

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 37, No. 5, pp. 1565–1594

HOLOGRAPHIC ALGORITHMS∗

LESLIE G. VALIANT†

Abstract. Complexity theory is built fundamentally on the notion of efficient reduction among
computational problems. Classical reductions involve gadgets that map solution fragments of one
problem to solution fragments of another in one-to-one, or possibly one-to-many, fashion. In this pa-
per we propose a new kind of reduction that allows for gadgets with many-to-many correspondences,
in which the individual correspondences among the solution fragments can no longer be identified.
Their objective may be viewed as that of generating interference patterns among these solution frag-
ments so as to conserve their sum. We show that such holographic reductions provide a method of
translating a combinatorial problem to finite systems of polynomial equations with integer coeffi-
cients such that the number of solutions of the combinatorial problem can be counted in polynomial
time if one of the systems has a solution over the complex numbers. We derive polynomial time
algorithms in this way for a number of problems for which only exponential time algorithms were
known before. General questions about complexity classes can also be formulated. If the method
is applied to a #P-complete problem, then polynomial systems can be obtained, the solvability of
which would imply P#P = NC2.

Key words. computational complexity, enumeration

AMS subject classifications. 05A15, 68Q10, 68Q15, 68Q17, 68R10, 68W01

DOI. 10.1137/070682575

1. Introduction. Efficient reduction is perhaps the most fundamental notion
on which the theory of computational complexity is built. The purpose of this paper
is to introduce a new notion of efficient reduction, called a holographic reduction. In
a classical reduction an instance of one problem is mapped to an instance of another
by replacing its parts by certain gadgets. Solution fragments of the first problem
will correspond in the gadgets to solution fragments of the second problem. For
example, when mapping a Boolean satisfiability problem to a graph theory problem,
each way of satisfying a part of the formula will correspond to a way of realizing
a solution to the graph theory problem in the gadget. In classical reductions the
correspondence between the solution fragments of the two problems is essentially one-
to-one, or possibly many-to-one or one-to-many. In a holographic reduction the sum
of the solution fragments of one problem maps to the sum of the solution fragments
of the other problem for any one gadget and does so in such a way that the sum of
all the overall solutions of the one will map to the sum of all the overall solutions of
the other. The gadgets therefore map solution fragments many-to-many. The main
innovation this allows is that it permits reductions in which correspondences between
the solution fragments of the two problems need no longer be identifiable at all. Their
effect can be viewed as that of producing interference patterns among the solution
fragments, and they are called holographic gadgets for that reason.

∗Received by the editors May 17, 2005; accepted for publication (in revised form) July 27, 2007;
published electronically February 8, 2008. This research was supported in part by grants NSF-CCR-
98-77049, NSF-CCR-03-10882, and NSF-CCF-04-27129 and by the National Security Agency (NSA)
and Advanced Research and Development Activity (ARDA) under Army Research Office (ARO)
contract DAAD19-01-1-0506. Preliminary versions of this paper appeared in Proceedings of the 45th
Symposium on Foundations of Computer Science, IEEE, Los Alamitos, CA, 2004, pp. 306–315, and
as Electronic Colloquium on Computational Complexity Report 99 (2005).

http://www.siam.org/journals/sicomp/37-5/68257.html
†School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

(valiant@seas.harvard.edu).

1565

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1566 LESLIE G. VALIANT

A holographic reduction from a problem A to a problem B is of particular in-
terest when for problem B the sum of the solutions is efficiently computable, since
then a polynomial time algorithm for summing the solutions of A is implied. We
call algorithms so derived holographic algorithms. In this paper we give holographic
alogrithms for a number of problems for which no polynomial time algorithms were
known before. We obtain these algorithms by reduction to the algorithm for finding
perfect matchings in planar graphs due to Fisher [17], Kasteleyn [31], and Temperley
and Fisher [50].

We consider holographic reductions and algorithms to be novel notions in algo-
rithmic theory that do not appear to have been explored before, even in disguise,
and that potentially open up new approaches to the central questions of complexity
theory.

The most intriguing question, clearly, is whether polynomial time holographic
algorithms exist for NP- or #P-complete problems. For such a result a holographic
reduction would have to be exhibited from, say, a #P-complete problem, such as
planar matchings, to a known polynomial time computable problem, such as planar
perfect matchings. We shall show that the existence of such a reduction would be
implied by the solvability of a finite system of polynomial equations that defines the
holographic gadgets used in the reduction. In this sense the search for fast algorithms
can be semimechanized if computer algebra systems are invoked for solving the sys-
tems. It suffices to find a fixed set of such gadgets. We note that the search process
itself is NP-hard in the size of the tested system. On the other hand, one can expect
that any fast algorithms so discovered would rely on algebraic relationships, possibly
exotic, which have not been explored before even implicitly.

What is the role of holographic reductions in complexity theory if it is the case
that there exist no polynomial algorithms to be discovered for NP- or #P-complete
problems? In that eventuality we suggest that any proof of P �= NP may need to
explain, and not only to imply, the unsolvability of our polynomial systems. Fur-
thermore, explanations of such unsolvabilities may then stand equally in the way of
any proofs of P �= P#P, P �= BPP, P �= QBP, P �= NC2, and P = PSPACE. Since
the solvability of a polynomial system for an explicit combinatorial constraint is a
very natural mathematical problem, our approach may be viewed as one offering a
restricted model of computation in which one expects mathematical questions to be
resolvable, and one that we suggest may be difficult to evade.

Holographic algorithms are inspired by the quantum computational model [16, 6].
However, they are executable on classical computers and do not need quantum com-
puters. They can be understood best, perhaps, in terms of cancellations in classical
computation. Strassen’s algorithm for matrix multiplication [48] offers an early strik-
ing example of the power of computations that compute extraneous terms only to
cancel them later. It is known that cancellations can provide exponential speedups
in computations, and in the several cases that have been analyzed, linear algebra
algorithms for computing the determinant play a major role [54, 29, 49]. Further, the
actual cancellations that are performed by certain of these determinant algorithms can
be made explicit [55, 43]. Holographic algorithms offer a new source of cancellation
that is not provided by linear algebra alone. Most importantly the cancellations re-
quired for the particular problem at hand can be custom designed into the holographic
gadgets.

The substance of the holographic method as pursued here involves devising an
appropriate basis for the reduction and then designing matchgates to realize the gad-
gets. Matchgates have been used previously [56] but only in the context of classical

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1567

rather than holographic reductions. We note that the sum of solutions in matchgate
constructions corresponds to the Pfaffian, which is polynomial time computable. The
examples in this paper all refer to planar structures, because in that case we can use
the elegant Fisher–Kasteleyn–Temperley (FKT) route to the Pfaffian that makes the
design of the gadgets easier. In principle, the FKT technique can be applied to non-
planar structures by having matchgates to simulate crossovers. We note also that the
holographic technique may be used, in principle, to reduce problems to any problem
in which a quantity is known to be polynomial time computable. For example, in [58]
it is used in reductions to the general Pfaffian.

2. List of problems. We first note that the range of natural graph-theoretic
problems for which the number of solutions has been known to be countable in poly-
nomial time for arbitrary inputs is very small [28, 62, 52, 53]. The prime examples
have been the Kirchhoff matrix tree algorithm for spanning trees in arbitrary graphs
and the FKT perfect matching algorithm for planar graphs. For planar graphs there
is a positive result known for a further important case, intimately related to the Ising
problem in physics, that is known to be obtainable from the perfect matchings prob-
lem. This is #PL-CUT—given a planar graph G and a number k the problem is to
compute the number of 2-colorings of the nodes of G such that exactly k edges have
ends of opposite color [32, 42]. The maximum k for which this number is nonzero is
the well-known PL-MAXCUT problem [44, 22].

We now list some problems for which we can provide polynomial time solutions
where none apparently were known. They are motivated by their apparent proximity
to known NP-, ⊕P-, and #P-complete problems. They all have a counting, or #P,
aspect, but for some we specify a decision or parity version when that is appropriate.
We note that in a graph G = (V,E) a subset E′ ⊆ E saturates a vertex v ∈ V if v is
the endpoint of some edge in E′.

First we consider a matching problem. Jerrum [26, 27] showed that counting
the number of (not necessarily perfect) matchings in a planar graph is #P-complete,
and Vadhan [51] subsequently proved that this was true even for planar bipartite
graphs of degree 6. For degree 2 the problem can be solved easily and one might
have conjectured that all other nontrivial cases are #P-complete. However, we have
a polynomial time algorithm for the following.

#X-MATCHINGS. Input. A planar weighted bipartite graph G = (V,E,W),
where V has bipartition V 1, V 2 and the nodes in V 1 have degree 2.

Output. The sum of the masses of all matchings of all sizes where the mass of a
matching is the product of (i) the weights of all the edges present in the matching,
as well as of the quantity (ii) “−(w1 + · · · + wk)” for all the V 2 nodes that are not
saturated, where w1, . . . , wk are the weights of the edges incident to that (unsaturated)
node.

One instance of this is where every V 2 node has degree 4 and every edge has
weight one. Then computing #X-MATCHINGS gives the number of matchings, but
each weighted by (−4)k, where k is the number of unsaturated V 2 nodes. Computing
this mod 5, for example, gives the number of matchings mod 5. Another instance is
where every V 2 node has degree 3 and every edge weight one. Then #X-MATCHINGS
is the sum of the matchings, each weighted by (−3)k, where k is the number of V 2
nodes not saturated by that matching.

Now we consider a coloring problem. A functional orientation of an undirected
multigraph G is an assignment of directions to a set of edges so that there is exactly
one edge directed away from each node of G. (Note that if two nodes are connected by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1568 LESLIE G. VALIANT

two edges, then these can both have (opposite) directions. Also any single edge may
be assigned two opposite directions. The edges of G that are not assigned a direction
remain undirected.)

PL-FO-2-COLOR. Input. A planar multigraph graph G = (V,E) of maximum
degree 3.

Output. 1 iff there is some coloring of the nodes with two colors and a functional
orientation of G such that every edge that joins two nodes of the same color is directed
in at least one direction by the functional orientation.

Comment. The problem of (2,1)-coloring with defects is that of 2-coloring a graph
so that no node is adjacent to more than one other node of the same color. This is
NP-complete for planar graphs of degree 5 [15]. It can be deduced that PL-FO-2-
COLOR is NP-complete for degree 10 by means of the following reduction. For an
instance of (2,1)-coloring one replaces each edge by a pair of edges between the same
pair of nodes. Then if these nodes are given the same color the rules of PL-FO-2-
COLOR ensure that the two edges are both oriented and in opposite directions. But
then no other neighbor of either of the nodes can have the same color because the
corresponding statement for those would imply that there are two edges directed away
from that common node.

Our next two problems can be viewed as planar formula problems in the sense
of Lichtenstein [35]: A planar formula is a planar graph where a node can represent
a clause or a variable, and an edge links a node representing a variable with a node
representing a clause in which it occurs, either negated or not negated.

⊕PL-EVEN-LIN-2. Input. A planar formula where each clause is a linear
equation over GF [2] with an even number of occurrences of variables, a subset of the
clauses that are considered compulsory to satisfy, a setting to a subset of the variables
on the outer face to constants, and an integer k.

Output. The parity of the number of solutions that satisfy exactly k of the
equations, including all of the compulsory ones, and the boundary conditions.

Comment. This generalizes ⊕PL-CUT, which is the same problem restricted to
equations with just two variables and no compulsory equations and can be solved
by classical reduction to FKT. The nonplanar version with two variables is NP- and
⊕P-complete via known parsimonious reductions, and strong hardness of approxima-
tion results are also known [23]. For odd length equations the corresponding planar
problem is ⊕P-complete since the corresponding nonplanar problem can be reduced
to it using the construction of crossovers from Jerrum [26, 27]. This construction re-
quires the equations in the crossovers to be compulsory, and without such compulsory
equations the completeness of the problem is apparently unresolved.

PL-3-NAE-SAT. Input. A planar formula F consisting of NOT-ALL-EQUAL
gates of size 3.

Output. The number satisfying assignments of F .

