Lecture 19: The Vanishing Lemma and Lemma 8.8

Instructor: Jin-Yi Cai
Scribe: Hesam Dashti

Recall from the previous lecture that $\mathbf{D}_{a}^{[r]}=\sum_{b=0}^{N-1} \alpha_{a, b} \omega_{N}^{b r}$, and also $\mathbf{D}_{a}^{[0]}=\sum_{b=0}^{N-1} \alpha_{a, b}$ with positive diagonal entries, such that

$$
\mathbf{D}^{[0]}=\left(\begin{array}{ll}
\mathbf{D}_{(0, *)}^{[0]} & \\
& \mathbf{D}_{(1, *)}^{[0]}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{K}_{(0, *)}^{[0]} \otimes \mathbf{L}_{(0, *)}^{[0]} & \\
& \mathbf{K}_{(1, *)}^{[0]} \otimes \mathbf{L}_{(1, *)}^{[0]}
\end{array}\right) .
$$

Since $\mathfrak{D}=\left\{\mathbf{D}^{[0]}, \ldots, \mathbf{D}^{[N-1]}\right\}$ satisfy the \mathcal{T}_{3} properties, then we have:

$$
\mathbf{D}_{a}^{[r]}=\overline{\mathbf{D}_{a}^{[N-r]}}
$$

In other words, $\mathbf{D}^{[0]}$ is consists of an upper half and a lower half and there are blocks of a constant times the identity matrix in some size (section 8.4). Here we want to show the same is correct for $\mathbf{D}^{[r]}$.
$\left(S h a p e_{6}\right) \exists \mathbf{K}_{(s+t) \times(s+t)}^{[r]}$ and $\mathbf{L}_{2 h \times 2 h}^{[r]}$ such that:

$$
\mathbf{D}^{[r]}=\left(\begin{array}{cc}
\mathbf{D}_{(0, *)}^{[r]} & \tag{1}\\
& \mathbf{D}_{(1, *)}^{[r]}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{K}_{(0, *)}^{[r]} \otimes \mathbf{L}_{(0, *)}^{[r]} & \\
& \mathbf{K}_{(1, *)}^{[r]} \otimes \mathbf{L}_{(1, *)}^{[r]}
\end{array}\right) .
$$

To prove this we need to assume (lemma 8.8) for any fixed $1 \leq r \leq N-1$

$$
\begin{aligned}
& \text { Let } \mathbf{D}_{i, j}=\mathbf{D}_{(0,(i, j))}^{[r]} \quad \forall i \in[s] \text { and } j \in[h] \\
& \quad \mathbf{D}=\left(\mathbf{D}_{i, j}\right)
\end{aligned}
$$

with $\operatorname{rank}(\mathbf{D}) \leq 1$ and if $\mathbf{D}_{i, j} \neq 0$ and $\mathbf{D}_{i, j^{\prime}} \neq 0$ then $\left|\mathbf{D}_{i, j}\right|=\left|\mathbf{D}_{i, j^{\prime}}\right|$.
Having this assumption in our deposit, every non-zero $\mathbf{D}_{(0, *)}^{[r]}$ is of rank 1, therefore can be written as $\mathbf{D}_{i, *}=\left(\mathbf{D}_{(i, b)} / \mathbf{D}_{(a, b)}\right)$ for any $i \in[s]$. Therefore the obvious choice for the corresponding $\mathbf{K}^{[r]}$ and $\mathbf{L}^{[r]}$ are as follows

$$
\mathbf{K}_{(0, i)}^{[r]}=\mathbf{D}_{i, b} \text { and } \mathbf{L}_{(0, j)}^{[r]}=\frac{\mathbf{D}_{a, j}}{\mathbf{D}_{a, b}} \quad \forall i \in[s], j \in[h]
$$

Hence,

$$
\mathbf{D}_{(0,(i, j))}^{[r]}=\mathbf{D}_{i, j}=\mathbf{K}_{(0, i)}^{[r]} \cdot \mathbf{L}_{(0, j)}^{[r]}, \quad \forall i \in[s] \text { and } j \in[h]
$$

One can follow the same process for $\mathbf{D}_{(1, *)}^{[r]}$ and show equation 1 is correct.
To prove the above assumption (lemma 8.8), one needs to to consider the vanishing lemma (8.4.1) as follows.

