Lecture 20: Proof of Lemma 8.8; Claim 8.1 and 8.2

Instructor: Jin-Yi Cai
Scribe: Hesam Dashti

Last time we saw

$$
\mathbf{R}_{u, v}=Z^{2} \sum_{i \in[d]} U_{i}^{P} W_{i}^{Q} \sum_{T \in \mathcal{T}_{i}} X_{u, v, T}
$$

where Z is independent of u and v, and U and W are functions of μ and finally

$$
X_{u, v, T}=\left(\sum_{a \in[h]} \mathbf{D}_{b, a} \overline{\mathbf{D}_{c, a}} \mathbf{H}_{a, u} \overline{\mathbf{H}_{a, v}}\right)\left(\sum_{a \in[h]} \mathbf{D}_{b^{\prime}, a} \overline{\mathbf{D}_{c^{\prime}, a} \mathbf{H}_{a, u}} \mathbf{H}_{a, v}\right), \quad \text { for } T=\left(\begin{array}{cc}
b & c \tag{1}\\
b^{\prime} & c^{\prime}
\end{array}\right) .
$$

One can rewrite the matrix \mathbf{R} as follows:

$$
\mathbf{R}^{[n]}=\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right) \text { and } \mathbf{R}_{(1, u),(1, v)}^{[n]}=(F)(S)
$$

where F and S are the sum's as mentioned above. Notice that these sum's are symmetric as the defined gadget was. We also calculated the coefficient of the leading term $U_{1}^{P} W_{1}^{Q}$ that was

$$
X_{u, u,\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)}=\left(\sum_{a \in[h]}\left|\mathbf{D}_{1, a}\right|^{2}\right)^{2}=\left\|\mathbf{D}_{1, *}\right\|^{4}
$$

Last time this was discussed that why we assume this value is not zero. Since it is not zero, for sufficiently large n, the coefficient is bigger than zero $\mathbf{R}_{u, u}^{[n]}>0$. One nice observation from the above statements is that since $X_{u, u}, Z, U$, and W are independent of u, then $\mathbf{R}_{u, u}$ is independent of u. So we have

$$
\mathbf{R}_{u, u}=\mathbf{R}_{1,1} .
$$

Next let us look at $X_{u, v, T}$ as defined in equation 1. This is a product of the D terms by roots of unity, therefore

$$
X_{u, v,\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \leq\left\|\mathbf{D}_{1, *}\right\|^{4} \text { the maximum possible. }}
$$

Notice that for the case that it is strictly less than $\left\|\mathbf{D}_{1, *}\right\|^{4}$, since \mathbf{R} is a stratification of X times the leading terms, then \mathbf{R} is strictly less than a maximum possible. Here recall the shape of $\mathbf{R}=\left(\begin{array}{ll}* & 0 \\ 0 & *\end{array}\right)$ and consider the Bulatov-Grohe, we can conclude that to have a non-\#P-hard problem, either $\operatorname{det}(\mathbf{R})=0$ or the matrix is zero.
If $\operatorname{det}(\mathbf{R})=0$, for sufficiently large n since the diagonals are equal they must be equal to zero. In either case the polynomial that defines the diagonal of \mathbf{R} must be zero. Hence, by
using the vanishing lemma B , all the coefficients of the polynomial must be zero. Therefore we can conclude that the 'strictly less' is not the case and we can have the following property: Property 8.1 For every sufficiently large $n\left|\mathbf{R}_{1,1}\right|>0$ and

$$
\left|\mathbf{R}_{u, v}\right| \in\left\{0,\left|\mathbf{R}_{1,1}\right|\right\}, \quad \forall u, v \in[h]
$$