Comment. For connectives other than NOT-ALL-EQUAL (e.g., OR, EXACTLY
ONE) for which the unrestricted decision problem is NP-complete, the corresponding
planar decision and counting problems are, in general, NP- and #P-complete, respec-
tively [24]. The existence problem for monotone PL-3-NAE-SAT is reducible to the
four color theorem and, therefore, always has a solution [1]. Note, however, that the
counting problem for the 4-colorings of planar graphs is #P-complete [61]

PL-NODE-BIPARTITION. Input. A planar graph G = (V,E) of maximum
degree 3.

Output. The cardinality of a smallest subset V ′ ⊆ V such that the deletion of V ′

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1569

and its incident edges results in a bipartite graph.

Comment. This problem is known to be NP-complete for maximum degree 6
[33]. See Lewis and Yannakakis [34] for a general approach to such “node deletion”
problems. We note that numerous other planar NP-complete problems, such as Hamil-
tonian cycles and minimum vertex covers, are NP-complete already for degree 3 (see,
e.g., Garey, Johnson, and Stockmeyer [20] and Garey and Johnson [18]).

We now consider “ice” problems that have been widely investigated by statistical
physicists. An orientation of an undirected graph G is an assignment of a direction to
each of its edges. An “ice problem” involves counting the number of orientations such
that certain local constraints are satisfied. Pauling [47] originally proposed such a
model for planar square lattices, where the constraint was that an orientation had to
have two incoming and two outgoing edges at every node. The question of determining
how the number of such orientations grows for various such planar repeating structures
has been analyzed [36, 37, 38, 39, 3]; see also [62].

#PL-3-NAE-ICE. Input. A planar graph G = (V,E) of maximum degree 3.

Output. The number of orientations such that no node has all the edges directed
toward it or away from it.

We next turn to a covering problem. For a graph G = (V,E) a cycle is a sequence
of edges through distinct nodes that starts and ends at the same node. A chain is a
sequence of edges through distinct nodes that starts and ends at distinct nodes. A
cycle-chain cover in G is a set of cycles and chains that saturates every node of G.
For real numbers x, y the (x, y) cycle-chain sum of G is the sum over all cycle-chain
covers C of xiyj , where i is the number of cycles in C and j is the number of chains.
For example, the (2, k) cycle-chain sum for k = 0 or k = 4 is complete for ⊕P for
general graphs since the parity of the number of Hamiltonian cycles is reducible to
it. In the planar case it is known that counting the number of Hamiltonian cycles
for planar cubic graphs is #P-complete [41]. Their proof can be adapted to show
that if nodes of both degrees 2 and 3 are allowed, then planar Hamiltonian cycles is
⊕P-complete [59].

#PL-3-(1,1)-CYCLECHAIN. Input. A planar regular graph G = (V,E) of
maximum degree 3.

Output. The (1, 1) cycle-chain sum.

As we shall further elaborate in section 9, the proofs given there of the last four of
these results imply that they can be derived also by classical reduction to #PL-CUT.
However, some of these problems also have degree 4 variants for which such classical
reductions are not apparent.

3. Evaluating planar matching polynomials. We shall first describe the
basic graph-theoretic notions that we shall use. A (weighted undirected) graph G is a
triple (V,E,W), where V is the set of n nodes, labeled {1, . . . , n}, E is the set of edges
where an edge is a pair (i, j) of distinct nodes i, j ∈ V , and W is an assignment of a
weight W (i, j) from a field F to each edge (i, j). An edge e is incident to or saturates
a node j if j is one of the pair of nodes of e. A matching in G is a set E′ ⊆ E of
edges such that if e1 and e2 are distinct edges in E′, then e1 and e2 saturate disjoint
pairs of nodes. A matching E′ saturates the union of the node pairs saturated by the
member edges of E′. The set of nodes saturated by E′ we call satu(E′). A matching
is perfect if it saturates all of V .

With a graph G we associate the perfect matching polynomial PerfMatch(G) over

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1570 LESLIE G. VALIANT

n(n− 1)/2 variables {xi,j |1 ≤ i < j ≤ n} as follows:

PerfMatch(G) =
∑
E′

∏
(i,j)∈E′

xi,j ,

where the summation is over all perfect matchings E′ of G. We shall also discuss the
more general matching sum polynomial for graphs G = (V,E,W,Λ), where Λ further
specifies a labeling of each node i by a weight λi ∈ F . It is defined as

MatchSum(G) =
∑
E′

∏
i �∈satu(E′)

λi

∏
i,j∈E′

xi,j ,

where summation is over all, not necessarily perfect, matchings in G. Clearly in the
case that every λi = 0, PerfMatch(G) = MatchSum(G). We shall call nodes with
λi �= 0 omittable since matchings that omit them can contribute to the MatchSum.

For all polynomials we shall assume, where not otherwise specified, that the co-
efficients are taken from an arbitrary field F .

A remarkable fact, expressed by the following theorem, is that for planar graphs
PerfMatch(G) can be expressed as a determinant of an easily computed matrix [17,
31, 32, 50, 28]. It follows that PerfMatch(G) can be computed using standard linear
algebra algorithms for the determinant.

Theorem 3.1. There is a polynomial time computable function f that given a
planar embedding of a planar graph G = (V,E,W) defines f :E → {−1, 1} such that
for the antisymmetric matrix M defined so that for all i < j

(i) if (i, j) �∈ E then Mi,j = Mj,i = 0, and
(ii) if (i, j) ∈ E then Mi,j = f(i, j)W (i, j) and Mj,i = −f(i, j)W (i, j),

it is the case that PerfMatch(G) = Pfaffian(M) =
√

Det(M).
In our applications we shall form graphs from fixed sets of standard components

called matchgates that simulate particular combinatorial constraints, such as equality.
The weights to be used in such matchgates will be elements of F obtained potentially
by computationally solving systems of polynomial equations. It is therefore useful to
observe that in this general setting the Det(M) and hence also PerfMatch(G) can be
solved in polynomial time if the field is that of the complex numbers C. The proof is
given in section 12.

Theorem 3.2. Let Y be any finite subset of C. Suppose that each element
of Y can be computed to n decimal places, i.e., absolute error less than 2−n, in time
polynomial in n. Let {Mn | n ≥ 1} be a family of matrices where, for each n,Mn is n×
n, has every entry from Y , and has an integer valued determinant. Further, suppose
that there is a polynomial time algorithm that given input {1n, i, j} will identify the
element from Y that is the (i, j)th entry of Mn. Then there is a polynomial time
deterministic algorithm that, given 1n, will compute the determinant of Mn.

Computing MatchSum for planar graphs is known to be #P-complete [26, 27].
Since matchings with omittable nodes are more expressive than those without, we
might endeavor to use them wherever we can still maintain polynomial time com-
putability. The following generalization of the above two results, which is also proved
in section 12, enables us to use omittable nodes on the outer face of a planar graph.

Theorem 3.3. Let Y be any finite subset of C. Suppose that each element of
Y can be computed to n decimal places, i.e., absolute error less than 2−n, in time
polynomial in n. Let {Gn | n ≥ 1} be a family of planar embeddings of planar graphs
on n nodes with all omittable nodes on the outer face, with polynomial time identifiable

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1571

weights from Y, and having an integer value of MatchSum(Gn). Then MatchSum(Gn)
can be computed in polynomial time, and, in fact, in NC2.

We note that while we emphasize the case of the field F = C, the whole de-
velopment applies equally, and without the need for these numerical considerations,
if F is a finite field. In that case the consequences are for #kP the counting class
corresponding to #P, but modulo k [52].

We also note that for planar structures there exist algorithms that can perform
elimination on n× n matrices in O(n1.5) rather than O(n3) steps [40].

4. Matchgrids and planar matchgates. Our overall strategy is the following.
We transform an instance I of a counting problem, such as #X-MATCHINGS, to an
instance Ω of what we call a matchgrid, such that the weighted sum of the perfect
matchings of Ω will equal the number of solutions of I. The structure of I is reflected
in the structure of Ω, with the individual components of I, nodes and edges in the
case of #X-MATCHINGS, each replaced by gadgets that we call matchgates. The
weight of the perfect matchings in each matchgate will equal the number of solution
fragments of the #X-MATCHING problem.

We now introduce the basic concepts of the theory. We note that while our start-
ing point is the notion of a matchgate, exactly as in [56], that earlier work employed
classical rather than holographic reductions. This paper can be read independently
of that earlier one. However, we have attempted to keep our notation consistent with
it and reference it occasionally.

A planar matchgate Γ is a triple (G,X, Y), where G is a planar embedding of a
planar graph (V,E,W), X ⊆ V is a set of input nodes, Y ⊆ V is a set of output nodes,
and X, Y are disjoint. Further, as one proceeds counterclockwise around the outer
face, starting from one point one encounters first the input nodes labeled 1, 2, . . . , | X |
and then the output nodes | Y |, . . . , 2, 1, in that order. The arity of the matchgate
is |X| + |Y |. For Z ⊆ X ∪ Y we define the standard signature of Γ with respect to
Z to be PerfMatch(G− Z), where G− Z is the graph obtained by removing from G
the node set Z and all edges that are incident to Z. Further, we define the standard
signature of Γ to be the 2|X| × 2|Y | matrix u(Γ) whose elements are the standard
signatures of Γ with respect to Z for the 2|X|2|Y | choices of Z. The labeling of the
matrix is as follows: Suppose that X and Y have the labeling described; i.e., the
nodes are labeled 1, 2, . . . , |X| and |Y |, . . . , 2, 1 in counterclockwise order. Then each
choice of Z corresponds to a subset from each of these labeled sets. If each node
present in Z is regarded as a 1 and each node absent as a 0, then we have two binary
strings of length |X|, |Y |, respectively, where the nodes labeled 1 correspond to the
leftmost binary bit. Suppose that i, j are the numbers represented by these strings in
binary. Then the entry corresponding to Z will be the one in row i and column j in
the signature matrix u(Γ).

We note that in [56] matchgates were defined in a general, not necessarily planar,
setting. In that more general case, when we compose matchgates into matchcircuits
we need to keep track of sign influences explicitly, since we cannot rely on the FKT
method. For that reason we use there the more complex notion of character, while the
simpler notion of signature suffices in this paper since we restrict ourselves to planar
graphs.

The treatment in [56] is more general also in the second respect that omitted nodes
are allowed in matchgates and character is defined in terms of MatchSum rather than
PerfMatch. We accommodate this generalization in two limited ways in the current
paper. We use them in a thought experiment in the proof of Theorem 4.1. We also

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1572 LESLIE G. VALIANT

1 2
-1

Fig. 1. A generator matchgate for basis b1 with output nodes {1, 2} and one edge of weight
−1. It generates n⊗ n + n⊗ p + p⊗ n.

use them explicitly in circuits, as in Theorem 9.6, as allowed by Theorem 3.3 and
Corollary 4.2, noting that the omittable nodes have to be on the outer face of the
final circuit.

A basis of size k is a set of distinct nonzero vectors each of length 2k with entries
from a field F . Often we will have just two basis vectors that represent 0 and 1,
respectively, and in that case we shall call them n and p. In this paper all bases will
be of size k = 1, so that n = (n0, n1) and p = (p0, p1). The basis b0 = [n, p] =
[(1, 0), (0, 1)] we call the standard basis. In general, the vectors in a basis do not need
to be independent.

In this section we shall use as an illustrative example the basis b1 = [n, p] =
[(−1, 1), (1, 0)]. The gates we describe will be used in section 8 to implement our
first holographic algorithm, one for the #X-MATCHINGS problem. We believe that
this basis, though apparently somewhat specialized, is an instructive example. In
later sections we shall describe bases, such as b2, which appear to be more broadly
applicable.

In general if we have two vectors q, r, of length l, m, respectively, then we
shall denote the tensor product s = q ⊗ r to be the vector s of length lm in which
sim+j = qirj for 0 ≤ i < l and 0 ≤ j < m. Thus, for example, for the basis b1,
n⊗ p = (−1, 0, 1, 0). Clearly ⊗ is associative.

We say that a matchgate is a generator if it has zero input nodes and nonzero
output nodes and a recognizer if it has zero output nodes and nonzero input nodes.
One can define equally naturally a transducer gate that has both nonzero inputs and
nonzero outputs, but we do not use these for our examples. From the definition of
signature it follows that for generators and recognizers the signature is a vector.