(8.4.1) The Vanishing Lemma

For a positive integer k and $1 \leq i \leq k$, let $\left\{x_{i, n}\right\}_{n \geq 1}$ be k infinite sequences of non-zero real numbers. In addition, let $\left\{x_{0, n}\right\}_{n \geq 1}$ be a squence with $\left\{x_{0, n}\right\}_{n \geq 1}=1$. The following is correct for all $0 \leq i<k$

$$
\lim _{n \rightarrow \infty} \frac{x_{i+1, n}}{x_{i, n}}=0
$$

Part A Let a_{i} and b_{i} be complex coefficients of $x_{i, n}$. Suppose

$$
\begin{aligned}
& \exists 1 \leq l \leq k, \text { such that } a_{i}=b_{i}, \quad \forall 0 \leq i<l . \\
& a_{0}=b_{0}=1 \\
& \operatorname{Im}\left(a_{l}\right)=\operatorname{Im}\left(b_{l}\right) .
\end{aligned}
$$

For infinity many $n,\left|\sum_{i=0}^{k} a_{i} x_{i, n}\right|=\left|\sum_{i=0}^{k} b_{i} x_{i, n}\right|$, then $a_{l}=b_{l}$.
Part B Let $a_{i} \in \mathbb{C}$, for $0 \leq i<k$. For infinity many $n,\left|\sum_{i=0}^{k} a_{i} x_{i, n}\right|=0$ then $a_{i}=0$, for all $0 \leq i \leq k$.

We note that in both parts $x_{i, n}$ are real and cannot be extended to the complex numbers. This is only allowed to choose the coefficients from \mathbb{C}.

Proof. The proof of Part A starts with multiplying the equation with the conjugate terms:

$$
\left(\sum_{i=0}^{k} a_{i} x_{i, n}\right)\left(\sum_{j=0}^{k} \overline{a_{j}} x_{j, n}\right)=\left(\sum_{i=0}^{k} b_{i} x_{i, n}\right)\left(\sum_{j=0}^{k} \overline{b_{j}} x_{j, n}\right)
$$

Next consider the following conditions:

1. $\max \{i, j\}<l$. Recall that in this case $a_{i}=b_{i}$, then $a_{i} \overline{a_{j}} x_{i, n} x_{j, n}=b_{i} \overline{b_{j}} x_{i, n} x_{j, n}$ and the equality is satisfied.
2. $(\max \{i, j\}>l)$ or $(\max \{i, j\}=l$ and $\min i, j>0)$. As $n \rightarrow \infty$ then both side of the equality become of order $\mathrm{o}\left(\left|x_{l, n}\right|\right)$ and cancel each other, hence the equality is satisfied.
3. $\max \{i, j\}=l$ and $\min \{i, j\}=0$. After canceling the identical terms and sending n to infinity $n \rightarrow \infty$ the equation becomes

$$
\left(a_{l}+\overline{a_{l}}\right) x_{l, n}+o\left(\left|x_{l, n}\right|\right)=\left(b_{l}+\overline{b_{l}}\right) x_{l, n}+o\left(\left|x_{l, n}\right|\right) .
$$

After dividing the equation by $x_{l, n}$ the remaining terms show $\operatorname{Re}\left(a_{l}\right)=\operatorname{Re}\left(b_{l}\right)$. Recall $\operatorname{Im}\left(a_{l}\right)=\operatorname{Im}\left(b_{l}\right)$, therefore $a_{l}=b_{l}$ and the equation is satisfied.

Note that the equality of the imaginary parts plays an important role in the proof and the lemma is not correct without this condition. A supporting example is

$$
a_{1}=3+\sqrt{3} i, \quad a_{2}=3\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right), \quad \text { and } b_{1}=b_{2}=3 .
$$

Then $\left|1+a_{1} x+a_{2} x^{2}\right|=\left|1+b_{1} x+b_{2} x^{2}\right|$ for all real x, particularly when $x \rightarrow 0$.
To prove Part B, one needs to consider that $\left\{x_{i, n}\right\}$ is non-zero. Since $x_{0, n}=1$, then $a_{0}=0$. Next, for simplicity, let's normalize the sequence by $x_{1, n}$, then the sum becomes

$$
\left|\sum_{i=1}^{k} a_{i} x_{i, n} / x_{1, n}\right|=\left|a_{1}+a_{2} x_{2, n} / x_{1, n}+\ldots\right|=0
$$

therefore $a_{1}=0$. By induction it is clear that $a_{i}=0$.

