
CS 880: Complexity of Counting Problems 03/27/2012

Lecture 19: The Vanishing Lemma and Lemma 8.8

Instructor: Jin-Yi Cai Scribe: Hesam Dashti

Recall from the previous lecture that D
[r]
a =

∑N−1
b=0 αa,bω

br
N , and also D

[0]
a =

∑N−1
b=0 αa,b

with positive diagonal entries, such that

D[0] =

(
D

[0]
(0,∗)

D
[0]
(1,∗)

)
=

(
K

[0]
(0,∗) ⊗ L

[0]
(0,∗)

K
[0]
(1,∗) ⊗ L

[0]
(1,∗)

)
.

Since D = {D[0], . . . ,D[N−1]} satisfy the T3 properties, then we have:

D[r]
a = D

[N−r]
a .

In other words, D[0] is consists of an upper half and a lower half and there are blocks of
a constant times the identity matrix in some size (section 8.4). Here we want to show the
same is correct for D[r].
(Shape6) ∃ K

[r]
(s+t)×(s+t) and L

[r]
2h×2h such that:

D[r] =

(
D

[r]
(0,∗)

D
[r]
(1,∗)

)
=

(
K

[r]
(0,∗) ⊗ L

[r]
(0,∗)

K
[r]
(1,∗) ⊗ L

[r]
(1,∗)

)
. (1)

To prove this we need to assume (lemma 8.8) for any fixed 1 ≤ r ≤ N − 1

Let Di,j = D
[r]
(0,(i,j)) ∀i ∈ [s] and j ∈ [h]

D = (Di,j),

with rank(D)≤ 1 and if Di,j 6= 0 and Di,j′ 6= 0 then |Di,j| = |Di,j′|.
Having this assumption in our deposit, every non-zero D

[r]
(0,∗) is of rank 1, therefore can

be written as Di,∗ = (D(i,b)/D(a,b)) for any i ∈ [s]. Therefore the obvious choice for the
corresponding K[r] and L[r] are as follows

K
[r]
(0,i) = Di,b and L

[r]
(0,j) =

Da,j

Da,b

∀i ∈ [s], j ∈ [h].

Hence,
D

[r]
(0,(i,j)) = Di,j = K

[r]
(0,i) · L

[r]
(0,j), ∀i ∈ [s] and j ∈ [h].

One can follow the same process for D
[r]
(1,∗) and show equation 1 is correct.

To prove the above assumption (lemma 8.8), one needs to to consider the vanishing lemma
(8.4.1) as follows.
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(8.4.1) The Vanishing Lemma

For a positive integer k and 1 ≤ i ≤ k, let {xi,n}n≥1 be k infinite sequences of non-zero
real numbers. In addition, let {x0,n}n≥1 be a squence with {x0,n}n≥1 = 1. The following is
correct for all 0 ≤ i < k

lim
n→∞

xi+1,n

xi,n
= 0.

Part A Let ai and bi be complex coefficients of xi,n. Suppose

∃1 ≤ l ≤ k, such that ai = bi, ∀0 ≤ i < l.

a0 = b0 = 1

Im(al) = Im(bl).

For infinity many n, |
∑k

i=0 aixi,n| = |
∑k

i=0 bixi,n|, then al = bl.

Part B Let ai ∈ C, for 0 ≤ i < k. For infinity many n, |
∑k

i=0 aixi,n| = 0 then ai = 0, for all
0 ≤ i ≤ k.

We note that in both parts xi,n are real and cannot be extended to the complex numbers.
This is only allowed to choose the coefficients from C.

Proof. The proof of Part A starts with multiplying the equation with the conjugate terms:(
k∑
i=0

aixi,n

)(
k∑
j=0

ajxj,n

)
=

(
k∑
i=0

bixi,n

)(
k∑
j=0

bjxj,n

)

Next consider the following conditions:

1. max{i, j} < l. Recall that in this case ai = bi, then aiajxi,nxj,n = bibjxi,nxj,n and the
equality is satisfied.