Here we shall introduce generators and recognizers by example. A more formal
treatment can be found at the beginning of section 5. Intuitively, a generator can be
viewed as emitting n and p particles along its outputs in all possible combinations,
each combination with a certain value. A recognizer will absorb combinations of these
particles entering via its inputs, again attaching a certain value to each combination.
The overall goal is that the sum over all patterns of particles that can be generated of
the product of the values of all the generators and recognizers be equal to the value
of the function being computed.

We first consider generators. Suppose that a generator has graph G and m output
nodes. Then, by definition, its standard signature will be a 2m-vector. Recall that
element j in this vector is the value of PerfMatch(G′), where G′ is G but with those
output nodes removed that correspond to the index j in the manner described in
the definition of standard signature. Consider the generator matchgate Γ shown in
Figure 1.

It has V = {1, 2}, E = {(1, 2)}, W (1, 2) = −1, the input node set X = ∅, and
the output node set Y = {1, 2}. Then the standard signature u(Γ) of Γ is the vector
(−1, 0, 0, 1) since if both output nodes are removed then PerfMatch(G′) = 1, if neither
is removed then PerfMatch(G′) = −1, and if exactly one is removed then there is no
perfect matching and PerfMatch(G′) = 0. Now for the basis b1 defined above it is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1573

v5

v4v2

v3

w5

w4

w3

v1

w1

w2

v0

Fig. 2. A recognizer matchgate for basis b1 with input nodes v1, v2, . . . , v5, and edge weights
w1, w2, . . . , w5.

easy to see that n⊗ n = (1,−1,−1, 1), n⊗ p = (−1, 0, 1, 0), and p⊗ n = (−1, 1, 0, 0).
The sum of these is (−1, 0, 0, 1), which happens to equal the above stated standard
signature of the matchgate. (Note that here we used the convention that PerfMatch
of a graph with no nodes is 1. This can be avoided by using as the generator a chain
of four nodes, rather than two, and again having the end nodes as output nodes.)
Hence we conclude that for this gate and basis b1 the following holds.

Proposition 4.1. There exists a generator matchgate Γ with u(Γ) = n ⊗ n +
n⊗ p + p⊗ n, where (n, p) is the basis b1.

In other words, this gate generates the linear sum of the three bit combinations
00, 01, and 10 when interpreted in the basis b1 representation. The signature of this
generator with respect to the basis b1 (a notion further elaborated in section 5, as
relation (5.1)) will then be (1, 1, 1, 0) since these are the coefficients of the contribu-
tions for the four bit patterns 00, 01, 10, 11, respectively. For x ∈ {n, p}2 we shall
denote by valG(Γ , x) the signature element corresponding to x. Thus, for the current
example, valG(Γ, n⊗p) = 1 and valG(Γ, p⊗p) = 0. (We note that since a basis b can
be an arbitrary set the signature of a generator with respect to b may not be unique.
When we discuss a signature any valid signature will do.)

We shall now go on to discuss recognizers. Let us suppose that these have m
inputs. The purpose of such recognizers is to have PerfMatch take on appropriate
values as the inputs range over the 2m possible tensor product values x = x1⊗· · ·⊗xm,
where each xi ranges independently over {n, p}. Note that x can be viewed as a 2m-
vector in the standard basis. The value of PerfMatch for the recognizer matchgate
Γ “evaluated at input” x will by denoted by valR(Γ , x). More precisely, if vector u
is the standard signature of Γ, and x is the 2m-vector representing x in the standard
basis, then valR(Γ, x) is the inner product u x. Consider the family of recognizers
Γk shown in Figure 2. They are defined by the star graph Gk = (Vk, Ek,Wk), where
Vk = {v0, v1, . . . , vk}, Ek = {(v0, vi)|1 ≤ i ≤ k}, the input nodes are {vi|1 ≤ i ≤ k},
and the weight of edge (v0, vi) is wi.

Proposition 4.2. For all k > 0 and for all w1, . . . , wk ∈ F there exists a k-input
recognizer matchgate Γ such that on input x = x1 ⊗ · · · ⊗ xk ∈ {n, p}k over basis b1
valR(Γ , x) equals

(i) −(w1 + · · · + wk) if x1 = · · · = xk = n,
(ii) wi if xi = p, and xj = n for every j �= i,
(iii) 0 for the remaining 2k − k − 1 values of x1, . . . , xk.
Proof. We shall prove that the gate of Figure 2, where the weight of edge (v0, vi)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1574 LESLIE G. VALIANT

is set to wi, is such a recognizer. To see this note that the only subsets Z of the input
nodes {vi|1 ≤ i ≤ k} that can be removed that allow the PerfMatch of the remaining
graph to be nonzero are those that contain exactly k − 1 elements, and for these
PerfMatch = wi if vi is the node omitted from Z. Hence if two or more of the inputs
are p = (1, 0), then PerfMatch is zero. If exactly one input is p, and this is applied
at node vi, and all the others are n, then the only nonzero contribution comes from
the node vi being omitted from Z, and this gives a contribution of p0n

k−1
1 wi = wi. If

all the inputs are n, then there is a nonzero contribution n0n
k−1
1 wi = −wi for each

possible vi, and then the total value of PerfMatch is −(w1 + · · · + wk).
We note that the basic properties of a basis are unchanged if the first and second

components of all of its elements are interchanged together, or if they are multiplied by
arbitrary constants x and y, respectively. The former transformation can be realized
by appending to every input or output node an edge of weight 1. The latter can
be realized by appending to such nodes chains of length two weighted by x and y,
respectively. Hence any basis [(−x, y), (x, 0)] or [(x,−y), (0, y)] with nonzero x and y
is essentially equivalent to b1.

Proposition 4.3. If there is a generator (recognizer) with certain valG(valR) val-
ues for size one basis {(a1, b1), . . . , (ar, br)}, then there is a generator (recognizer) with
the same valG(valR) values for any basis {(xa1, yb1), . . . , (xar, ybr)} or {(xb1, ya1), . . .
(xbr, yar)} for any x, y ∈ F .

We define a matchgrid over a basis b to be a weighted undirected planar graph
G that consists of the disjoint union of a set of g generator matchgates B1, . . . , Bg,
r recognizer matchgates A1, . . . , Ar, and f connecting edges C1, . . . , Cf , where each
Ci edge has weight 1 and joins an output node in a generator matchgate with an
input node of a recognizer matchgate, such that every input and output node in every
constituent matchgate has exactly one such incident connecting edge.

Consider such a matchgrid Ω = (A,B,C) and assume, for simplicity, that the basis
is of size two. We denote by X = bf = (n, p)f the set of 2f possible combinations of
the basis elements n, p that can be transmitted simultaneously along the f connecting
edges in the matchgrid. We can break X into X1 ⊗ · · · ⊗Xg, where Xj = (n, p)k(j)

and k(j) is the arity of generator Bj and refers to the connecting edges that are
incident to that generator. Also if x ∈ X then we can mirror this decomposition as
x = x1 ⊗ · · · ⊗ xg, where xj is the particular set of basis elements that is transmitted
from the outputs of Bj . We can also break the same X into X̄1 ⊗ · · · ⊗ X̄r, where
X̄j = (n, p)l(j) and l(j) is the arity of the recognizer Aj and refers to the connecting
edges incident to that recognizer. If x ∈ X then this decomposition can be mirrored
as x = x̄1 ⊗ · · · ⊗ x̄r, where x̄j is the set of basis elements transmitted into the inputs
of Aj .

Now for each x ∈ X each recognizer Ai will evaluate a value valR(Ai, x) =
valR(Ai, x̄i), and each generator Bj will generate the value valG(Bj , x) = valG(Bj , xj).
The product of these values for all the generators and all the recognizers is the value
of the matchgrid at x. The value of the matchgrid will be the sum of these products
for the various x. This quantity we call the Holant :

Holant(Ω) =
∑
x∈bf

⎡
⎣ ∏

1≤j≤g

valG(Bj , xj)

⎤
⎦
⎡
⎣ ∏

1≤i≤r

valR(Ai, x)

⎤
⎦ .

There are two views of a matchgrid, one as a directed weighted graph G and the
other as a composition Ω = (A,B,C) of matchgates and connecting edges. For the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1575

former we have already defined various matching polynomials such as PerfMatch and
it is these that we shall evaluate in polynomial time. For the latter it is the Holant
that expresses the basic intention of the matchgrid, that of performing a weighted
sum of potentially exponentially many solutions, indexed by the set X, that obey the
local constraints expressed in the matchgates.

The central relationship that is necessary for a holographic algorithm is that the
potentially exponential summation that the Holant defines be computable in polyno-
mial time. The following is a paradigmatic expression of this. The reader should note
that for the standard basis valG = valR, and the theorem follows immediately. More
surprising, and at the heart of our holographic technique, is the fact is that the result
holds for all bases.

Theorem 4.1. For any matchgrid Ω over any basis b, if Ω has weighted graph
G, then

Holant(Ω) = PerfMatch(G).

Proof. The result is a consequence of linearity. The following is a mechanistic
way of presenting the argument.

Suppose for the sake of this proof that we allow a certain subset of the nodes of
a matchgate to be “omittable with weight 1” in the sense that its signature will be
defined by not just perfect matchings but also by all other matchings that saturate
all the nonomittable nodes, but any omittable node may or may not be saturated. In
other words we are using the polynomial MatchSum with λi = 1 for the omittable
nodes, and λi = 0 for the unomittable nodes. Once we allow omittable nodes we have
matchgates for any single basis elements such as p and n: Figure 3 shows a matchgate
with omittable node 1 and output node 3. The standard signature is clearly (w0, w1)
since if node 3 is not in Z then the only allowed matching is the edge (2,3) with weight
w0 and if node 3 is in Z then the only allowed matching is edge (1,2) with weight
w1. Hence we get a matchgate with standard signature p = (p0, p1) by fixing w0 = p0

and w1 = p1, and one with standard signature n = (n0, n1) by fixing w0 = n0 and
w1 = n1.

1 2 3

w0w1

Fig. 3. A generator matchgate having node 1 as an omittable node and node 3 as the output
node. It has standard signature (w0, w1).

Suppose we pick a fixed element x ∈ X from among the |b|f that are potentially
generated, and regard it as the tensor product x1 ⊗ · · · ⊗ xg, where xi corresponds
to the basis elements that are involved in generator Bi, and equivalently as a tensor
product x̄1 ⊗ · · · ⊗ x̄r, where x̄j corresponds to the basis elements that are involved
in recognizer Aj . Then we can construct from Ω a matchgrid G(x) that replaces each
generator Bi having k outputs by k generators of the single basis elements specified
by xi for those k outputs. Further, for each such Bi the parameters in one of these
single basis element generators will be set so as to multiply its value by valG(Bi, xi)
so that these generators for Bi generate xi with that multiplier valG(Bi, xi). Then it
follows from the definitions of generators, recognizers, and the way they are assembled

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1576 LESLIE G. VALIANT

according to the definition of matchgrids that

MatchSum(G(x)) =

⎡
⎣ ∏

1≤i≤g

valG(Bi, xi)

⎤
⎦
⎡
⎣ ∏

1≤i≤r

valR(Ai, x)

⎤
⎦ .

The reason for this equality is that a fixed vector x ∈ X is being generated with
weight ΠvalG(Bi, x), where the multiplication is over all the generators Bi. The inner
product of this x with the standard signature u of each of the recognizers gives the
contribution to MatchSum of the recognizers. But, by definition, the inner product
ux equals valR(Ai, x) for each recognizer Ai.