Here we have enough tools to prove lemma 8.8.
Lemma 1. If we are not dealing with $\operatorname{EVAL}(\mathbf{C}, \mathfrak{D}) \# P$-hard, then $\operatorname{rank}(\mathbf{D})$ is at most 1, and if $\mathbf{D}_{i, j} \neq 0$ and $\mathbf{D}_{i, j^{\prime}} \neq 0$ then $\left|\mathbf{D}_{i, j}\right|=\left|\mathbf{D}_{i, j^{\prime}}\right| \forall i \in[s]$ and $j, j^{\prime} \in[h]$.

Proof. To proof this lemma consider an undirected graph $G=(V, E)$ where we substitute every edge in $u v \in E$, by the gadget shown in the following figure (Figure 4 of the paper).

Figure 1: The gadget for constructing $G^{[n]}$. Note that the node a is connected to $2 r$ nodes in top and the nodes u and v in bottom. These nodes are connected to the conjugate of a as well. Hence swapping u and v does not change the gadget; a symmetric graph.

Some properties of the graph G :
The node b in this graph is connected to $x_{1: r}$ via the function $p_{n}=n^{2} N+1 \equiv 1(N)$ and the node c is connected to $y_{1: r}$ via $g_{n}=N n-1 \equiv-1(N)(\forall r \geq 1)$. One observation could be comparing these functions as $n \rightarrow \infty$, which yields to $p_{n}>q_{n}$. Later we will use the fact that
$\operatorname{deg}(b) \equiv r(N)$ and $\operatorname{deg}(c) \equiv-r(N)$, which means they are conjugate of each other. When we pass this graph to our partition function Z, one needs to consider all the assignments to u and v and moreover computes the collaborations of the virtual vertices. By taking advantage of the symmetry of G, we can construct a matrix \mathbf{R} such that

$$
\begin{aligned}
& Z_{\mathbf{R}^{[n]}, \mathfrak{D}^{*}}(G)=Z_{\mathbf{C}, \mathfrak{D}}\left(G^{[n]}\right) \\
\Rightarrow & \operatorname{EVAL}\left(\mathbf{R}^{[n]}, \mathfrak{D}^{*}\right) \leq \operatorname{EVAL}(\mathbf{C}, \mathfrak{D}) \quad \text { so } \operatorname{EVAL}\left(\mathbf{R}^{[n]}, \mathfrak{D}^{*}\right) \text { is not \#P-hard. }
\end{aligned}
$$

Note that the matrix \mathbf{R} has the same dimension as \mathbf{C} but with opposite shape, therefore

$$
\mathbf{R}^{[0]}=\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right) .
$$

Because of the shape of \mathbf{R} we have

$$
\mathbf{R}_{(0, u),(1, v)}^{[n]}=\mathbf{R}_{(1, u),(0, v)}^{[n]}=0, \quad \forall u \in I, v \in J
$$

The entries of \mathbf{R} are as follows:

$$
\begin{aligned}
\mathbf{R}_{(1, u),(1, v)}^{[n]} & =\left(\sum_{a, b, c \in I_{[s] \times[h]}}(\mathbf{I})^{r}(\mathbf{I I})^{r} F_{a, u} F_{a, v}^{N-1} \mathbf{D}_{(0, a)}^{[0]} \mathbf{D}_{(0, b)}^{[r]} \mathbf{D}_{(0, c)}^{[N-r]}\right) \\
& \times\left(\sum_{a, b, c \in I_{[s] \times[h]}}(\mathbf{I})^{r}(\mathbf{I I})^{r} F_{a, u}^{N-1} F_{a, v} \mathbf{D}_{(0, a)}^{[0]} \mathbf{D}_{(0, b)}^{[r]} \mathbf{D}_{(0, c)}^{[N-r]}\right), \forall u, v \in J_{[t] \times[h]}
\end{aligned}
$$

Where

$$
\mathbf{I}: \sum_{x \in J} F_{(a, x)}^{N-1} F_{(b, x)}^{p_{n}} \mathbf{D}_{(1, x)}^{[0]}=\mu_{a_{1}}^{N-1} \mu_{b_{1}}^{p_{n}} \sum_{x \in J} \nu_{x_{1}}^{N-1} \nu_{x_{1}}^{p_{n}} \mathbf{H}_{a_{2}, x_{2}}^{N-1} \mathbf{H}_{b 2, x 2}^{p_{n}} \mathbf{D}_{\left(1,\left(x_{1}, 1\right)\right)}^{[0]}
$$

