(i, *)}\right\rangle=0, \quad \text { for all } i \geq[t] .
$$

This leads to the following corollary:
Corollary 1. For all $i \in[s]$ and $j \in[t]$, the rank of the $(i, j)^{t h}$ block matrix $\mathbf{S}_{(i, *),(j, *)}$ of \mathbf{S} has exactly the same rank as \mathbf{S}.

Proof. We make use of Lemma 1 to establish that $\operatorname{rank}\left(\mathbf{S}_{(1, *),(1, *)}\right)=\operatorname{rank}(\mathbf{S})$. Without loss of generality, this is sufficient to prove the corollary.

First, we use Lemma 1 to show that

$$
\operatorname{rank}\left(\begin{array}{c}
\mathbf{S}_{(1, *),(1, *)} \\
\mathbf{S}_{(2, *),(1, *)} \\
\vdots \\
\mathbf{S}_{(s, *),(1, *)}
\end{array}\right)=\operatorname{rank}(\mathbf{S})
$$

Consider any $h(=\operatorname{rank}(\mathbf{S}))$ rows of \mathbf{S} which are linearly independent. Among them, since any two, $\mathbf{S}_{\mathbf{x},(*, *)}$ and $\mathbf{S}_{\mathbf{y},(*, *)}$, are linearly independent, the two subvectors $\mathbf{S}_{\mathbf{x},(1, *)}$ and $\mathbf{S}_{\mathbf{y},(1, *)}$ are orthogonal. Therefore, the corresponding h rows of the matrix on the left-hand side are pairwise orthogonal and the rank is at least h. Since it cannot be greater than the rank of the matrix \mathbf{S}, it must be exactly the same.

Following a similar argument, we can show that

$$
\operatorname{rank}\left(\mathbf{S}_{(1, *),(1, *)}\right)=\operatorname{rank}\left(\begin{array}{c}
\mathbf{S}_{(1, *),(1, *)} \\
\mathbf{S}_{(2, *),(1, *)} \\
\vdots \\
\mathbf{S}_{(s, *),(1, *)}
\end{array}\right)
$$

which completes the proof that $\operatorname{rank}\left(\mathbf{S}_{(1, *),(1, *)}\right)=\operatorname{rank}(\mathbf{S})$.
If $h=\operatorname{rank}(\mathbf{S})$, then by Corollary 1 , there must exist h indices $1 \leq i_{1}<\ldots<i_{h} \leq$ m_{1} and $1 \leq j_{1}<\ldots<j_{h} \leq n_{1}$ such that the sub-matrix of $\mathbf{S}-\left\{\left(1, i_{1}\right), \ldots,\left(1, i_{h}\right)\right\} \times$ $\left\{\left(1, j_{1}\right), \ldots,\left(1, j_{h}\right)\right\}$ has full rank h. Without loss of generality we can assume that these indices are the first h indices i.e. $i_{k}=j_{k}=k$ for all $k \in[h]$. The matrix \mathbf{H} is used to represent the $h \times h$ matrix: $H_{i, j}=S_{(1, i),(1, j)}$.

By Lemma 1 and Corollary 1, for every index $\mathbf{x} \in I$, there exists two unique integers $j \in[h]$ and $k \in[0: N-1]$ such that

$$
\begin{equation*}
\mathbf{S}_{\mathbf{x}, *}=\omega_{N}^{k} \cdot \mathbf{S}_{(1, j), *} \tag{2}
\end{equation*}
$$

Similarly, for every index $\mathbf{y} \in J$, there exists two unique integers $j \in[h]$ and $k \in[0: N-1]$ such that

$$
\begin{equation*}
\mathbf{S}_{*, \mathbf{y}}=\omega_{N}^{k} \cdot \mathbf{S}_{*,(1, j)} \tag{3}
\end{equation*}
$$

This gives us a partition set of $\{0\} \times I$ and $\{1\} \times J$ respectively:

$$
\begin{aligned}
& \mathcal{R}_{0}=\left\{R_{(0, i, j), k} \mid i \in[s], j \in[h], k \in[0: N-1]\right\} \\
& \mathcal{R}_{1}=\left\{R_{(1, i, j), k} \mid i \in[t], j \in[h], k \in[0: N-1]\right\}
\end{aligned}
$$

as follows: For every $\mathbf{x} \in I,(0, \mathbf{x}) \in R_{(0, i, j), k}$ if $i=x_{1}$ and \mathbf{x}, j, k satisfy (2) and for every $\mathbf{y} \in J,(1, \mathbf{y}) \in R_{(1, i, j), k}$ if $i=y_{1}$ and \mathbf{y}, j, k satisfy (3) respectively.

By Corollary 1, we have

$$
\begin{aligned}
& \bigcup_{k \in[0: N-1]} R_{(0, i, j), k} \neq \phi, \quad \text { for all } i \in[s], j \in[h] \\
& \bigcup_{k \in[0: N-1]} R_{(1, i, j), k} \neq \phi, \quad \text { for all } i \in[t], j \in[h]
\end{aligned}
$$

Further, we define (\mathbf{C}, \mathfrak{D}) and use the Cyclotomic Reduction Lemma (refer previous lectures) to show that

$$
\operatorname{EVAL}(\mathbf{C}, \mathfrak{D}) \equiv \operatorname{EVAL}(\mathbf{A})
$$

Firstly, we define a matrix \mathbf{F} (of size $s h \times t h$) and represent \mathbf{C} as a bipartisation of this matrix.

