
CS 880: Complexity of Counting Problems 03/29/2012

Lecture 20: Proof of Lemma 8.8; Claim 8.1 and 8.2

Instructor: Jin-Yi Cai Scribe: Hesam Dashti

Last time we saw
Ru,v = Z2

∑
i∈[d]

UP
i W

Q
i

∑
T∈Ti

Xu,v,T ,

where Z is independent of u and v, and U and W are functions of µ and finally

Xu,v,T =

∑
a∈[h]

Db,aDc,aHa,uHa,v

∑
a∈[h]

Db′,aDc′,aHa,uHa,v

 , for T =

(
b c
b′ c′

)
. (1)

One can rewrite the matrix R as follows:

R[n] =

(
∗ 0
0 ∗

)
and R

[n]
(1,u),(1,v) = (F )(S),

where F and S are the sum’s as mentioned above. Notice that these sum’s are symmetric as
the defined gadget was. We also calculated the coefficient of the leading term UP

1 W
Q
1 that

was

X
u,u,

1 1
1 1

 =

∑
a∈[h]

|D1,a|2
2

= ‖D1,∗‖4.

Last time this was discussed that why we assume this value is not zero. Since it is not zero,
for sufficiently large n, the coefficient is bigger than zero R

[n]
u,u > 0. One nice observation

from the above statements is that since Xu,u, Z, U , and W are independent of u, then Ru,u

is independent of u. So we have
Ru,u = R1,1.

Next let us look at Xu,v,T as defined in equation 1. This is a product of the D terms by roots
of unity, therefore

X
u,v,

1 1
1 1

 ≤ ‖D1,∗‖4 the maximum possible.

Notice that for the case that it is strictly less than ‖D1,∗‖4, since R is a stratification of
X times the leading terms, then R is strictly less than a maximum possible. Here recall

the shape of R =

(
∗ 0
0 ∗

)
and consider the Bulatov-Grohe, we can conclude that to have a

non-#P-hard problem, either det(R) = 0 or the matrix is zero.
If det(R) = 0, for sufficiently large n since the diagonals are equal they must be equal to
zero. In either case the polynomial that defines the diagonal of R must be zero. Hence, by
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using the vanishing lemma B, all the coefficients of the polynomial must be zero. Therefore
we can conclude that the ‘strictly less’ is not the case and we can have the following property:
Property 8.1 For every sufficiently large n |R1,1| > 0 and

|Ru,v| ∈ {0, |R1,1|}, ∀u, v ∈ [h]

Following we consider u = 1 and define:

H∗,v = H∗,1 ◦H∗,v,

therefore

1. X1,v,T = Xv,T =
(∑

a∈[h] Db,aDc,aHa,v

)(∑
a∈[h] Db′,aDc′,aHa,v

)
.

2. Since Ha,1 are constants, therefore the set Ha,v|v∈[h] is a set of orthogonal basis.

3.
∑

a∈[h]Ha,vHa,v′ =

{
h v = v′

0 O/W
.

We need two more definitions to continue this section, let

K = {i ∈ [h]|D1,i 6= 0} 6= Ø,

A = {v ∈ [h]|∀i, j ∈ K,Hi,v = Hj,v

The following figure is given to visualize the definitions:

[h]



[A]︷︸︸︷
[K]


i

j


← Hi,∗

← Hj,∗


.

Using the definitions we have

1. If |K| = 1, then A = [h].

2. If A = [h], then |K| = 1.

3. If H∗,1 = 1, then 1 ∈ A 6= Ø.

4. If K = [h], then |A| = 1.
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Let us reconsider the X term with T =

(
1 1
1 1

)
:

X
v,

1 1
1 1

 =

∑
a∈[h]

Db,aDc,aHa,v

∑
a∈[h]

Db′,aDc′,aHa,v



=

∑
a∈[h]

|D1,a|2Ha,v

∑
a∈[h]

|D1,a|2Ha,v


In this equation, a is in fact over K, because D is zero elsewhere. Here if we consider the
cases where v ∈ A then

X
v,

1 1
1 1

 = h · ‖D1,∗‖4.

