
CS 880: Complexity of Counting Problems 03/08/2012

Lecture 14:

Instructor: Jin-Yi Cai Scribe: Yanpei (Nick) Liu

A matrix A ∈ {0, 1}m×n is said to be decomposable if there exists I and J , I, J 6= 0,
I ⊆ [m], J ⊆ [n] such that A[I, J̄ ] = 0 and A[Ī , J ] = 0 as shown in Fig. 1. Furthermore, at
least one of them needs to be non-empty, i.e., either I 6= [m] or J 6= [n].

We can think of this as a bipartite graph on [m] × [n]. Then the decomposability is
equivalent to saying the underlying bipartite graph is disconnected. The connected com-
ponents constitute blocks, which are made up of pairs (I1, J1), (I2, J2), . . . , (Ik, Jk) with no
edges between Ii and Jj for all i 6= j. Note that some Is might be empty, in which case the
corresponding Js must be singleton isolated points.

We can generalize this to matrices in C. Replace the non-zero elements by 1. For
symmetric m×m matrix, it is equivalent to the graph G on [m] as adjacency matrix in the
following ways. If I1∩J1 is non-empty, then I1 = J1. and the |I1| points of G correspond to a
single connected component (of 2|I1| points) of the graph H on [m]. If I1∩J1 is empty, then
there is a bipartite component of size |I1| + |J1|, of the graph G on [m], which corresponds
to two connected components, one of size |I1| on the left and |J1| on the right, and another
one of size |J1| on the left and |I1| on the right.

Given an m ×m symmetric matrix A, recall that the graph homomorphism function is
defined as:

ZA(G) =
∑

σ:V→[m]

∏
(u,v)∈E

Aσ(u),σ(v). (1)

In the following subsequence lectures we will prove that for every A, ZA is either in P or
#P-hard. The #P hardness is proved by showing there exists a reduction. In the case it
is tractable, we give an algorithm. We further prove that the tractability criterion on A is
polynomial-time decidable.

We build our work on the ones by Dyer and Greenhill as well as Bulatov and Grohe.
Recall the theorem by Dyer and Greenhill, which states as follows:
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Theorem 1 (Dyer and Greenhill). A symmetric {0, 1} matrix A defines a tractable graph ho-
momorphism ZA(·) if and only if A is rectangular or if and only if the connected components
of G(A) consists of complete bipartite graphs or cliques with loops or isolated points.

Bulatov and Grohe then extends this result to all non-negative symmetric matrix A
(every block of all 1’s becomes rank 1 blocks). From their results, ZA(·) is computable in P
if each block of A has rank at most one, and #P-hard otherwise.

To be more precise, if G has connected component G1, G2, . . . , Gk, then computing ZA(G)
is the same as computing

∏k
i ZA(Gi). If the problem on any G is tractable, then it is in

particular tractable on connected subgraphs. We can decompose the underlying graph A as
a direct sum of Ai, each being a connected component. Then for a connected graph G, we
must have

ZA(G) =
l∑

j=1

ZAj
(G). (2)

This implies if ZAj
(·) is tractable for all j, then ZA(·) is tractable. However we would like

to have the converse as well, i.e., if one of ZAj
(·) is hard, so is ZA(·). That is the reduction

from ZAj
(·) to ZA(·) for all j.

Let wtA(σ) =
∏

σ∈{u,v}Aσ(u),σ(v). Given a symmetric matrix C ∈ Cm×m and let D =

[D[0], D[1], . . . , D[N−1]] be a sequence of diagonal matrices in Cm×m for some N ≥ 1 (we use

D
[r]
i to denote the (i, i)th entry of D[r]. We define the following EVAL(C,D) problem

ZC,D(G) =
∑

σ:V→[m]

wtC,D(σ), (3)

where wtC,D(σ) is defined as:

wtC,D(σ) =

( ∏
(u,v)∈E(G)

Cσ(u),σ(v)

)(∏
v∈V

D
[deg(v) mod N ]
σ(v)

)
. (4)

Suppose C is the bipartisation of an m× n matrix F , i.e.,

C =

(
0 F
F T 0

)
. (5)