$$
\mathbf{F}=\left(\begin{array}{llll}
\mu_{1} \mathbf{I} & & & \\
& \mu_{2} \mathbf{I} & & \\
& & \ddots & \\
& & & \mu_{s} \mathbf{I}
\end{array}\right)\left(\begin{array}{cccc}
\mathbf{H} & \mathbf{H} & \cdots & \mathbf{H} \\
\mathbf{H} & \mathbf{H} & \cdots & \mathbf{H} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{H} & \mathbf{H} & \cdots & \mathbf{H}
\end{array}\right)\left(\begin{array}{cccc}
\nu_{1} \mathbf{I} & & & \\
& \nu_{2} \mathbf{I} & & \\
& & \ddots & \\
& & & \nu_{t} \mathbf{I}
\end{array}\right)
$$

where \mathbf{I} is the $h \times h$ identity matrix. Alternately, \mathbf{F} is defined as
$F_{\mathbf{x}, \mathbf{y}}=\mu_{x_{1}} \nu_{y_{1}} H_{x_{2}, y_{2}}=\mu_{x_{1}} \nu_{y_{1}} S_{\left(1, x_{2}\right),\left(1, y_{2}\right)}$, for all $\mathbf{x}=\left(x_{1} \in[s], x_{2} \in[h]\right), \mathbf{y}=\left(y_{1} \in[t], y_{2} \in[h]\right)$
The matrix \mathbf{C} is defined as

$$
\mathbf{C}=\left(\begin{array}{cc}
0 & \mathbf{F} \\
\mathbf{F}^{T} & 0
\end{array}\right)
$$

The term \mathfrak{D} is defined as $\mathfrak{D}=\left\{\mathbf{D}^{[0]}, \ldots, \mathbf{D}^{[N-1]}\right\}$ is a sequence of N diagonal matrices with the same size of \mathbf{C} and defined by:

$$
D_{(0, \mathbf{x}}^{[r]}=\sum_{k=0}^{N-1}\left|R_{\left(0, x_{1}, x_{2}\right), k}\right| \cdot \omega_{N}^{k r} \text { and } D_{(1, \mathbf{y}}^{[r]}=\sum_{k=0}^{N-1}\left|R_{\left(1, y_{1}, y_{2}\right), k}\right| \cdot \omega_{N}^{k r}
$$

for all $r \in[0: N-1], \mathbf{x}=\left(x_{1}, x_{2}\right) \in[s] \times[h]$ and $\mathbf{y}=\left(y_{1}, y_{2}\right) \in[t] \times[h]$.
Applying the Cyclotomic Reduction Lemma, we then have
Lemma 2. $\operatorname{EVAL}(\mathbf{A}) \equiv \operatorname{EVAL}(\mathbf{C}, \mathfrak{D})$
Proof. We show that the matrix \mathbf{A} can be generated by the partition (of $[m]$) $\mathcal{R}=\mathcal{R}_{0} \cup \mathcal{R}_{1}$. This is sufficient to prove the lemma (with the aid of Cyclotomic Reduction Lemma).

Let $\mathbf{x}, \mathbf{x}^{\prime} \in I,(0, \mathbf{x}) \in R_{\left(0, x_{1}, j\right), k}$ and $\left(0, \mathbf{x}^{\prime}\right) \in R_{\left(0, x_{1}^{\prime}, j^{\prime}\right), k^{\prime}}$. Since \mathbf{A} and \mathbf{C} are bipartisations of \mathbf{B} and \mathbf{F}, respectively, we have

$$
A_{(0, \mathbf{x}),\left(0, \mathbf{x}^{\prime}\right)}=C_{\left(0, x_{1}, j\right),\left(0, x_{1}^{\prime}, j^{\prime}\right)}=0
$$

As a result, we have

$$
A_{(0, \mathbf{x}),\left(0, \mathbf{x}^{\prime}\right)}=C_{\left(0, x_{1}, j\right),\left(0, x_{1}^{\prime}, j^{\prime}\right)} \cdot \omega_{N}^{k+k^{\prime}}
$$

Let $\mathbf{x} \in I,(0, \mathbf{x}) \in R_{\left(0, x_{1}, j\right), k}, \mathbf{y} \in J,(1, \mathbf{y}) \in R_{\left(0, y_{1}, j^{\prime}\right), k^{\prime}}$ for some $j, k, j^{\prime}, k^{\prime}$. Then by (2) and (3),
$A_{(0, \mathbf{x}),(1, \mathbf{y})}=\mu_{x_{1}} \nu_{y_{1}} S_{\mathbf{x}, \mathbf{y}}=\mu_{x_{1}} \nu_{y_{1}} S_{(1, j), \mathbf{y}} \cdot \omega_{N}^{k}=\mu_{x_{1}} \nu_{y_{1}} S_{(1, j),\left(1, j^{\prime}\right)} \cdot \omega_{N}^{k+k^{\prime}}=C_{\left(0, x_{1}, j\right),\left(0, y_{1}, j^{\prime}\right)} \cdot \omega_{N}^{k+k^{\prime}}$
Similarly, we can generate the lower-left block of \mathbf{A} from \mathbf{C} using \mathcal{R}. Also, the construction of \mathfrak{D} resulted from $\mathcal{R}=\mathcal{R}_{0} \cup \mathcal{R}_{1}$ and hence the lemma follows from the Cyclotomic Reduction Lemma.

References

[1] Andrei A. Bulatov and Martin Grohe, The complexity of partition functions, Theoretical Computer Science, Volume 348(2-3): 148-186, 2005.
[2] Jin-Yi Cai, Xi Chen and Pinyan Lu, Graph Homomorphisms with Complex Values: A Dichotomy Theorem, In Proceedings of the 37th International Colloquium Conference on Automata, Languages and Programming (ICALP'10), Lecture Notes in Computer Science, Volume 6198: 275-286. Springer, 2010.