Note that $\mathbf{H}_{a_{2}, x_{2}}$ are roots of unity so we can get the conjufate $\mathbf{H}_{a_{2}, x_{2}}^{N-1}=\overline{\mathbf{H}_{a_{2}, x_{2}}}$. And also $p_{n} \equiv 1(N)$ then $\mathbf{H}_{b 2, x 2}^{p_{n}}=\mathbf{H}_{b 2, x 2}$. Therefore

$$
\begin{aligned}
\mathbf{I} & =\mu_{a_{1}}^{N-1} \mu_{b_{1}}^{p_{n}} \sum_{x_{1} \in[t]} \nu_{x_{1}}^{N-1+p_{n}} \mathbf{D}_{\left(1,\left(x_{1}, 1\right)\right)}^{[0]}<\mathbf{H}_{a_{2}, *}, \mathbf{H}_{b_{2}, *}> \\
& <\mathbf{H}_{a_{2}, *}, \mathbf{H}_{b_{2}, *}>= \begin{cases}h & a_{2}=b_{2} \\
0 & \mathrm{O} / \mathrm{W}\end{cases}
\end{aligned}
$$

$$
\text { Let } L=h \cdot \sum_{x_{1} \in[t]} \nu_{x_{1}}^{N-1+p_{n}} \mathbf{D}_{\left(1,\left(x_{1}, 1\right)\right)}^{[0]}
$$

$$
\mathbf{I}=\mu_{a_{1}}^{N-1} \mu_{b_{1}}^{p_{n}} L, \text { where } L \text { is independent of } u, v, a, b, c, \text { and also } L>0 .
$$

And the the II term can be written as

$$
\mathbf{I I}: \sum_{y \in J} F_{a, y} F_{c, y}^{q_{n}} \mathbf{D}_{(1, y)}^{[0]}=L^{\prime} \mu_{a_{1}} \mu_{c_{1}}^{q_{n}} \quad \forall a_{1}=c_{1} .
$$

The L^{\prime} term is defined like L as a sum on h, ν, and D and is a positive term.
Next, to simplify \mathbf{R}, we need to define some notations and keep in mind that (from Shape $_{3}$) $\mathbf{D}_{(0, c)}^{N-r}=\overline{\mathbf{D}_{(0, c)}^{[r]}}=\overline{\mathbf{D}_{c 1, c 2}}$. In addition, from the \mathbf{H} 's dot products in the definitions of \mathbf{I} and $\mathbf{I I}$, we only consider \mathbf{R} entries in which $u_{1}=v_{1}=1$, hence we can denote $\mathbf{R}_{u, v}=\mathbf{R}_{(1,(1, u)),(1,(1, v))}$. Let $P_{n}=r p_{n}, Q_{n}=r q_{n}$, and

$$
Z=\sum_{a_{1} \in[s]}\left(L \cdot \mu_{a_{1}}^{N-1}\right)^{r}\left(L^{\prime} \cdot \mu_{a_{1}}\right)^{r} \mu_{a_{1}}^{N} \mathbf{D}_{\left(0,\left(a_{1}, 1\right)\right)}^{[0]}
$$

Therefore (note that $\nu=1$):

$$
R_{u, v}=Z^{2}\left(\sum_{b, c \in[s]} \mu_{b}^{P} \mu_{c}^{Q} \sum_{a \in[h]} \mathbf{D}_{b, a} \overline{\mathbf{D}_{c, a}} \mathbf{H}_{a, u} \overline{\mathbf{H}_{a, v}}\right)\left(\sum_{b^{\prime}, c^{\prime} \in[s]} \mu_{b^{\prime}}^{P} \mu_{c^{\prime}}^{Q} \sum_{a \in[h]} \mathbf{D}_{b^{\prime}, a} \overline{\mathbf{D}_{c^{\prime}, a} \mathbf{H}_{a, u}} \mathbf{H}_{a, v}\right)
$$