Now partition X into equivalence classes of |X1| elements each so that all members
of each equivalence class have identical X2, . . . , Xg components. For each of these
equivalence classes, say, the one defined by x2 ∈ X2, . . . , xg ∈ Xg, define the matchgrid
G(x2, . . . , xg) as follows: Set x to have components x2, . . . , xg and any x1 ∈ X1, and
let G(x2, . . . , xg) be G(x) but with the single element generators for x1 replaced by
the generator B1, which generates the sum of all members of X1, each with the
appropriate weight. Then clearly, summing over all the values of x1 gives

MatchSum(G(x2, . . . , xg))

=
∑

x1∈X1

valG(B1, x1)

⎡
⎣ ∏

2≤i≤g

valG(Bi, xi)

⎤
⎦
⎡
⎣ ∏

1≤i≤r

valR(Ai, x)

⎤
⎦ ,

where x in the last term denotes x1 ⊗ x2 ⊗ · · · ⊗ xg.
We iterate this process for B2, . . . , Bg in turn. For example, for B2 we partition

X2⊗X3⊗· · ·⊗Xg into equivalence classes of |X2| elements each so that each class has
identical x3, . . . , xg components. For each of these equivalence classes, say, that de-
fined by x3 ∈ X3, . . . , xg ∈ Xg, we define matchgrid G(x3, . . . , xg) to be G(x2, . . . , xg)
for some x2, but with the single element generators for x2 replaced by the generator
B2. This will sum all the members of X2 with the appropriate weights. It then follows
that

MatchSum(G(x3, . . . , xg))

=
∑

x1∈X1

∑
x2∈X2

valG(B1, x1)valG(B2, x2)

⎡
⎣ ∏

3≤i≤g

valG(Bi, xi)

⎤
⎦
⎡
⎣ ∏

1≤i≤r

valR(Ai, x)

⎤
⎦ .

After the last stage we have replaced all the generators of single basis elements
and have just one matchgrid left, which is G() = Ω. It follows then from the definition
of the Holant that MatchSum(G) equals Holant(G). Note that at that point all the
single element generators with omittable nodes have been replaced by the original
generators with no omittable nodes, and hence the result also holds for PerfMatch(G)
as claimed.

We use the Holant theorem to express the intention of holographic reductions. A
counting problem #F has a simple holographic reduction to planar PerfMatch if there
is a transformation that (i) produces all edge weights from a fixed set Y in which each
element can be computed to absolute error less than 2−n in time polynomial in n,
(ii) produces a weighted graph with the Holant and therefore also PerfMatch equal
to #F , and (iii) is computable in NC2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1577

Corollary 4.1. If #F has a simple holographic reduction to planar PerfMatch
then #F ∈ NC2.

Proof. The instance of #F is first transformed to an instance of planar PerfMatch.
By Theorem 3.1 the required solution is given by the square root of the determinant
of a matrix that satisfies the conditions of Theorem 3.2. It then follows from Corol-
lary 3.2.1 given in section 12 that this determinant and the required solution can be
computed in NC2.

All the reductions we exhibit in this paper are simple holographic reductions, in
which every element of Y is either rational or an algebraic number with an explicitly
given polynomial equation. Hence, a solution can be found accurate to 2−n in time
polynomial in n, as required (e.g., [45]).

A direct application of the above result that uses the matchgates already described
for the nonstandard basis b1 is Theorem 8.1. The reader may choose to look at
section 8 next before proceeding to other sections.

The previous theorem also supports the following generalization.
Corollary 4.2. For any matchgrid Ω with omittable nodes and having weighted

graph G, if in the definition of signature of a matchgate PerfMatch is replaced by
MatchSum, and this is inherited in the definitions of valG and valR, then

Holant(Ω) = MatchSum(G).

Note, however, that the only case we know in which this can be exploited for
polynomial time algorithms is when all the omittable nodes are on the outer face and
we can invoke Theorem 3.3, as we do in Theorem 9.6.

5. Signatures of planar matchgates. In this section we shall give a more
systematic treatment of generators and recognizers.

Consider a graph G with three external nodes numbered 1, 2, 3. For each choice
of i, j, k ∈ {0, 1} let uijk equal the PerfMatch polynomial of G when nodes 1, 2, 3 are
deleted, respectively, according to whether i, j, k equal 1 or not. Thus u111 denotes
PerfMatch(G′), where G′ is G with all three external nodes removed. Note that for
a generator or recognizer the definition of the standard signature u given in section 4
implies that u equals the 8-vector (u000, u001, u010, u011, u100, u101, u110, u111).

For a given basis b we denote by {bijk|i, j, k ∈ {0, 1}} the eight possible external
8-vectors x1 ⊗ x2 ⊗ x3, where x1, x2, x3 range over {n, p}, respectively. Thus b010 =
n ⊗ p ⊗ n will denote the basis vector n at inputs 1 and 3 and the basis vector p at
input 2. The (r, s, t)-element of the 8-vector bijk will be denoted by (bijk)rst and will
represent in x1⊗x2⊗x3 the product of the rth component of x1, the sth component of
x2, and the tth component of x3 for r, s, t ∈ {0, 1}. Thus (b010)110 will equal n1p1n0,
for example.

For the special case of the standard basis n = (1, 0), p = (0, 1) clearly the (r, s, t)-
element of vector bijk will equal 0 unless r = i, s = j, and t = k, in which case it will
equal 1.

Let us first consider generators. Suppose that G has standard signature u, and
for all {i, j, k} ∈ {0, 1}3

(5.1) uijk =
∑

qrst(brst)ijk

for some vector of numbers q where summation is over all {r, s, t} ∈ {0, 1}3. Then
we say that G generates signature q with respect to basis b. Note that if G has no

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1578 LESLIE G. VALIANT

omittable nodes then it is either even or odd and hence either the even or the odd
four elements of {0, 1}3 have zero values for uijk.

Let us now consider recognizers. Suppose that G has standard signature û, and
that when the 8-vector bijk for some {i, j, k} ∈ {0, 1}3 is input to G then G evaluates
to q̂ijk. Then

(5.2) q̂ijk =
∑

ûrst(bijk)rst

must hold, where summation is over {r, s, t} ∈ {0, 1}3. We then say that G recognizes
signature q̂ over basis b. Again, if G has no omittable nodes then it is either even or
odd and hence either the even or the odd four elements of {0, 1}3 have zero values for
ûrst.

Proposition 5.1. A gate G with standard signature equal to u will generate and
recognize u with respect to the standard basis.

Proof. This is immediate from the definition of generators and recognizers, and
the fact observed above that for the standard basis (bijk)rst = δirδjsδkt where δ is
the Dirac delta function.

For any basis b and matchgate, whether a generator or recognizer, one can define
the signature of the matchgate with respect to the basis to be the vector q that it
generates according to relation (5.1), or the vector q that it recognizes according to
relation (5.2) above. Thus if the matchgate has arity m, then its signature with respect
to b is a vector of length 2m. We will denote it, for the m = 3 case, typically by
(q000, q001, . . . , q111). The standard signature defined in section 3 is just the signature
with respect to the standard basis. When we discuss a basis we need to be clear
about which basis is involved. However, signatures that differ from each other by
a nonzero constant factor can be treated as equivalent since their contribution to
the PerfMatch or MatchSum polynomials of any overall matchgrid differ by just that
constant multiple.

If the arity m gate is symmetric in its inputs and outputs, then we can define its
symmetric signature with respect to basis b to be the vector [S0, S1, . . . , Sm], where
Si is equal to all the elements of the ordinary signature that are indexed by {0, 1}m
patterns with i occurrences of 1. For example, the gate in Figure 1 is symmetric.
With respect to basis b1 it has ordinary signature (q00, q01, q10, q11) = (1, 1, 1, 0) and
symmetric signature [S0, S1, S2] = [1, 1, 0]. The gate in Figure 2 has symmetric in-
stances, such as those where all the weights wi = 1 and m = 3, say, in which case the
symmetric signature is [−3, 1, 0, 0] with respect to the same basis. We shall use round
parentheses for signatures and square parentheses for the abbreviated symmetric ver-
sion.

6. Realizable signatures for the standard basis. With respect to the stan-
dard basis we can characterize the standard signatures that are realizable with planar
matchgates of arity up to four. We first note that in any such signature either the
odd or the even components must be zero depending on the parity of the number of
nodes in the matchgate. Propositions 6.1 and 6.2 therefore show that for arities 2 and
3 all signatures are realizable up to this basic constraint.

Proposition 6.1. For all F and all x, y ∈ F there exist matchgates with arity 2
and standard signatures (u00, u01, u10, u11) = (x, 0, 0, y) and (0, x, y, 0).

Proof. The matchgates of Figure 4, with external nodes {1, 2}, suffice.
Proposition 6.2. For all F and all x, y, z, t ∈ F there exist matchgates

with arity 3 and standard signatures (u000, u001, u010, u011, u100, u101, u110, u111) =
(t, 0, 0, z, 0, y, x, 0) and (0, x, y, 0, z, 0, 0, t).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1579

1 2
x y 1

1 2
x y

Fig. 4. Two arity two gates with input/output gates {1, 2}.

Proof. For the odd case (0, x, y, 0, z, 0, 0, t) consider Figure 5. Clearly if t �= 0 the
left-hand figure has standard signature (0, x, y, 0, z, 0, 0, t) and solves the problem. If
t = 0 we use the right-hand diagram.

For the even case (t, 0, 0, z, 0, y, x, 0) the signature of the left part of Figure 6 is
(ax+by+cz, 0, 0, z, 0, y, x, 0) and therefore solves the problem for all values of x, y, z, t
by appropriate choice of a, b, c, unless x = y = z = 0 and t �= 0. In that exceptional
case we use the right-hand diagram.

12 x /t

y / ttz / t

1

x

y z

2

33

Fig. 5. Arity three gates for nonzero odd components.

x
c

12

3

y z

b

a
12

3

t

1 1

Fig. 6. Arity three gates for nonzero even components.

In general we shall refer to the elements of a signature being even or odd according
to whether their index has an even or odd number of 1’s. Thus, for example, u1010

and u0000 are even while u0100 and u0111 are odd.

Proposition 6.3. Suppose the elements of the standard signature are represented
by uijkl for i, j, k, l ∈ {0, 1}. For any F it is possible to realize by matchgates with
arity 4 any standard signature such that

(i) u0000u1111 − u0011u1100 + u0101u1010 − u0110u1001 = 0, u1111 �= 0, and all the
odd elements are zero, or

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1580 LESLIE G. VALIANT

tu0011

tu1001

tu0110

tu0101 tu1010

tu1100

1

2 3

4
u1111

Fig. 7. An arity four matchgate, where t = 1/u1111.

(ii) u1000u0111 − u1011u0100 + u1101u0010 − u1110u0001 = 0, u0111 �= 0, and all the
even elements are zero.

Proof. We consider (i) first. The algebraic relationship is the first matchgate
identity from [56] and we follow the construction from there shown in Figure 7. First,
ignoring the central square we have a nonplanar matchgate. It is easy to see that this
matchgate does have the desired values for the seven components u1111, u0110, u1001,
u0011, u1100, u0101, and u1010 of the signature. Now if we could somehow simulate the
crossing edges (1, 3) and (2, 4) by a planar graph so as to create a change in sign, the
value of the eighth component u0000 for this matchgate would be the following:

tu0110u1001 + tu0011u1100 − tu0101u1010.

If we substitute t = 1/u1111, then we would have the claimed relationship (i). Now
to make the graph planar and to simulate the −1 factor, we replace the crossing
edges by the planar graph shown in Figure 8. In Figure 8 if we substitute a = 1,
b = i, c = d = −1/2, and e =

√
i, where i2 = −1, then nonzero contributions

from PerfMatch occur for just the four combinations of each of (1, 3) and (2, 4) being
present or not in Figure 7. Each combination comes with a factor of +1, except the
one that has both crossing edges present in Figure 7, which contributes a factor of −1
as required. This concludes the construction for the field of complex numbers. (It can
also be verified that the same graph with appropriate ± 1 weights will have factors
−1, 2, 2, and 4, which can be normalized to −1, 1, 1, and 1, respectively, by appending
appropriate graphs at the external nodes. Hence the construction applies for all fields
F . Note that the signature of any planar matchgate has to satisfy algebraic identities
similar to those of the character [57].)

In order to obtain part (ii) we simply append an extra edge weighted 1 at input 1
and call the other endpoint of the new edge the new input node 1. This transformation
leaves the elements of the signature unchanged, except that they are renamed by the
process of flipping the first bit of the index in each term e.g., u0000 becomes u1000.

We note that the constraints u1111 �= 0 and u0111 �= 0 can be eliminated in the
following sense. If any of the sixteen components is nonzero, then, by the method of
the last paragraph, one can flip bits so that the nonzero entry is moved to the 1111
or 0111 position, and the relation (i) or (ii) holds for the corresponding renaming of
the elements.