2. (max{i, j} > l) or (max{i, j} = l and min i, j > 0). As n → ∞ then both side of the
equality become of order o(|xl,n|) and cancel each other, hence the equality is satisfied.

3. max{i, j} = l and min{i, j} = 0. After canceling the identical terms and sending n to
infinity n→∞ the equation becomes

(al + al)xl,n + o(|xl,n|) = (bl + bl)xl,n + o(|xl,n|).

After dividing the equation by xl,n the remaining terms show Re(al)=Re(bl). Recall
Im(al)=Im(bl), therefore al=bl and the equation is satisfied.
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Note that the equality of the imaginary parts plays an important role in the proof and the
lemma is not correct without this condition. A supporting example is

a1 = 3 +
√

3i, a2 = 3(
1

2
+

√
3

2
i), and b1 = b2 = 3.

Then |1 + a1x+ a2x
2| = |1 + b1x+ b2x

2| for all real x, particularly when x→ 0.

To prove Part B, one needs to consider that {xi,n} is non-zero. Since x0,n = 1, then a0 = 0.
Next, for simplicity, let’s normalize the sequence by x1,n, then the sum becomes

|
k∑
i=1

aixi,n/x1,n| = |a1 + a2x2,n/x1,n + . . . | = 0.

therefore a1=0. By induction it is clear that ai = 0.

Here we have enough tools to prove lemma 8.8.

Lemma 1. If we are not dealing with EVAL(C,D)#P-hard, then rank(D) is at most 1, and
if Di,j 6= 0 and Di,j′ 6= 0 then |Di,j| = |Di,j′ | ∀i ∈ [s] and j, j′ ∈ [h].

Proof. To proof this lemma consider an undirected graph G = (V,E) where we substitute
every edge in uv ∈ E, by the gadget shown in the following figure (Figure 4 of the paper).
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Figure 1: The gadget for constructing G[n]. Note that the node a is connected to 2r nodes
in top and the nodes u and v in bottom. These nodes are connected to the conjugate of a
as well. Hence swapping u and v does not change the gadget; a symmetric graph.

Some properties of the graph G:
The node b in this graph is connected to x1:r via the function pn = n2N + 1 ≡ 1(N) and the
node c is connected to y1:r via gn = Nn − 1 ≡ −1(N) (∀r ≥ 1). One observation could be
comparing these functions as n→∞, which yields to pn > qn. Later we will use the fact that
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deg(b) ≡ r(N) and deg(c) ≡ −r(N), which means they are conjugate of each other. When
we pass this graph to our partition function Z, one needs to consider all the assignments to u
and v and moreover computes the collaborations of the virtual vertices. By taking advantage
of the symmetry of G, we can construct a matrix R such that

ZR[n],D∗(G) = ZC,D(G[n])

⇒EVAL(R[n],D∗) ≤ EVAL(C,D) so EVAL(R[n],D∗) is not #P-hard.

Note that the matrix R has the same dimension as C but with opposite shape, therefore

R[0] =

(
∗ 0
0 ∗

)
.

Because of the shape of R we have

R
[n]
(0,u),(1,v) = R

[n]
(1,u),(0,v) = 0, ∀u ∈ I, v ∈ J.

The entries of R are as follows:

R
[n]
(1,u),(1,v) =

 ∑
a,b,c∈I[s]×[h]

(I)r(II)rFa,uF
N−1
a,v D

[0]
(0,a)D

[r]
(0,b)D

[N−r]
(0,c)


×

 ∑
a,b,c∈I[s]×[h]

(I)r(II)rFN−1
a,u Fa,vD

[0]
(0,a)D

[r]
(0,b)D

[N−r]
(0,c)

 ,∀u, v ∈ J[t]×[h]

Where
I :
∑
x∈J

FN−1
(a,x) F

pn
(b,x)D

[0]
(1,x) = µN−1a1

µpnb1

∑
x∈J

νN−1x1
νpnx1H

N−1
a2,x2

Hpn
b2,x2D

[0]
(1,(x1,1))

Note that Ha2,x2 are roots of unity so we can get the conjufate HN−1
a2,x2

= Ha2,x2 . And also
pn ≡ 1(N) then Hpn

b2,x2 = Hb2,x2. Therefore

I = µN−1a1
µpnb1

∑
x1∈[t]

νN−1+pnx1
D

[0]
(1,(x1,1))

< Ha2,∗,Hb2,∗ >

< Ha2,∗,Hb2,∗ >=

{
h a2 = b2

0 O/W

Let L = h ·
∑
x1∈[t]

νN−1+pnx1
D

[0]
(1,(x1,1))

I = µN−1a1
µpnb1 L, where L is independent of u, v, a, b, c, and also L > 0.