For any graph G and vertex u in G, we define Z→C,D(G, u) and Z←C,D(G, u) as follows. Let
X1 denote the set of σ : V → [m + n] with σ(u) ∈ [m] and X2 denote the set of σ with
σ(u) ∈ [m+ 1 : m+ n], then we have

Z→C,D(G, u) =
∑
σ∈X1

wtC,D(σ) (6)

Z←C,D(G, u) =
∑
σ∈X2

wtC,D(σ) (7)
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Then it follows that ZC,D(G) = Z→C,D(G, u) + Z←C,D(G, u).
Let A be an m×m symmetric matrix, we consider a EVALP(A) problem as follows. The

input is a triple (G,w, i) where G = (V,E) is an undirected graph, w ∈ V is a vertex and
i ∈ [m]. The output is:

ZA(G,w, i) =
∑

σ:V→[m]
σ(w)=i

wtA(σ). (8)

Then we have the First Pinning Lemma, stated as follows:

Lemma 1 (First Pinning Lemma). We have EVALP(A) ≡ EVAL(A).

It is easy to see that EVALP(A) ≥ EVAL(A). We need to prove the other direction also
holds. We define the following equivalence relation (i ∼ j) over [m]:

i ∼ j if ZA(G,w, i) = ZA(G,w, j) ∀G,w ∈ V (G). (9)

This equivalence relation divides the set [m] into s equivalent classes A1,A2, . . . ,As for some
positive integer s. For any t 6= t′ ∈ [s], there exists a pair Pt,t′ = (G,w) that distinguish
them, i.e.,

ZA(G,w, i) 6= ZA(G,w, i′) ∀i ∈ At ∀i′ ∈ At′ . (10)

Now for any subset S ⊆ [s], we define

ZA(G,w, S) =
∑

σ:V→[m]
σ(w)∈

S
t∈S At

wtA(σ). (11)

To prove Lemma 1, we first present the following shrinking lemma:

Lemma 2 (Shrinking Lemma). If S ⊆ [s] and |S| ≥ 2, then there exists a partition
{S1, . . . , Sk} of S for some k > 1 and EVAL(A, Sl) ≤ EVAL(A, S) for all l.

Proof. Let t 6= t′ be two integers in S. We let Pt,t′ = (G∗, w∗) For all a, b ∈ S we define a
equivalence relation ∼∗ over S:

a ∼∗ b if ZA(G∗, w∗, i) = ZA(G∗, w∗, j) i ∈ Aa, j ∈ Ab. (12)

The foregoing relation is independent of the choice of i and j and it gives us equivalence
partition {S1, S2, . . . , Sk} of S. We let Xa denote ZA(G∗, w∗, i) where i ∈ Aa and Xa is
independent of the choice of i. We define Xb similarly. Then Xb 6= Xa if a �∗ b. Let G be
an undirected graph and w be a vertex. For each p : 0 ≤ p ≤ k− 1, we construct a sequence
of graphs G[p] where G[p] is the disjoint union of G and p independent copies of Pt,t′ , except
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the w in the input G and all w∗ in the copies of Pt,t′ as one single vertex w′ ∈ V [p]. We then
have the following collection of equations:

ZA(G[p], w′, S) =
k∑
l=1

ZA(G,w, Sl)X
p
l , (13)

where Sl’s are equivalence classes. Since Xb 6= Xa for all a �∗ b, this is a Vandermonde
system and we can solve it to get ZA(G,w, Sl) for all l ∈ [k]. This gives us a polynomial
time reduction from EVAL(A, Sl) to EVAL(A, S) for every l ∈ [k].

We now prove Lemma 1.

Proof. We apply Lemma 2 to S = [s]. By Lemma 2, there exists a partition {S1, . . . , Sk}
of S, for some k > 1, such that EVAL(A, Sd) ≤ EVAL(A, S) for all d ∈ [k]. Consider some
t ∈ [s], without loss of generality, assume t ∈ S1 (or we can always shrink S1 using Lemma 2
until t is the only element in S1). When this is true, we simply have

ZA(G,w, i) =
1

|At|
· ZA(G,w, {t}). (14)

This completes the proof of Lemma 1.
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