Proposition 6.4. For all F and any arity m and any S0 ∈ F there is a matchgate
with standard symmetric signature [S0, . . . , Sm], where S1 = · · · = Sm = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1581

1

2 3

4
a

a

a

ab

b

b

b

c

c

d

d
e

e

e

e

Fig. 8. An arity four planar matchgate that is used to simulate the crossover in Figure 7. The
substitution a = 1, b = i, c = d = −1/2, e =

√
i suffices where i2 = −1.

Proof. The gate consists of 2m nodes v1, . . . , vm, u1, . . . , um and m edges (vi, ui),
where u1, . . . , um are the output nodes. All the edges have weight one, except for one
which has weight S0.

7. Realizable signatures for arity two matchgates. Relations (5.1) and
(5.2) in section 5 relate the signatures realizable by an arbitrary basis to those real-
izable by the standard basis. In section 6 we characterized the signatures that are
realizable by the standard basis for gates of arity up to four. In this section we shall
spell out some consequences for signatures with respect to arbitrary bases that are
realizable by gates of arity 2. These gates will be invoked in several places in the
various algorithms described in later sections.

For ease of notation we shall consider the basis to be b = [(a, b), (c, d)] so that
b00 = (a, b)⊗ (a, b), b01 = (a, b)⊗ (c, d), b10 = (c, d)⊗ (a, b), and b11 = (c, d)⊗ (c, d).

Relation (5.1) then describes the following requirements on a generator to have
signature (q00, q01, q10, q11) with respect to b:

u00 = a2q00 + acq01 + acq10 + c2q11,
u01 = abq00 + adq01 + bcq10 + cdq11,
u10 = abq00 + bcq01 + adq10 + cdq11, and
u11 = b2q00 + bdq01 + bdq10 + d2q11.

By Proposition 6.1 any standard signature is possible as long as either u00 = u11 =
0 or u01 = u10 = 0. Hence there exist generators with signature (q00, q01, q10, q11) with
respect to basis b if either

a2q00 + acq01 + acq10 + c2q11 = 0 and b2q00 + bdq01 + bdq10 + d2q11 = 0

or

abq00 + adq01 + bcq10 + cdq11 = 0 and abq00 + bcq01 + adq10 + cdq11 = 0.

Proposition 7.1. For the basis b2 = [(1, 1), (1,−1)] for any x, y ∈ F there is a
generator for (x, y, y, x) = [x, y, x].

Proof. The second of the two cases above gives q00 − q01 + q10 − q11 = 0 and
q00+q01−q10−q11 = 0. Clearly these will be satisfied if q00 = q11 and q01 = q10.

Proposition 7.2. For the basis b2 = [(1, 1), (1,−1)] for any x, y ∈ F there is a
generator for (x, y,−y,−x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1582 LESLIE G. VALIANT

Proof. The first of the two cases above gives q00 + q01 + q10 + q11 = 0 and
q00−q01−q10 +q11 = 0. Clearly these will be satisfied if q00 +q11 = 0, and q01 +q10 =
0.

Moving on to recognizers, we note that the requirements for a recognizer to have
signature (q00, q01, q10, q11) are given by relation (5.2):

q00 = a2u00 + abu01 + abu10 + b2u11,
q01 = acu00 + adu01 + bcu10 + bdu11,
q10 = acu00 + bcu01 + adu10 + bdu11, and
q11 = c2u00 + cdu01 + cdu10 + d2u11.

By Proposition 6.1 any standard signature is possible as long as either u00 = u11 = 0
or u01 = u10 = 0. Hence there exist recognizers with signature (q00, q01, q10, q11) with
respect to basis b of the two forms

(abu01 + abu10, adu01 + bcu10, bcu01 + adu10, cdu01 + cdu10)

and

(a2u00 + b2u11, acu00 + bdu11, acu00 + bdu11, c2u00 + d2u11).

Proposition 7.3. If b2 = [(1, 1), (1,−1)] is a basis for field F then for any
x, y ∈ F , there is a recognizer for (x, y, y, x) = [x, y, x].

Proof. The second case above gives signature (u00 +u11, u00−u11, u00−u11, u00 +
u11).

Proposition 7.4. If [(a, b), (c, d)] is a basis, then there is a recognizer for (0, ad−
bc, bc− ad, 0).

Proof. The proof follows from the first case above if u01 = 1 and u10 = −1.
Proposition 7.5. If [(a, b), (c, d)] is a basis, then there is a recognizer for (a2 +

b2, ac + bd, ac + bd, c2 + d2).
Proof. The proof follows from the second case with u00 = 1 and u11 = 1.
Proposition 7.6. If [(a, b), (c, d)] is a basis, then there is a recognizer for (a2 −

b2, ac− bd, ac− bd, c2 − d2).
Proof. The proof ollows from the second case with u00 = 1 and u11 = −1.

8. The basis b1 = [(1,−1), (1, 0)]. We shall now apply our method to the
problem of matchings—not necessarily perfect—in planar graphs. This is also known
as the monomer-dimer problem. Considerable efforts had been expended in attempts
to reduce it to the planar perfect matching problem. The lack of success achieved
was explained by the work of Jerrum [26, 27] who showed that this counting problem
was #P-complete. Subsequently Vadhan [51] showed that it remained #P-complete
even when the planar graph was bipartite, and its degree was restricted to 6. If the
degree is restricted to 2, then the graph consists of a set of cycles and the problem is
easily solvable. Any class that allows higher degrees is a natural candidate for #P-
compleness. However, we can show that the following such problem is computable in
polynomial time.

Theorem 8.1. There is a polynomial time algorithm for #X-MATCHINGS.
Proof. Consider a given planar weighted graph H = (V,E,W), where V has

bipartition V 1, V 2, where every node v ∈ V 1 has degree 2 and every node v ∈ V 2 has
some arbitrary degree deg(v). We construct a matchgrid ΩH over b1 by replacing
each V 1 node with the generator matchgate of Proposition 4.1, replacing each V 2
node with the recognizer matchgate of Proposition 4.2, and, for each edge (u, v) in
H by having a connecting edge joining an output of the generator for u to an input

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1583

of the recognizer for v so as to preserve planarity. The edge in the recognizer that is
adjacent to this connecting edge will have the same weight wi as the edge (u, v) has
in H.

Now the Holant was defined as

Holant(ΩH) =
∑
x∈X

⎡
⎣ ∏

1≤j≤g

valG(Bj , x)

⎤
⎦
⎡
⎣ ∏

1≤i≤r

valR(Ai, x)

⎤
⎦ ,

where j ranges over all the generators, i over all the recognizers, and x over all possible
tensor products of the basis elements. But each generator has arity two and generates
n ⊗ n, n ⊗ p, p ⊗ n, and p ⊗ p with weights 1, 1, 1, and 0, respectively. Hence the
nonzero contributions to the Holant will come from edge sets of H such that at most
one edge from the set is adjacent to each V 1 node. But the matchgates at the V 2
nodes are defined so that valR(Ai, x) is

(i) 0 if there is more than one edge incident,
(ii) wi if there is exactly one, and its weight is wi, and
(iii) −(w1 + · · · + wk) if there are no incident edges.

Hence the value of the Holant is the sum over all matchings E′ of H of the mass
of E′ defined as follows. The mass of E′ is the product of the weights of all the edges
that are present in it and also of the value of −(w1 + · · ·+wk) for every V 2 node that
is not saturated by the matching. Hence, by virtue of Theorem 4.1 and Corollary 4.1,
this mass can be computed in polynomial time, and, in fact, in NC2.

9. The basis b2 = [(1, 1), (1,−1)]. In this section we study the basis b2 =
[(1, 1), (1,−1)], which has a remarkable range of capabilities. We shall assume that
field F does not have characteristic two, since then b2 would have just one distinct
element. We first note that by Propositions 7.1 and 7.3, the arity 2 symmetric sig-
nature [x, y, x] can be realized for any x, y, both as a generator and as a recognizer.
Thus equality has weight x and inequality has weight y. The case x = 0 gives in-
equality gates and the case y = 0 equality gates. The arity one signature [x, x] is
also realizable, by 2-node matchgates, but the arity one constants [1, 0] and [0, 1] are
not—they would require omittable nodes.

If we have a generator over this basis and join to its outputs equality recognizers,
then we get a recognizer gate with the same signature as the original generator.
Similarly we can convert arbitrary recognizers to generators with the same signature
by appending generator equality gates. Hence for this basis b2 the signatures that
can be realized by generators are exactly the same as those that can be realized by
recognizers.

For arity three we shall now enumerate the eight possible combinations of ba-
sis elements for the inputs, namely, b2000, . . . ,b2111, rewrite each as an 8-vector of
coefficients with respect to the standard basis, and group them according to some
semantics:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1584 LESLIE G. VALIANT

THREE POSITIVES
(1,−1) ⊗ (1,−1) ⊗ (1,−1): (1 –1 –1 1 –1 1 1 –1)

ZERO POSITIVES
(1, 1) ⊗ (1, 1) ⊗ (1, 1): (1 1 1 1 1 1 1 1)

ONE POSITIVE
(1,−1) ⊗ (1, 1) ⊗ (1, 1): (1 1 1 1 –1 –1 –1 –1)
(1, 1) ⊗ (1,−1) ⊗ 1, 1): (1 1 –1 –1 1 1 –1 –1)
(1, 1) ⊗ (1, 1) ⊗ (1,−1): (1 -1 1 –1 1 –1 1 –1)

TWO POSITIVE
(1,−1) ⊗ (1, 1) ⊗ (1,−1): (1 –1 1 –1 –1 1 –1 1)
(1, 1) ⊗ (1,−1) ⊗ (1,−1): (1 –1 –1 1 1 –1 –1 1)
(1,−1) ⊗ (1,−1) ⊗ (1, 1): (1 1 –1 –1 –1 –1 1 1)

SUMS:
0 OR 3 POSITIVES: (2 0 0 2 0 2 2 0)
1 OR 2 POSITIVES: (6 0 0 –2 0 –2 –2 0)

By taking linear combinations of the rows as specified by relation (5.1) we can
determine which combinations are realizable standard signatures. By Proposition 6.2
it is sufficient in the arity three case for a standard signature that either all the odd
elements, or all the even elements, be zero.

It is clear that if we add the THREE POSITIVES and the ZERO POSITIVES
vectors we get an all-even signature (2, 0, 0, 2, 0, 2, 2, 0). It follows that the symmetric
signature [1, 0, 0, 1] is realizable for the basis b2. Similarly adding the remaining six
vectors also gives an all-even vector, and hence the symmetric signature [0, 1, 1, 0]
is also realizable. Further, if we add x times the first two vectors to y times the last
six we still get an all-even vector. Hence for all x, y ∈ F , the symmetric signature
[x, y, y, x] is realizable.

Theorem 9.1. There is a polynomial time algorithm for #PL-3-NAE-ICE.

Proof. We represent each degree 3 node of the given graph G by a recognizer
matchgate with symmetric signature [0, 1, 1, 0] over b2, i.e., the NOT-ALL-EQUAL
or NAE gate. For degree 2 nodes we have a recognizer for [0, 1, 0] from Proposition 7.3.
For each edge we will have a generator matchgate with symmetric signature [0, 1,
0] from Proposition 7.1. We will have connecting edges between the outputs of the
generators and inputs of the recognizers as specified by G. If p on a connecting edge of
a recognizer gate represents the orientation toward that gate, and an n an orientation
away from it, then clearly each edge of G will be given a consistent orientation by
virtue of the binary inequality generator gate [0, 1, 0], which ensures that its two
outputs carry opposite basis elements. Further, the recognizer gates will ensure that
either one or two of the edges are directed toward it. It follows that the Holant of the
given matchgrid will equal the desired value of #PL-3-NAE-ICE.

Theorem 9.2. There is a polynomial time algorithm for #PL-3-(1,1)-CYCLE-
CHAIN.