Note that we normalize ν 's and μ 's based on ν_{1} and μ_{1} respectively:

$$
\nu_{1}=1>\ldots>\nu_{[t]} \text { and } \mu_{1}=1>\ldots>\mu_{[s]} .
$$

Next we want to work on the magnitude of μ and stratify the sum based on these orders. Notice that $\mu_{b}^{P} \mu_{c}^{Q} \mu_{b^{\prime}}^{P} \mu_{c^{\prime}}^{Q}=\left(\mu_{b} \mu_{b^{\prime}}\right)^{P}\left(\mu_{c} \mu_{c^{\prime}}\right)^{Q}$. These terms are first ordered based on $\mu_{b} \mu_{b^{\prime}}$ and then $\mu_{c} \mu_{c^{\prime}}$ (recall that as $\left.n \rightarrow \infty P>Q\right)$. Therefore we define the order over a set \mathcal{T},

$$
\mathcal{T}=\left\{\left.T=\left(\begin{array}{cc}
b & c \\
b^{\prime} & c^{\prime}
\end{array}\right) \right\rvert\, b, b^{\prime}, c, c^{\prime} \in[s]\right\} .
$$

Where

$$
\begin{aligned}
& T_{1} \equiv_{\mu} T_{2} \text { iff }\left(\mu_{b 1} \mu_{b 1^{\prime}}=\mu_{b 2} \mu_{b 2^{\prime}}\right) \text { and }\left(\mu_{c 1} \mu_{c 1^{\prime}}=\mu_{c 2} \mu_{c 2^{\prime}}\right) \\
& T_{1} \leq_{\mu} T_{2} \text { If either }\left(\mu_{b 1} \mu_{b 1^{\prime}}<\mu_{b 2} \mu_{b 2^{\prime}}\right) \text { or }\left(\mu_{b 1} \mu_{b 1^{\prime}}=\mu_{b 2} \mu_{b 2^{\prime}} \text { and } \mu_{c 1} \mu_{c 1^{\prime}} \leq \mu_{c 2} \mu_{c 2^{\prime}}\right)
\end{aligned}
$$

Based on this definition we can see

$$
\begin{aligned}
& \mathcal{T}_{1}=\left\{T_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\} \\
& \mathcal{T}_{2}=\left\{T_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), T_{2}=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)\right\}
\end{aligned}
$$

therefore we can divide \mathcal{T} into classes $\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots \mathcal{T}_{d}$, from the largest to the smallest order. Having this definition, we can rewrite the \mathbf{R} as follows:

$$
\mathbf{R}_{u, v}=Z^{2} \sum_{i \in[d]} U_{i}^{P} W_{i}^{Q} \sum_{T \in \mathcal{T}_{i}} X_{u, v, T},
$$

where

$$
\begin{aligned}
U_{i} & =\mu_{b} \mu_{b^{\prime}} \\
W_{i} & =\mu_{c} \mu_{c^{\prime}} \\
X_{u, v, T} & =\left(\sum_{a \in[h]} \mathbf{D}_{b, a} \overline{\mathbf{D}_{c, a}} \mathbf{H}_{a, u} \overline{\mathbf{H}_{a, v}}\right)\left(\sum_{a \in[h]} \mathbf{D}_{b^{\prime}, a} \overline{\mathbf{D}_{c^{\prime}, a} \mathbf{H}_{a, u}} \mathbf{H}_{a, v}\right) .
\end{aligned}
$$

Therefore, when $u=v$ the \mathbf{H} terms cancel each other out and one can get

$$
\frac{\mathbf{R}_{u, u}}{Z^{2}}=\left|\sum_{b, c \in[s]} \sum_{a \in[h]} \mathbf{D}_{1, a} \overline{\mathbf{D}_{1, a}}\right|^{2} U_{1}^{P} W_{1}^{Q}
$$

This means the coefficient of the leading term $U_{1}^{P} W_{1}^{Q}$ is $\left\|\mathbf{D}_{1, *}\right\|^{4}$. Next a question arises that whether $\mathbf{D}_{a, *}=0$ or not? Consider the case where the equality is correct, then μ_{1} must be 0 and we can start the process from μ_{2}. On the other hand, if $\mathbf{D}_{1, *} \neq 0$ and its coefficient is sufficiently big, then μ_{2}, \ldots do not matter. Hence, the other terms become zero for sufficiently large n.
Next we are going to use the vanishing lemma on the matrix \mathbf{R} and show that all the nonzero terms of D must have the same norm.
(The proof will be continued).