And the the II term can be written as

II :
∑
y∈J

Fa,yF
qn
c,yD

[0]
(1,y) = L′µa1µ

qn
c1
∀a1 = c1.
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The L′ term is defined like L as a sum on h, ν, and D and is a positive term.
Next, to simplify R, we need to define some notations and keep in mind that (from Shape3)

DN−r
(0,c) = D

[r]
(0,c) = Dc1,c2. In addition, from the H’s dot products in the definitions of I and II,

we only consider R entries in which u1 = v1 = 1, hence we can denote Ru,v = R(1,(1,u)),(1,(1,v)).
Let Pn = rpn, Qn = rqn, and

Z =
∑
a1∈[s]

(L · µN−1a1
)r(L′ · µa1)rµNa1D

[0]
(0,(a1,1))

.

Therefore (note that ν = 1):

Ru,v = Z2

∑
b,c∈[s]

µPb µ
Q
c

∑
a∈[h]

Db,aDc,aHa,uHa,v

 ∑
b′,c′∈[s]

µPb′µ
Q
c′

∑
a∈[h]

Db′,aDc′,aHa,uHa,v

 .

Note that we normalize ν’s and µ’s based on ν1 and µ1 respectively:

ν1 = 1 > . . . > ν[t] and µ1 = 1 > . . . > µ[s].

Next we want to work on the magnitude of µ and stratify the sum based on these orders.
Notice that µPb µ

Q
c µ

P
b′µ

Q
c′ = (µbµb′)

P (µcµc′)
Q. These terms are first ordered based on µbµb′ and

then µcµc′ (recall that as n→∞P > Q). Therefore we define the order over a set T ,

T =

{
T =

(
b c
b′ c′

)
|b, b′, c, c′ ∈ [s]

}
.

Where

T1 ≡µ T2 iff (µb1µb1′ = µb2µb2′) and (µc1µc1′ = µc2µc2′)

T1 ≤µ T2 If either (µb1µb1′ < µb2µb2′) or (µb1µb1′ = µb2µb2′ and µc1µc1′ ≤ µc2µc2′)

Based on this definition we can see

T1 =

{
T1 =

(
1 1
1 1

)}
T2 =

{
T1 =

(
1 1
1 2

)
, T2 =

(
1 1
2 1

)}
. . . ,

therefore we can divide T into classes T1, T2, . . . Td, from the largest to the smallest order.
Having this definition, we can rewrite the R as follows:

Ru,v = Z2
∑
i∈[d]

UP
i W

Q
i

∑
T∈Ti

Xu,v,T ,
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where

Ui = µbµb′

Wi = µcµc′

Xu,v,T =

∑
a∈[h]

Db,aDc,aHa,uHa,v

∑
a∈[h]

Db′,aDc′,aHa,uHa,v

 .

Therefore, when u = v the H terms cancel each other out and one can get

Ru,u

Z2
= |

∑
b,c∈[s]

∑
a∈[h]

D1,aD1,a|2UP
1 W

Q
1 .

This means the coefficient of the leading term UP
1 W

Q
1 is ‖D1,∗‖4. Next a question arises

that whether Da,∗ = 0 or not? Consider the case where the equality is correct, then µ1

must be 0 and we can start the process from µ2. On the other hand, if D1,∗ 6= 0 and its
coefficient is sufficiently big, then µ2, . . . do not matter. Hence, the other terms become zero
for sufficiently large n.
Next we are going to use the vanishing lemma on the matrix R and show that all the non-
zero terms of D must have the same norm.
(The proof will be continued).
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