Following we consider $u=1$ and define:

$$
\mathcal{H}_{*, v}=\mathbf{H}_{*, 1} \circ \overline{\mathbf{H}_{*, v}},
$$

therefore

1. $X_{1, v, T}=X_{v, T}=\left(\sum_{a \in[h]} \mathbf{D}_{b, a} \overline{\mathbf{D}_{c, a}} \mathcal{H}_{a, v}\right)\left(\sum_{a \in[h]} \mathbf{D}_{b^{\prime}, a} \overline{\mathbf{D}_{c^{\prime}, a} \mathcal{H}_{a, v}}\right)$.
2. Since $\mathcal{H}_{a, 1}$ are constants, therefore the set $\mathcal{H}_{a, v \mid v \in[h]}$ is a set of orthogonal basis.
3. $\sum_{a \in[h]} \mathcal{H}_{a, v} \overline{\mathcal{H}_{a, v^{\prime}}}= \begin{cases}h & v=v^{\prime} \\ 0 & \mathrm{O} / \mathrm{W}\end{cases}$

We need two more definitions to continue this section, let

$$
\begin{aligned}
& K=\left\{i \in[h] \mid \mathbf{D}_{1, i} \neq 0\right\} \neq \varnothing \\
& A=\left\{v \in[h] \mid \forall i, j \in K, \mathcal{H}_{i, v}=\mathcal{H}_{j, v}\right.
\end{aligned}
$$

The following figure is given to visualize the definitions:

Using the definitions we have

1. If $|K|=1$, then $A=[h]$.
2. If $A=[h]$, then $|K|=1$.
3. If $\mathcal{H}_{*, 1}=1$, then $1 \in A \neq \varnothing$.
4. If $K=[h]$, then $|A|=1$.

Let us reconsider the X term with $T=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$:

$$
\begin{aligned}
& X_{v,\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)}=\left(\sum_{a \in[h]} \mathbf{D}_{b, a} \overline{\mathbf{D}_{c, a}} \mathcal{H}_{a, v}\right)\left(\sum_{a \in[h]} \mathbf{D}_{b^{\prime}, a} \overline{\mathbf{D}_{c^{\prime}, a} \mathcal{H}_{a, v}}\right) \\
&=\left(\sum_{a \in[h]}\left|\mathbf{D}_{1, a}\right|^{2} \mathcal{H}_{a, v}\right)\left(\sum_{a \in[h]}\left|\mathbf{D}_{1, a}\right|^{2} \overline{\mathcal{H}_{a, v}}\right)
\end{aligned}
$$

In this equation, a is in fact over K, because D is zero elsewhere. Here if we consider the cases where $v \in A$ then

$$
X_{v,\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)}=h \cdot\left\|\mathbf{D}_{1, *}\right\|^{4}
$$

Notice that the norm is independent of v, so we can conclude the property 8.2 as follows:
Property 8.2 For any $v \in A$ and sufficiently large n

$$
\left|\mathbf{R}_{1, v}\right|=\left|\mathbf{R}_{1,1}\right| .
$$

Next we want to show that the non-zero values of \mathbf{D} are the same. Recall that $\mathbf{D}_{1, a} \neq 0$ iff $a \in K$.
To do so, let $B=[h]-A$ and $B \neq \varnothing$. Note that if $B=\varnothing$ then $A=[h]$ which means $|K|=1$ and $\mathbf{D}_{1, a}$ on $a \in K$ is the same as itself and no need to prove it.

leading terms by $|\mathbf{D}|^{2}$ which is a product of the \mathbf{D} terms and non-constant roots of unity (because $v \in B$). This makes magnitude of X to be strictly less that the maximum $\left\|\mathbf{D}_{1, *}\right\|^{4}$. By the same argument as we did before today property 8.3 states:
Property 8.3 For sufficiently large $n, \mathbf{R}_{1, v}=0$ and by vanishing lemma B

$$
\sum_{T \in \mathcal{T}_{i}} X_{v, T}=0 \quad \forall v \in B, \forall i \in[d] .
$$

Using this property

$$
X_{v,\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)}=\left(\sum_{a \in[h]}\left|\mathbf{D}_{1, a}\right|^{2} \mathcal{H}_{a, v}\right)\left(\sum_{a \in[h]}\left|\mathbf{D}_{1, a}\right|^{2} \overline{\mathcal{H}_{a, v}}\right)=0 .
$$