Proof. Suppose we are given graph G as input to the (1,1) cycle-chain problem.
We shall represent each node by a recognizer for [0, 1, 1, 0]. We represent each edge
of G by a generator for [1, 0, 1]. Now if a p generated by a generator signifies that
the corresponding edge of G is in the cycle-chain cover, then clearly the edges of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1585

G will have a consistent such association by virtue of the [1, 0, 1] generators. But
the recognizers will ensure that either one or two edges of G incident to any one
vertex are labeled p. It follows that there is a one-to-one correspondence between
labelings of the edges of G by {n, p} such that the edges labeled by p form a cycle-
chain cover and contributions of 1 to the Holant of the constructed matchgrid. The
result follows.

Theorem 9.3. There is a polynomial time algorithm for PL-NODE-BIPARTI-
TION.

Proof. Suppose we are given graph G as input to the PL-NODE-BIPARTITION
problem. We shall represent each node by a recognizer for [x, y, y, x] or [x, y, x],
depending on whether the degree is 3 or 2, where x, y are variables to be given
various values. (Any node of degree 1 can be simply deleted.) Each edge we represent
by a generator for [0, 1, 0]. Then as in the proof of Theorem 9.1 we can interpret
nonzero contributions to the Holant as orientations of G. Nodes that have all edges
directed toward them (sinks) or all edges directed away from them (sources) will give
a contribution of x to the Holant, and those that are neither sources nor sinks will
have a contribution of y. Now if we fix y = 1 then the Holant will be a polynomial
SS(x), where the coefficient of xi will be the number of orientations of the edges of
G that have exactly i nodes as either sources or sinks.

Now it is easy to verify that the largest i for which the coefficient of xi in SS(x)
is nonzero is the maximum number of nodes that a bipartite graph can have that is
obtained by deleting nodes and incident edges from G. In one direction, if there is
an orientation with i sources and sinks, then the graph induced by the nodes that
are sources and sinks in G must be bipartite. In the reverse direction, if we have a
bipartite subgraph in G where the nodes have bipartition V 1′ and V 2′, then we can
define an orientation of G where all the nodes V 1′ are sources and all the nodes V 2′

sinks, and the orientation of any edge not incident to V 1′ or V 2′ can be arbitrary.

Now by giving x any fixed value we can compute the Holant for that value and
hence obtain the value of SS(x). By doing this for |V | + 1 distinct values of x and
performing polynomial interpolation on the |V |+ 1 values obtained, we can compute
all the coefficients of SS(x). The largest i such that the coefficient of xi in SS(x)
is nonzero will give the minimum number |V | − i of nodes whose removal leads to a
bipartite graph.

The following folds in the results for gates with 1, 2, and 3 inputs described above,
with some result for gates with 4 inputs detailed below, and the equality gate for any
number of inputs.

Theorem 9.4. For matchgrids where each matchgate is one of [x, x], [x, y, x],
[x, y, y, x], [1, 0, 0, 0, 1], [1, 0,−1, 0, 1], [0, 1, 0,−1, 0], [0, 1,±

√
2, 1, 0] , in the case 2x2 =

yw + y2 [w, x, y, x, w], and [1, 0, . . . 0, 1] for any arity, the Holant can be computed in
polynomial time. Here different matchgates may have different values of x, y, w ∈ F .

Proof. For arities one, two, and three, we have already established that [x, x],
[x, y, x], and [x, y, y, x] are realizable.

For arity four we shall enumerate the sixteen possible combinations of basis ele-
ments for the inputs, namely, b20000, . . . ,b21111, rewrite each as a 16-vector of coeffi-
cients with respect to the standard basis, and group them according to some semantics,
as we did for arity three. By taking linear combinations of the rows as specified by
relation (5.1), we can again determine which combinations are realizable standard
signatures. By Proposition 6.3 it is sufficient in the arity four case for a standard
signature that all the odd elements, or all the even elements, be zero, provided in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1586 LESLIE G. VALIANT

addition that the polynomial relation stated there holds among the eight remaining
elements.

ZERO POSITIVES
(1,1)⊗(1,1)⊗(1,1)⊗(1,1): (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

FOUR POSITIVES
(1,-1)⊗(1,-1)⊗(1,-1)⊗(1,-1): (1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1)

CROSSINGS
(1,-1)⊗(1,1)⊗(1,-1)⊗(1,1): (1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1)
(1,1)⊗(1,-1)⊗(1,1)⊗(1,-1): (1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1)

THE OTHER FOUR
TWO POSITIVES CASES
(1,1)⊗(1,1)⊗(1,-1)⊗(1,-1): (1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1)
(1,-1)⊗(1,-1)⊗(1,1)⊗(1,1): (1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1)
(1,1)⊗(1,-1)⊗(1,-1)⊗(1, 1): (1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1)
(1,-1)⊗(1,1)⊗(1,1)⊗(1,-1): (1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1)

ONE POSITIVE
(1,1)⊗(1,1)⊗(1,-1)⊗(1,1): (1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1)
(1,-1)⊗(1,1)⊗(1,1)⊗(1,1): (1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1)
(1,1)⊗(1,1)⊗(1,1)⊗(1,-1): (1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1)
(1,1)⊗(1,-1)⊗(1,1)⊗(1,1): (1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1)

THREE POSITIVES
(1,1)⊗(1,-1)⊗(1,-1)⊗(1,-1): (1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1)
(1,-1)⊗(1,-1)⊗(1,1)⊗(1,-1): (1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1)
(1,-1)⊗(1,-1)⊗(1,-1)⊗(1,1): (1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1)
(1,-1)⊗(1,1)⊗(1,-1)⊗(1,-1): (1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1)

SUMS:
0 OR 4 POSITIVES (2 0 0 2 0 2 2 0 0 2 2 0 2 0 0 2)
TWO POSITIVES (6 0 0 -2 0 -2 -2 0 0 -2 -2 0 -2 0 0 6)
ONE POSITIVE (4 2 2 0 2 0 0 -2 2 0 0 -2 0 -2 -2 -4)
THREE POSITIVES (4 -2 -2 0 -2 0 0 2 -2 0 0 2 0 2 2 -4)

Each 4-output matchgate will have standard signature (u0000, . . . , u1111). Each
gate will be either even or odd and will have at most eight of the elements of their sig-
nature nonzero. For convenience we shall here represent the signature of an even gate
by the 8-vector (u0000, u0011, u0101, u0110, u1001, u1010, u1100, u1111) and the signature
of an odd gate by the 8-vector (u0001, u0010, u0100, u0111, u1000, u1011, u1101, u1110).

(i) Signature [1, 0, 0, 0, 1]: Adding the signatures for the two cases (0 positives)
+ (4 positives) gives for the even case the 8-vector (2, 2, 2, 2, 2, 2, 2, 2) which
is feasible by Proposition 6.3(i).

(ii) Signature [1, 0,−1, 0, 1]: Forming the linear combination for the eight cases
z(2 positives) + (0 or 4 positives) gives for the even case the 8-vector
(6z+2, 2−2z, 2−2z, 2−2z, 2−2z, 2−2z, 2−2z, 6z+2). By Proposition 6.3(i)
this is realizable if (6z + 2) ∗ (6z + 2) = (2− 2z)(2− 2z), or 36z2 + 24z + 4 =
4z2 − 8z + 4, or 32z2 + 32z = 0, or z = −1.

(iii) Signature [0, 1, 0,−1, 0]: Forming the linear combination for the eight cases
(1 positive) − (3 positives) gives for the odd case the 8-vector (4, 4, 4,−4,
4,−4,−4,−4). By Proposition 6.3(ii) this is realizable since −16 + 16 + 16−
16 = 0.

(iv) Signature [0, 1,±
√

2, 1, 0]: Forming the linear combination for the fourteen
cases (1 positive) + (3 positives) + y(2 positives) gives for the even
case the 8-vector (8 + 6y,−2y,−2y,−2y,−2y, −2y,−2y,−8 + 6y). Therefore
it is sufficient that (8 + 6y)(−8 + 6y) = 4y2, or −64 + 36y2 = 4y2, or y =

√
2

or y = −
√

2.
(v) Signature [w, x, y, x, w]: Forming the linear combination for the sixteen cases

w(0 positives) + w(4 positives) + x(1 positive) + x(3 positives)
+ y(2 positives) gives for the even case the 8-vector (2w + 6y + 8x, 2w −

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1587

2y, 2w− 2y, 2w− 2y, 2w− 2y, 2w− 2y, 2w− 2y, 2w + 6y− 8x), for which any
y, x, and w with 2x2 = yw + y2 will suffice.

Note that relation (v) generalizes relations (i), (ii), and (iv).

Finally, we note that equality gates of any arity m can be obtained by chain-
ing together m − 2 ternary equality gates [1, 0, 0, 1] using the equality recognizers of
Proposition 7.3.

Theorem 9.5. There is a polynomial time algorithm for#PL-3-NAE-SAT.

Proof. The construction follows that for Theorem 9.1 except that for NAE nodes
we have recognizers with symmetric signatures [0, 1, 1, 0], and for variable nodes we
have recognizers for [1, 0, . . . , 0, 1] gates of the same arity as the number of clauses
in which the variable appears. Further, if a variable occurrence is negated we have
a [0, 1, 0] generator along the edge that joins the variable recognizer and the NAE
recognizer, and if the variable occurrence is not negated then we have [1, 0, 1].

Theorem 9.6. There is a polynomial time algorithm for ⊕PL-EVEN-LIN2.

Proof. The construction follows that for Theorem 9.1 with some exceptions.
First we note that any equation of even length more than four can be reduced to a
set of equations all of length four by the introduction of new variables. For example,
z1+· · ·+z6 = 1 becomes the two equations z1+z2+z3+y = 0 and y+z4+z5+z6 = 1.
Now each equation of length four is simulated by a [1, 0,−1, 0, 1] or a [0, 1, 0,−1, 0]
gate depending on whether the constant term of the equation being simulated is 0
or 1. For length 2 we use [1, 0, 1] and [0, 1, 0], respectively. The boundary conditions
that fix the values of variables can be realized by using 2-node matchgates with one
omittable node as shown in Figure 3. We then invoke Corollary 4.2 and Theorem 3.3.

For each original noncompulsory equation we pick an arbitrary variable occur-
rence in it and simulate it “possibly being faulty” by having as the corresponding link
between its variable and equation recognizers a generator for [1, x, 1] if the variable
occurs positively and [x, 1, x] if it occurs negated. For all other occurrences of vari-
ables the corresponding link is a generator for [1, 0, 1] or [0, 1, 0] as appropriate. The
Holant will then be a polynomial in x. The coefficient of xi will arise from “solutions”
of the equations where exactly i variable occurrences, all in distinct noncompulsory
equations, have their bits inverted. In other words they arise from solutions that sat-
isfy all but exactly i of the noncompulsory equations. Since each solution contributes
±1 to the Holant, the result follows.

We note that the generating function of the Ising problem, or #PL-CUT, is noth-
ing other than the Holant when edges are replaced by [1, y, 1] gates and nodes by
[1, 0, . . . , 0, 1] gates over b2. Hence this offers yet another treatment of the Ising prob-
lem for planar structures. In the reverse direction this implies that algorithms based
on just these gates can be derived also from #PL-CUT through classical reductions,
essentially following our proofs here. The reader can verify that Theorems 9.1, 9.2,
9.3, and 9.5 are all in this category since [1, y, y, 1] can be simulated by three [1, y, 1]
gates. However, if the problems solved in these theorems are generalized to allow the
degree 4 gates permitted by Theorem 9.4, then polynomial time algorithms follow for
some, perhaps less natural, problems for which no classical reduction to #PL-CUT is
apparent.

To conclude this section we now summarize more explicitly what the holographic
treatment of an instance G of #PL-CUT involves. The basis used will be b2. Each
node of G of degree d will be replaced by a recognizer for [1, 0, . . . , 0, 1] which enforces
equality on its d inputs. Clearly (Theorem 9.4) such a recognizer can be constructed
by chaining together d-2 recognizers for [1, 0, 0, 1] with generators for [1, 0, 1]. Each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1588 LESLIE G. VALIANT

edge of G will be simulated by a generator for [1, y, 1]. The simulation consists of
replacing the nodes and edges by these gates and joining up the corresponding pairs of
input/output nodes of these gates by single edges. The coefficient of yk in PerfMatch
of the resulting weighted graph will give the answer to the #PL-CUT problem by
virtue of the Holant theorem. The only technical facts that need to be verified are
that for the basis b2 generators for [1, y, 1] and [1, 0, 1], and recognizers for [1, 0, 0,
1] exist. Proposition 7.1 guarantees the former. Proposition 6.2 guarantees the latter
in conjunction with the observation made at the start of the current section that the
sum of “0 or 3 positives” over b2 corresponds to an all even standard signature.

