1 Last Time

Last time we proved the problem ANTICHAIN is \#P hard by using the facts that both VC and IDS are \#P hard.

2 This Time

Given H and G, recall that the number of graph homomorphism from G to H can be expressed as follows:

$$
Z_{H}(G)=\sum_{\sigma: V_{G} \rightarrow V_{H}} \prod_{e=\{u, v\} \in E_{G}} H(\sigma(u), \sigma(v))
$$

We first prove the following lemma.
Lemma 1. The graph homomorphism is \#P hard for the following H :

$$
H=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Note that the matrix H specifies that " 1 " cannot reach "0", as shown in Fig. 1
Proof. Given a partial order $P=(V, E)$ being a directed acyclic graph, we construct P^{\prime} : $V^{(1)} \cup V^{(2)}$ where $V^{(1)}$ and $V^{(2)}$ are two disjoint copies of P. First, for all p we make $p^{(1)} \rightarrow p^{(2)}$. Next for all $p<q$ in the partial order, make $p^{(1)} \rightarrow q^{(1)}, p^{(1)} \rightarrow q^{(2)}, p^{(2)} \rightarrow q^{(1)}$

Figure 1: Graphical relationship. Note " 1 " cannot reach " 0 "
and $p^{(2)} \rightarrow q^{(2)}$ as show in Fig. 2. Define $K=\left\{p \in P \mid \sigma\left(p^{(1)}\right)=" 1\right.$ " or $\sigma\left(p^{(2)}\right)=" 1$ " $\}$, in order words, " 1 " $\in\left\{\sigma\left(p^{(1)}\right), \sigma\left(p^{(2)}\right)\right\}$. Also define $K^{\prime}=\{p \in K \mid p$ is a minimal in $K\}$.

Since we have $p^{(1)} \rightarrow p^{(2)}$, there can only be four cases, i.e., " 1 " \rightarrow " 1 ", " 1 " \rightarrow " 2 ", " 0 " \rightarrow " 1 " and " 2 " \rightarrow " 1 ". Above K (meaning the filter of K^{\prime}, i.e., those x such that there is some $p \in K^{\prime}$ such that $p \leq x$) we can only have " 1 " and "2" but not " 0 ". Below K^{\prime} (meaning $P-\left\{\right.$ filter of $\left.K^{\prime}\right\}$) we can only have " 0 " and " 2 " but not " 1 ". All these choices are valid. K^{\prime} is the ANTICHAIN problem and we have $Z_{H}\left(P^{\prime}\right)$ equivalent to the problem of counting ANTICHAIN, namely the value is the number of ANTICHAINs in P times $4^{|V|}$. Every ANTICHAIN in P corresponds to some K^{\prime} for a certain valid assignment.

We next prove another lemma in which H takes a more general form.
Lemma 2. Let H have the following form:

$$
H=\left(\begin{array}{ccc}
J_{a a} & J_{a b} & J_{a c} \\
O_{b a} & J_{b b} & J_{b c} \\
J_{c a} & J_{c b} & J_{c c}
\end{array}\right)
$$

where $J_{i j}\left(O_{i j}\right)$ denotes the $i \times j$ matrix with all entries being $1(0)$. Let $a, b>0$ and $c \geq 0$, then Z_{H} is \#P hard.

Proof. We prove by reducing from the problem considered in Lemma 1. Let

$$
H_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

We further assume $c>0$ (the case $c=0$ is left as an exercise).
Given an input graph G for $Z_{H_{1}}$ we construct $G^{(k, l)}$ such that each vertex in G grows out l vertices and grows in k vertices (see Fig. 3).

Note that the first row/column in H can be interpreted as the " 0 ", the second row/column in H can be interpreted as the " 1 " and the third row/column in H can be interpreted as the " 2 ". Therefore, the assignment function σ for $G^{(k, l)}$ can be seen as an extension to the one for G.