This means $\left|\mathbf{D}_{1, *}\right|^{2} \perp\left\{\mathcal{H}_{*, v} \mid v \in B\right\}$. On the other hand $\left\{\mathcal{H}_{*, v} \mid v \in B\right\} \perp\left\{\mathcal{H}_{*, v} \mid v \in A\right\}$, therefore

$$
\left|\mathbf{D}_{1, *}\right|^{2} \in \operatorname{span}\left\{\mathcal{H}_{*, v} \mid v \in A\right\} .
$$

Therefore

$$
\left|\mathbf{D}_{1, *}\right|^{2}=\sum_{i=1}^{|A|} \lambda_{i} \mathcal{H}_{*, v_{i}}
$$

If we recall the properties of A, the value of $\left|\mathbf{D}_{1, *}\right|^{2}$ is a constant, independent of v, for every $a \in K$ and for all $a \notin K$ this value is zero.
So we showed that $\mathbf{D}_{1, a}$ for all $a \in K$ are the same constants. This is claim 8.1:
Claim 8.1 For any $v \in B,\left|\mathbf{D}_{1, *}\right|^{2} \perp \mathcal{H}_{*, v}$ and $\left|\mathbf{D}_{1, *}\right|^{2}$ is a constant on K and zero elsewhere.
Next we want to consider $\mathbf{D}_{2, *}$ and show that on $K, \mathbf{D}_{2, *}$ is a multiple of $\mathbf{D}_{1, *}$.
Again we consider $B \neq 0$ as we discussed before. The ultimate goal is to show $\mathbf{D}_{2, *}$ is a multiple of $\mathbf{D}_{1, *}$ for every a, but first we focus on $a \in K$.
We start with considering new $X_{v, T}$. Let us consider two T matrices:

$$
T_{1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \quad T_{2}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

Based on the general definition of the T matrices these matrices belong to a set \mathcal{T}_{g} such that

$$
\mathcal{T}_{g}=\left\{T_{1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), T_{2}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), T_{3}=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right), T_{4}=\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right)\right\}
$$

The shape of matrix T_{3} and T_{4} shows that $X_{v, T_{3}}=X_{v, T_{4}}=0$. Moreover, using property 8.3, we know

$$
\begin{equation*}
\sum_{T \in \mathcal{T}_{g}} X_{v, T}=0 \quad v \in B \tag{2}
\end{equation*}
$$

Let call a matrix 'a conjugate pair form' if it is of the form $T=\left(\begin{array}{ll}b & c \\ c & b\end{array}\right)$. Note that for such a matrix T, we have $X_{v, T} \geq 0$, because the magnitude has a square form. Since the matrices $T_{1}, T_{2} \in \mathcal{T}_{g}$ are in conjugate form, $X_{v, T_{3}}=X_{v, T_{4}}=0$, and equation 2 is true for the sum on all $T \in \mathcal{T}_{g}$, therefore $X_{v, T}=0$ for every $T \in \mathcal{T}_{g}$.
Therefore,

$$
X_{v, T_{1}}=\left|\sum_{a \in K} \mathbf{D}_{1, a} \overline{\mathbf{D}_{2, a}} \mathcal{H}_{a, v}\right|^{2}=0 \quad \forall v \in B
$$

This means that

$$
\mathbf{D}_{1, *} \circ \overline{\mathbf{D}_{2, *}} \perp\left\{\mathcal{H}_{*, v}\right\} \quad \forall v \in B
$$

Using the same argument as before, if a set is orthogonal to a part of a orthogonal set then it belongs to span of the rest:

$$
\mathbf{D}_{1, *} \circ \overline{\mathbf{D}_{2, *}}=\operatorname{span}\left\{\mathcal{H}_{*, v}\right\} \text { for } v \in A
$$

On the other hand, we know that (a) the right hand side has constant values for $a \in K$, (b) the $\mathbf{D}_{1, *}>0$, and (c) the $\mathbf{D}_{1, *}=\mathbf{D}_{1,1}$ therefore
Claim 8.2 There is a complex number λ such that

$$
\mathbf{D}_{2, *}=\lambda \mathbf{D}_{1, *} \quad \forall a \in K
$$