10. The basis b3 = [(1, 1), (1, −1), (1, 0)]. We now consider the problem
PL-FO-2-COLOR and shall employ this basis b3.

Theorem 10.1. There is a polynomial time algorithm for PL-FO-2-COLOR.
Proof. Given a graph G we assume that all its nodes have degree 2 or 3. At nodes

of degree 3 we place matchgates that generate

(1, 0) ⊗ (1, 1) ⊗ (1, 1) + (1, 1) ⊗ (1, 0) ⊗ (1, 1) + (1, 1) ⊗ (1, 1) ⊗ (1, 0)

+ (1, 0) ⊗ (1,−1) ⊗ (1,−1) + (1,−1) ⊗ (1, 0) ⊗ (1,−1) + (1,−1) ⊗ (1,−1) ⊗ (1, 0),

and at nodes of degree 2 those that generate

(1, 0) ⊗ (1, 1) + (1, 1) ⊗ (1, 0)

+ (1, 0) ⊗ (1,−1) + (1,−1) ⊗ (1, 0).

We note that all the nonzero terms are even and hence by Proposition 6.2 there
are matchgates to generate them. In place of the edges of G we place recognizers that
on input (a, b), (c, d) at their respective inputs have value ac− bd. The recognizer of
Proposition 7.6 suffices.

We say that a node of G represents 0 if it generates (1, 1) in some direction and
1 if it generates (1,−1) in some direction. In either case it directs its arrow along the
edge on which it sends (1, 0) and away from itself.

Clearly the recognizer between two nodes that both represent 0 or both 1 will
have value zero unless at least one of the nodes sends an arrow, i.e., (1, 0), to the
recognizer, in which case its value will be 1. A recognizer between two nodes that
represent 0 and 1, respectively, will have value 2 if there are no arrows toward the
recognizer, and 1 otherwise.

The Holant of this matchgrid will be nonzero iff PL-FO-2-COLOR has a solution.
Each solution will be counted 2k times where k is the number of edges in G that have
no arrows and whose endpoints represent opposite values.

11. General complexity-theoretic questions. We regard the most impor-
tant among the currently widely held conjectures of complexity theory to be (1) P �=
NP, (2) P �= P#P, (3) P �= BPP, (4) P �= QBP, (5) P ⊂/ PolyLogSPACE, (6) P �= NC,
(7) P �= PSPACE. We observe that a positive solution to the question P#P =?NC
would resolve all the above seven questions (the first six would be contradicted). (N.B.
Regarding question (3) P = BPP is also widely conjectured.)

Now consider polynomial systems of the form

S(x) = {E1(x), E2(x), . . . , Em(x)},

where x stands for a set of variables {x1, . . . , xn} and Ei(x) stands for a polynomial
equation with coefficients from the integers. We shall say that such a system is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1589

solvable if it is satisfied by a set of complex numbers. In order that we may invoke
Theorem 3.2, which is needed to ensure that the linear algebra computations be in
polynomial time, we need such a system to be efficiently solvable. We say that a
system is efficiently solvable if for that one fixed system there exists an algorithm that
for some polynomial p(n) and any n > 1 computes some solution to the system to n
decimal places of accuracy within p(n) Boolean operations. This is a weak requirement
in that the size of the polynomial system can be regarded as a fixed constant. The
requirement is only that the cost of computing the solutions to higher and higher
accuracy is polynomial time bounded in the number of digits of the accuracy for that
one fixed system. (It need not be polynomial time in the size of the system.)

In fact, it can be seen that solvable systems are always also efficiently solvable in
our sense: Systems with finite numbers of solutions are efficiently solvable since they
can be reduced by elimination to univariate polynomial solving. Further, systems
with infinitely many solutions are also efficiently solvable by means of univariate rep-
resentations [7, Theorem 4.12], [2, Algorithm 11.60]. It is well known that univariate
polynomials are efficiently solvable (e.g., [45]).

We now observe that holographic methods can be viewed as providing construc-
tions of natural systems S such that

(11.1) S(x) is solvable ⇒ P#P = NC2.

More particularly, for any one formulation F (specifiable by appropriate local
constraints) of a combinatorial problem for which the counting problem #F is #P-
complete, and any basis size k, and gate size g, we shall construct a polynomial system
SF,k,g such that SF,k,g is solvable iff there is a simple holographic reduction from #F
to planar PerfMatch using basis size k and gate size g.

We can then define SF to be the family of polynomial systems {SF,k,g | k =
1, 2, . . . ; g = 1, 2, . . .} and make the final claim:

(11.2) Some member of SF is solvable ⇒ P#P = NC2.

We shall explain the above claims, in the first instance, in the context of gates of
arity up to three and basis size 1, as developed earlier in the paper. In section 5 we
have already stated the polynomial constraints (5.1) on generators

(11.3) uijk =
∑

qrst(brst)ijk

and (5.2) on recognizers

(11.4) q̂ijk =
∑

ûrst(bijk)rst,

where summation is over {r, s, t} ∈ {0, 1}3. Note that here q and q̂ describe the
formulation of the combinatorial problem, b is the basis, and u and û are the standard
signatures. Also, from the definition of standard signatures in section 4, the various
components of u, û equal PerfMatch(G−Z), PerfMatch(Ĝ−Z) for various choices of
Z, assuming, for simplicity, that there is just one kind of generator and one kind of
recognizer. Hence the components uijk of u each equal a polynomial expression, say,
Ug
ijk(W), over the weights W of the generic gate G of size g, and similarly for ûijk.

Hence the third set of constraints we need is

(11.5) uijk = Ug
ijk(W), ûijk = Û ĝ

ijk(Ŵ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1590 LESLIE G. VALIANT

It follows from what we have said that (11.3)–(11.5) are solvable iff there is a
holographic reduction from the given formulation of #F to planar PerfMatch using
basis size 1 and gate size g. We note that in section 6 we characterized the polynomial
equations that can be realized for arities up to four for gates of any size—not just for
fixed values of g.

For example, in section 4 we found a solution in the case that q = (1, 1, 1, 0)
and q̂ = (−3, 1, 1, 0, 1, 0, 0, 0). (N.B. We had an arity 2 gate for the generators, but
arbitrary arity for the recognizers, the q̂ here being the instance for arity three.) That
gave us a polynomial time algorithm for #X-MATCHINGS. Planar matchings are
known to be #P-complete [26, 27], even in the planar bipartite case of maximum
degree 6 [51]. Hence the solvability of such a #P-complete case would imply P#P =
NC2. We note that the nonsolvability of such systems can be proved mechanically,
in principle, using computer algebra systems. With such a system we have verified,
for example, that the basis given for #X-MATCHINGS is essentially unique among
those of size one.

Now (11.3)–(11.5) as stated are limited to bases that have size 1 and two com-
ponents, and gates of arity up to three. To allow for h rather than two compo-
nents the only change needed in (11.3)–(11.5) is that {r, s, t} should be summed over
{1, 2, . . . , h}. It is easy to see that these polynomials can be generalized also to allow
for arbitrary basis size and arbitrary arity.

By a formulation of a problem we mean a mapping of “the parts” of the problem
to generator and recognizer gates in the manner of the reductions we have given for our
various specific problems. Given a #P-complete problem such as planar matchings,
there are many possible formulations, and it is not clear which, if any, are the most
useful for searching for positive solutions of P#P. The formulation given in section 8
mapped the nodes to one of two kinds of matchgates. Another would be to map a
group of nodes to one kind of matchgate and the edges to another. Also, as illustrated
in some reductions in section 9, the original problem may be mapped to a number
of matchgrids and the final answer recovered by polynomial interpolation. Clearly
there are numerous such formulations that one might try. Thus for any combinatorial
problem such as those we have described one can ask whether some formulation of
some variant is both #P-complete and has a solvable equation system.

Our treatment here emphasizes solutions from C only because these seem the
easiest to find mechanically. Clearly, solutions over finite fields would be even better
for computational purposes if these can be found, though the positive consequences
would be only for the corresponding fields in the first instance [52].

Also, we have defined signatures as matrices whose rows correspond to input
configurations of matchgates and whose columns correspond to output configurations.
In this paper the matchgates we used were all generators or recognizers, corresponding
to column and row vectors, respectively. The treatment can be adapted, clearly, to
matchgates that have both inputs and outputs.

Throughout this paper we have emphasized planar structures. However, within
the same framework we can deal with nonplanar structures as long as in their for-
mulation we also allow for “crossover” nodes (and simulate them effectively with
matchgates).

An entirely orthogonal issue is that in this paper we have used the PerfMatch
polynomial at the matchgate level and the FKT method for planar graphs as the
combining mechanism. An alternative approach for the whole development is to use
the Pfaffian at the matchgate level and the Pfaffian combining approach described in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1591

[56, 58] instead.
We have considered only matchgrids that use the same basis throughout. We

could equally use a different basis for each connection in the matchgrid.
In conclusion, we observe that if any polynomial system generated in the manner

described above for a #P-complete problem is solvable, then it would follow that
P#P = NC2 and that the seven conjectures enumerated at the beginning of this
section would be resolved. In the apparent absence of alternative general approaches
to these complexity issues, we suggest that as long as the solvability of even one
such polynomial system remains unresolved, it is rational to regard these complexity
questions as being truly open.

12. Numerical considerations.
Proof of Theorem 3.2. We shall use Berkowitz’s algorithm for computing the

determinant [5] and exploit the fact that, unlike Gaussian elimination, it uses no
division. Inspection of Berkowitz’s algorithm shows that it uses 3 log2 n+O(1) levels
of multiplications of pairs of matrices of sizes at most n×n, where the matrix entries
initially are either −1 or members of Y , and at subsequent steps are the entries,
sometimes multiplied by −1, of matrix products previously obtained.

For x ∈ C let |x| be the modulus of x. Let D = max{1,max{|x| : x ∈ Y }}.
Our algorithm will depend on Y only through the value of D. For all matrices it
will execute the same sequence of arithmetic operations defined by Berkowitz’s algo-
rithm except that the arithmetic will be performed in arithmetic with g = g(n, Y) =
O(n3)(log2 D + log2 n) decimal places of accuracy in fixed precision arithmetic both
to the left and to the right of the decimal point. The roundoff error introduced in
each operation is at most 2−g in absolute value.

We want Fi to be an upper bound on the modulus of any value computed at the
ith level of the exact algorithm. Clearly F0 = D and Fi > (Fi−1)

2nk suffice if each
level is a matrix multiplication of matrices of size at most nk × nk. It follows that if
exp(i) = 2i, then Fi = (nkD)exp(i) suffices.

We now want εi to be an upper bound on the maximum absolute error on an
output of level i that can occur through the accumulation of roundoff errors. We
take ε0 = 2−g and will maintain 2−g ≤ εi ≤ 1/2 and Fi ≥ 1 by induction. Now the
maximum value that can be taken by a product of true absolute values U and V is

(U + εi−1)(V + εi−1) + 2−g = UV + (U + V)εi−1 + ε2i−1 + 2−g

≤ UV + 2εi−1Fi−1 + ε2i−1 + 2−g = UV + ε′i,

say. The maximum error of a subsequent nk-fold sum, as required by a matrix multi-
plication, performed as nk − 1 pairwise operations is (nk(ε′i + 2−g). Combining these
gives that

εi ≤ nk(2εi−1Fi−1 + ε2i−i + 2.2−g) ≤ 6nkFi−1εi−1 ≤ (6nk)iFi−1Fi−2 . . . F0ε0,

where for the second inequality we have used ε2i−1 ≤ 2Fi−1εi−1 (since Fi−1 > 1 and

εi−1 ≤ ε), and also 2−g ≤ Fi−1εi−1. Since Fi = (nkD)exp(i) we deduce that

(*) εi ≤ (6nk)i(nkD)exp(i+1)2−g.