Figure 2:

Let $N_{x y z}$ denote the number assignments with value 1 in $Z_{H_{1}}(G)$ where x many vertices of $V(G)$ are assigned " 0 ", y many vertices of $V(G)$ are assigned " 1 " and z many vertices of $V(G)$ are assigned " 2 ". The value for $Z_{H_{1}}(G)$ is $\sum_{x+y+z=|G|} N_{x y z}$. Then the value for $Z_{H}\left(G^{(k, l)}\right)$ is

$$
\sum_{x+y+z=|G|} a^{x} b^{y} c^{z}(a+b+c)^{x l}(a+c)^{x k}(a+b+c)^{y k}(b+c)^{y l}(a+b+c)^{z(l+k)} .
$$

To see how we obtain this, consider a " 0 " vertex. There are many different ways for it to be assigned in the domain of H. This gives the factor of a^{x} for all the " 0 " verticies. For each " 0 " vertex, it has l out-grown edges. Since " 0 " can go to " 0 ", " 1 ", " 2 ", this gives $(a+b+c)^{l}$ choices for those l out-grown edges and $(a+b+c)^{x l}$ over all " 0 " vertices. Also, for each " 0 " vertex, there are k in-grown edges. They must avoid being assigned as " 1 " as " 1 " cannot go to " 0 ". Thus we get the factor $(a+c)^{x k}$. These derivation carry over to all y " 1 "-assigned vertices and z " 2 "-assigned vertices.

It can be reduced to (by taking out a common constant factor):

$$
\sum_{x+y+z=|G|} N_{x y z} a^{x} b^{y} c^{z}\left(\frac{a+c}{a+b+c}\right)^{x k}\left(\frac{b+c}{a+b+c}\right)^{y l} .
$$

Setting $l=k N, \frac{a+c}{a+b+c}=p$ and $\frac{b+c}{a+b+c}=q$ we have

$$
\sum_{\substack{0 \leq x, y \leq|G| \\ x+y \leq G| \\z=|G|-x-y}} N_{x y z} a^{x} b^{y} c^{z}\left(p^{x} q^{y N}\right)^{k} .
$$

We set $N>\log _{\frac{1}{q}}\left(\frac{1}{p}\right)^{|G|}$ such that for all x and y with $0 \leq x+y \leq|G|, x, y \geq 0$ the $p^{x} q^{y N}$ are pair-wise distinct. To derive the lower bound on N, we note that if

$$
\left(\frac{1}{p}\right)^{n}<\left(\frac{1}{q}\right)^{N}
$$

Figure 3:
then for any distinct pairs (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ satisfying $0 \leq x+y \leq|G|, x, y \geq 0$, we have $p^{x} q^{y N} \neq p^{x^{\prime}} q^{y^{\prime} N}$. This follows from simple algebra. Finally, we note that $\left[\left(p^{x} q^{y N}\right)^{k}\right]_{(x, y), k}$ is a Vandermonde system.

We start with a relational clone $\langle\Gamma\rangle$ that is not rectangular thus have a reflexive, not symmetric and pp-definable domain R of minimum arity. By not symmetric we mean $(a, b) \in$ R but $(b, a) \notin R$ for some a and b. We then have the following properties:

1. $\forall c, a \rightarrow c \rightarrow b$.
2. $\forall c$, if $c \rightarrow a$, then $\forall d c \rightarrow d$.
3. $\forall c$, if $c \nrightarrow a$, then $\forall d d \rightarrow c$.

Let $F(x)=\exists y \exists z\left(y \rightarrow x \wedge C_{a}(y) \wedge x \rightarrow z \wedge C_{b}(z)\right.$ where $C_{a}(y)$ denotes the pinning of y on a. Define $R^{\prime}=R \cap(F \times F)$. For all $a, b \in R^{\prime}$, we can see that property 1 holds.

To show property 2 still holds, suppose otherwise, i.e., $\exists c, d$ s.t. $c \rightarrow a \wedge c \nrightarrow d$. Define the domain shrinkage as $F^{\prime}(x)=\exists y\left(C_{c}(y) \wedge y \rightarrow x\right)$. This means that $c \rightarrow x$ thus $a, b \in R^{\prime} \cap\left(F^{\prime} \times F^{\prime}\right)$. This contradicts the fact that R is minimum arity. Thus property 2 holds.

The work to show property 3 holds is left as homework.
Let $D=\{c \in F \mid c \rightarrow a\}, B=F-D, D_{d}=\{c \in D \mid d \rightarrow c\}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ for $d \in B, a \in D, b \in B, a \notin D_{c}$ and for all $c \in B$. Choose $d \in B$ such that D_{d} is maximal. Set $B^{\prime}=\left\{c \in B \mid D_{c}=D_{d}\right\}$, then $x \in B^{\prime} \cup D \Leftrightarrow \exists y_{1}, y_{2}, \ldots, y_{k}\left(\bigwedge_{i=1}^{k}\left(x \rightarrow y_{i}\right) \wedge C_{a_{i}}\left(y_{i}\right)\right)$. Then by letting $\sigma^{\prime}=R \cap\left(B^{\prime} \cup D\right)^{2}$ we have a graphical relation represented shown in Fig. 1