Notice that the norm is independent of v, so we can conclude the property 8.2 as follows:
Property 8.2 For any v ∈ A and sufficiently large n

|R1,v| = |R1,1|.

Next we want to show that the non-zero values of D are the same. Recall that D1,a 6= 0 iff
a ∈ K.
To do so, let B = [h]−A and B 6= Ø. Note that if B = Ø then A = [h] which means |K| = 1
and D1,a on a ∈ K is the same as itself and no need to prove it.
Let us consider the magnitude of X

v,

1 1
1 1

, where v ∈ B. The coefficient is a product of

leading terms by |D|2 which is a product of the D terms and non-constant roots of unity
(because v ∈ B). This makes magnitude of X to be strictly less that the maximum ‖D1,∗‖4.
By the same argument as we did before today property 8.3 states:
Property 8.3 For sufficiently large n, R1,v = 0 and by vanishing lemma B∑

T∈Ti

Xv,T = 0 ∀v ∈ B, ∀i ∈ [d].

Using this property

X
v,

1 1
1 1

 =

∑
a∈[h]

|D1,a|2Ha,v

∑
a∈[h]

|D1,a|2Ha,v

 = 0.
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This means |D1,∗|2 ⊥ {H∗,v|v ∈ B}. On the other hand {H∗,v|v ∈ B} ⊥ {H∗,v|v ∈ A},
therefore

|D1,∗|2 ∈ span{H∗,v|v ∈ A}.
Therefore

|D1,∗|2 =

|A|∑
i=1

λiH∗,vi .

If we recall the properties of A, the value of |D1,∗|2 is a constant, independent of v, for every
a ∈ K and for all a /∈ K this value is zero.
So we showed that D1,a for all a ∈ K are the same constants. This is claim 8.1:
Claim 8.1 For any v ∈ B, |D1,∗|2 ⊥ H∗,v and |D1,∗|2 is a constant on K and zero elsewhere.

Next we want to consider D2,∗ and show that on K, D2,∗ is a multiple of D1,∗.
Again we consider B 6= 0 as we discussed before. The ultimate goal is to show D2,∗ is a
multiple of D1,∗ for every a, but first we focus on a ∈ K.
We start with considering new Xv,T . Let us consider two T matrices:

T1 =

(
2 1
1 2

)
T2 =

(
1 2
2 1

)
.

Based on the general definition of the T matrices these matrices belong to a set Tg such that

Tg =

{
T1 =

(
2 1
1 2

)
, T2 =

(
1 2
2 1

)
, T3 =

(
1 1
2 2

)
, T4 =

(
2 2
1 1

)}
.

The shape of matrix T3 and T4 shows that Xv,T3 = Xv,T4 = 0. Moreover, using property 8.3,
we know ∑

T∈Tg

Xv,T = 0 v ∈ B. (2)

Let call a matrix ‘a conjugate pair form’ if it is of the form T =

(
b c
c b

)
. Note that for such

a matrix T , we have Xv,T ≥ 0, because the magnitude has a square form. Since the matrices
T1, T2 ∈ Tg are in conjugate form, Xv,T3 = Xv,T4 = 0, and equation 2 is true for the sum on
all T ∈ Tg, therefore Xv,T = 0 for every T ∈ Tg.
Therefore,

Xv,T1 =

∣∣∣∣∣∑
a∈K

D1,aD2,aHa,v

∣∣∣∣∣
2

= 0 ∀v ∈ B.

This means that
D1,∗ ◦D2,∗ ⊥ {H∗,v} ∀v ∈ B.

Using the same argument as before, if a set is orthogonal to a part of a orthogonal set then
it belongs to span of the rest:

D1,∗ ◦D2,∗ = span{H∗,v} for v ∈ A.
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On the other hand, we know that (a) the right hand side has constant values for a ∈ K, (b)
the D1,∗ > 0, and (c) the D1,∗ = D1,1 therefore
Claim 8.2 There is a complex number λ such that

D2,∗ = λD1,∗ ∀a ∈ K.
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