Now if we want to ensure that the integer value of the determinant is computed
correctly for i = 3 log2 n + O(1) and k = 1, then εi < 1/2 is needed for these pa-
rameters. From inequality (*) it follows that g = O(n3)(log2 D + log2 n) + O(log n)2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1592 LESLIE G. VALIANT

decimal places of accuracy to the right of the decimal point are enough. Since no
term is larger than Fi = (nkD)exp(i), it follows that O(n3)(log2 D + log2 n) decimal
places to the left of the decimal point are sufficient, and hence O(n3)(log2 D+ log2 n)
bit arithmetic overall will suffice.

Corollary 3.2.1. The algorithm in the above theorem can be implemented in
NC2.

Proof. Each of the O(log n) stages of the algorithm can be implemented by
Boolean circuits of polynomial size and O(log n) depth, since it requires multipli-
cations and n-fold additions [4].

Corollary 3.2.2. Theorem 3.2 and Corollary 3.2.1 also hold if Y is infinite,
Mn contains elements from some Yn ⊆ Y , there is a polynomial p(n) such that 2p(n)

upper bounds the absolute value of the elements of Yn, and there is an algorithm that
given n and the index of an element in Yn computes that element to absolute error
less than 2−n in time polynomial in n.

Proof. The proofs above support this stronger statement.
Proof of Theorem 3.3. Proposition 6.2 implies that there is a 3-input gate for

the even parity standard signature [1, 0, 1, 0]. By chaining n − 2 of these together
we get a gate for the even parity n input signature [1, 0, 1, 0, · · ·]. By deleting one
of the external nodes of such a chain we obtain an n − 1 input odd parity signature
[0, 1, 0, 1, · · ·].

Given a matchgrid Γ with m nonomittable nodes and r omittable nodes on the
boundary we shall create a new matchgrid by adding an r-input parity gate in the
outside face of Γ with its external nodes identified with the omittable nodes of Γ. The
parity of this parity gate will be chosen odd or even according to whether m is odd or
even. Clearly PerfMatch for the augmented matchgrid will equal MatchSum for the
original matchgrid, as required.

13. Note added in July 2007. Since the first appearance of this paper several
results have been obtained that shed further light on holographic algorithms. Cai and
Choudhary [9] gave a tensor-based treatment and an alternate proof of the Holant
theorem. Cai and Choudhary [10] also showed that any standard signature of arity n
can be realized by a planar matchgate with O(n4) nodes, thus generalizing the corre-
sponding result for n ≤ 4 of our section 6. Further, Cai and Choudhary [11] showed
that the planar matchgrid approach taken here is essentially equivalent to the Pfaffian
matchcircuit approach of [58]. In Valiant [60] it was shown that the Cai–Choudhary
[10] result could be used to show that a certain elementary class of holographic al-
gorithms is insufficient to compute Boolean satisfiability or the permanent. It leaves
open whether more general holographic algorithms can compute these functions, or
whether this elementary class is sufficient for other #P-complete problems. Cai and
Lu [12] gave explicit characterizations of certain classes of signatures that are realiz-
able. Cai and Lu [13] further showed that any matchgrid that is realizable in some
basis is also realizable in a basis of size one. Holographic reductions have also been
used to prove some new ⊕P-completeness [60] and #P-completeness [63] results.

Acknowledgments. I am grateful to Matthew Cook, Oded Goldreich, and Mark
Jerrum for their helpful comments on an earlier draft of this paper.

REFERENCES

[1] R. Barbanchon, On unique graph 3-colorability and parsimonious reductions in the plane,
Theoret. Comput. Sci., 319 (2004), pp. 455–482.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HOLOGRAPHIC ALGORITHMS 1593

[2] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer-
Verlag, Berlin, 2003.

[3] R. J. Baxter, Exactly Solved Models in Statistical Physics, Academic Press, London, 1982.
[4] P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and related

problems, SIAM J. Comput., 15 (1986), pp. 994–1003.
[5] S. J. Berkowitz, On computing the determinant in small parallel time using a small number

of processors, Inform. Process. Lett., 18 (1984), pp. 147–150.
[6] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997),

pp. 1411–1473.
[7] P. Bürgisser, Completeness and Reduction in Algebraic Complexity, Springer-Verlag, Berlin,

2000.
[8] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Springer-

Verlag, Berlin, 1996.
[9] J.-Y. Cai and V. Choudhary, Valiant’s Holant theorem and matchgate tensors, in Theory

and Applications of Models of Computation, Lecture Notes in Comput. Sci. 3959, Springer-
Verlag, Berlin, 2006, pp. 248–261.

[10] J.-Y. Cai and V. Choudhary, On the Theory of Matchgate Computations, in Electronic
Colloquium on Computational Complexity, ECC-018, 2006.

[11] J.-Y. Cai and V. Choudhary, Some results on matchgates and holographic algorithms, in
Automata, Languages, and Programming, Part I, Lecture Notes in Comput. Sci. 4051,
Springer-Verlag, Berlin, 2006, pp. 703–714.

[12] J.-Y. Cai and P. Lu, Holographic algorithms: From art to science, in Proceedings of the 39th
ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 401–410.

[13] J.-Y. Cai and P. Lu, Holographic algorithms: The power of dimensionality resolved, in Inter-
national Colloquium on Automata, Languages, and Programming, 2007, pp. 631–642.

[14] S. A. Cook, The complexity of theorem proving procedures, in Proceedings of the 3rd ACM
Symposium on Theory of Computing, ACM, New York, 1971, pp. 151–158.

[15] L. J. Cowen, W. Goddard, and C. E. Jesurum, Defective coloring revisited, J. Graph Theory,
(1997), pp. 205–219.

[16] D. Deutsch, Quantum theory, the Church-Turing principle, and the universal quantum com-
puter, Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117.

[17] M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev., 124 (1961),
pp. 1664–1672.

[18] M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM
J. Appl. Math., 32 (1977), pp. 826–834.

[19] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

[20] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph
problems, Theoret. Comput. Sci., 1 (1976), pp. 237–267.

[21] M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar Hamiltonian circuit problem is
NP-complete, SIAM J. Comput., 5 (1976), pp. 704–714.

[22] F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM J. Comput.,
4 (1975), pp. 221–225.

[23] J. Hastad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
[24] H. B. Hunt, M. V. Marathe, V. Radhakrishnan, and R. E. Stearns, The complexity of

planar counting problems, SIAM J. Comput., 27 (1998), pp. 1142–1167.
[25] F. Jaeger, D. L. Vertigan, and D. J. A. Welsh, On the computational complexity of the

Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc., 108 (1990), pp. 35–53.
[26] M. R. Jerrum, Two-dimensional monomer-dimer systems are computationally intractable, J.

Statist. Phys., 48 (1987), pp. 121–134.
[27] M. R. Jerrum, Erratum: “Two-dimensional monomer-dimer systems are computationally

intractable,” J. Statist. Phys., 59 (1990), pp. 1087–1088.
[28] M. R. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity, Birkhäuser,

Basel, 2003.
[29] M. R. Jerrum and M. Snir, Some exact complexity results for straight-line computations over

semirings, J. ACM, 29 (1982), pp. 874–897.
[30] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-

tations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.
[31] P. W. Kasteleyn, The statistics of dimers on a lattice, Physica, 27 (1961), pp. 1209–1225.
[32] P. W. Kasteleyn, Graph theory and crystal physics, in Graph Theory and Theoretical Physics,

F. Harary, ed., Academic Press, London, 1967, pp. 43–110.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1594 LESLIE G. VALIANT

[33] M. S. Krishnamoorthy and N. Deo, Node-deletion NP-complete problems, SIAM J. Comput.,
8 (1979), pp. 619–625.

[34] J. M. Lewis and M. Yannakakis, The node deletion problem for hereditary properties is
NP-complete, J. Comput. System Sci., 20 (1980), pp. 219–230.

[35] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput., 11 (1982), pp. 329–343.
[36] E. H. Lieb, Exact solution of the problem of the entropy of two-dimensional ice, Phys. Rev.

Lett., 18 (1967), pp. 692–694.
[37] E. H. Lieb, Residual entropy of square ice, Phys. Rev., 162 (1967), pp. 162–172.
[38] E. H. Lieb, Exact solution of the F model of an antiferroelectric, Phys. Rev. Lett., 18 (1967),

pp. 1046–1048.
[39] E. H. Lieb, Exact solution of the two-dimensional Slater KDP model of a ferroelectric, Phys.

Rev. Lett., 19 (1967), pp. 108–110.
[40] R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissection, SIAM J. Numer.

Anal., 16 (1979), pp. 346–358.
[41] M. Liskiewicz, M. Ogihara, and S. Toda, The complexity of counting self-avoiding walks

in subgraphs of two-dimensional grids and hypercubes, Theoret. Comput. Sci., 304 (2003),
pp. 129–156.

[42] L. Lovász and M. D. Plummer, Matching Theory, North–Holland, Amsterdam, 1986.
[43] M. Mahajan and V. Vinay, Determinant: Old algorithms, new insights, SIAM J. Discrete

Math., 12 (1999), pp. 474–490.
[44] G. I. Orlova and Y. G. Dorfman, Finding the maximum cut in a graph, Engineering Cyber-

netics, 10 (1972), pp. 502–506.
[45] V. Y. Pan, Solving a polynomial equation: Some history and recent progress, SIAM Rev., 39

(1997), pp. 187–220.
[46] C. H. Papadimitriou, Computational Complexity, Addison–Wesley, Reading, MA, 1994.
[47] L. Pauling, The structure and entropy of ice and of other crystals with some randomness of

atomic arrangement, J. Amer. Chem. Soc., 57 (1935), p. 2680.
[48] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 14 (1969), pp. 354–356.
[49] E. Tardos, The gap between monotone and nonmonotone circuit complexity is exponential,

Combinatorica, 7 (1987), pp. 141–142.
[50] H. N. V. Temperley and M. E. Fisher, Dimer problems in statistical mechanics—an exact

result, Philosophical Magazine, 6 (1961), pp. 1061–1063.
[51] S. P. Vadhan, The complexity of counting in sparse, regular, and planar graphs, SIAM J.

Comput., 31 (2001), pp. 398–427.
[52] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979),

pp. 189–201.
[53] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., 8

(1979), pp. 410–421.
[54] L. G. Valiant, Negation can be exponentially powerful, Theoret. Comput. Sci., 12 (1980),

pp. 303–314.
[55] L. G. Valiant, Why is Boolean complexity theory difficult?, in Boolean Function Complexity,

M. S. Paterson, ed., London Math. Soc. Lecture Note Ser. 169, Cambridge University Press,
Cambridge, UK, 1992, pp. 84–94.

[56] L. G. Valiant, Quantum circuits that can be simulated classically in polynomial time, SIAM
J. Comput., 31 (2002), pp. 1229–1254.

[57] L. G. Valiant, Expressiveness of matchgates, Theoret. Comput. Sci., 289 (2002), pp. 457–471.
[58] L. G. Valiant, Holographic circuits, in Proceedings of the 32nd International Colloquium on

Automata, Languages, and Programming, Lecture Notes in Comput. Sci. 3980, Springer-
Verlag, Berlin, 2005, pp. 1–15.

[59] L. G. Valiant, Completeness for parity problems, in Proceedings of the 11th International
Computing and Combinatonics Conference, Lecture Notes in Comput. Sci. 3959, Springer-
Verlag, Berlin, 2005, pp. 1–9.

[60] L. G. Valiant, Accidental algorithms, in Proceedings of the 47th IEEE Symposium on Founda-
tions of Computer Science, IEEE Computer Society, Los Alamitos, CA, 2006, pp. 509–517.

[61] D. L. Vertigan and D. J. A. Welsh, The computational complexity of the Tutte plane: The
bipartite case, Combin. Probab. Comput., 1 (1992), pp. 181–187.

[62] D. J. A. Welsh, Complexity: Knots, Colourings and Counting, Cambridge University Press,
Cambridge, UK, 1993.

[63] M. Xia, P. Zhang, and W. Zhao, The complexity of counting on 3-regular planar graphs,
Theoret. Comput. Sci., 384 (2007), pp. 111–125.

