
The Complexity of Partition Functions

Andrei Bulatov

School of Computing Science, Simon Fraser University, Burnaby, Canada

abulatov@cs.sfu.ca

Martin Grohe

Institut für Informatik, Humboldt-Universität, Berlin, Germany

grohe@informatik.hu-berlin.de

Abstract

We give a complexity theoretic classification of the counting versions of so-called
H-colouring problems for graphs H that may have multiple edges between the same
pair of vertices. More generally, we study the problem of computing a weighted sum
of homomorphisms to a weighted graph H.

The problem has two interesting alternative formulations: First, it is equivalent to
computing the partition function of a spin system as studied in statistical physics.
And second, it is equivalent to counting the solutions to a constraint satisfaction
problem whose constraint language consists of two equivalence relations.

In a nutshell, our result says that the problem is in polynomial time if the adja-
cency matrix of H has row rank 1, and #P-hard otherwise.

Key words: counting complexity, partition function, graph homomorphism,
constraint satisfaction

1 Introduction

This paper has two different motivations: The first is concerned with con-
straint satisfaction problems, the second with “spin-systems” as studied in
statistical physics. A known link between the two are so-called H-colouring
problems. Our main result is a complete complexity theoretic classification of
the problem of counting the number of solutions of an H-colouring problem
for an undirected graph H which may have multiple edges, and actually of
a natural generalisation of this problem to weighted graphs H . Translated to
the world of constraint satisfaction problems, this yields a classification of the

Preprint submitted to Elsevier Science 15 May 2005

problem of counting the solutions to constraint satisfaction problems for two
equivalence relations. Translated to the world of statistical physics, it gives
a classification of the problem of computing the partition function of a spin
system.

Let us describe our result from each of the different perspectives: Let H be a
graph, possibly with multiple edges between the same pair of vertices, e.g. a
multi-graph. An H-colouring of a graph G is a homomorphism from G to H .
Both the decision problem, asking whether a given graph has an H-colouring,
and the problem of counting the H-colourings of a given graph, have received
considerable attention [5,6,9,11,12]. Here we are interested in the counting
problem. Dyer and Greenhill [5] gave a complete complexity theoretic clas-
sification of the counting problem for undirected graphs H without multiple
edges; they showed that the problem is in polynomial time if each connected
component of H is complete bipartite without any loops or is complete with
all loops present, and #P-hard otherwise. Here we are interested in count-
ing H-colourings for multi-graphs H . Note that, as opposed to the decision
problem, multiple edges do make a difference for the counting problem. Let
H be a multi-graph with vertex set {1, . . . , k}. H is best described in terms
of its adjacency matrix A = (Aij), where Aij is the number of edges between
vertices i and j. Given a graph G = (V, E), we want to compute the number
of homomorphisms from G to H . Observe that this number is

ZA(G) =
∑

σ:V →{1,...,k}

∏

e={u,v}∈E

Aσ(u)σ(v). (1)

Borrowing from the physics terminology, we call ZA the partition function
of A (or H). We denote the problem of computing ZA(G) for a given graph
G by EVAL(A). Of course if we define ZA as in (1), the problem is not only
meaningful for matrices A that are adjacency matrices of multi-graphs, but for
arbitrary square matrices A. We may view such matrices as adjacency matrices
of weighted graphs (omitting edges of weight 0). We call a symmetric matrix
A connected (bipartite) if the corresponding graph is connected (bipartite,
respectively).

We prove the following classification result:

Theorem 1 Let A be a symmetric matrix with non-negative real entries.

(1) If A is connected and not bipartite, then EVAL(A) is in polynomial time
if the row rank of A is at most 1; otherwise EVAL(A) is #P-hard.

(2) If A is connected and bipartite, then EVAL(A) is in polynomial time if
the row rank of A is at most 2; otherwise EVAL(A) is #P-hard.

(3) If A is not connected, then EVAL(A) is in polynomial time if each of its
connected components satisfies the corresponding condition stated in (1)
or (2); otherwise EVAL(A) is #P-hard.

2

Note that this generalises Dyer and Greenhill’s [5] classification result for
graphs without multiple edges, whose adjacency matrices are symmetric 0-1
matrices.

Our proof builds on interpolation techniques similar to those used by Dyer and
Greenhill, recent results on counting the number of solutions to constraint sat-
isfaction problems due to Dalmau and the first author [1], and a considerable
amount of polynomial arithmetic. Even though we present the proof in the lan-
guage of constraint satisfaction problems here, in finding the proof it has been
very useful to jump back and forth between the H-colouring and constraint
satisfaction perspective.

Let us now explain the result for constraint satisfaction problems. A constraint
language Γ on a finite domain D is a set of relations on D. An instance of
the problem CSP(Γ) is a triple (V, D, C) consisting of a set V of variables, the
domain D, and a set C of constraints 〈s, ρ〉, where ρ is a relation in Γ and
s is a tuple of variables whose length matches the arity of ρ. A solution is a
mapping σ : V → D such that for each constraint 〈(v1, . . . , vr), ρ〉 ∈ C we have
(σ(v1), . . . , σ(vr)) ∈ ρ. There has been considerable interest in the complexity
of constraint satisfaction problems [16,14,7,2,3], which has mainly been driven
by Feder and Vardi’s [7] dichotomy question, asking whether for all languages
Γ the problem CSP(Γ) is either solvable in polynomial time or NP-complete. A
similar dichotomy question can be asked for the problem #CSP(Γ) of counting
the solutions for a given instance [4,1].

We consider constraint languages Γ consisting of two equivalence relations
α, β. Suppose that α has k equivalence classes and β has ` equivalence classes.
Then Γ can be described by a (k×`)-matrix B = (Bij), where Bij is the number
of elements in the intersection of the ith class of α and the jth class of β. We
show that, provided that the matrix is “indecomposable” (in a sense made
precise in Section 2.2), the problem #CSP(Γ) is in polynomial time if the row
rank of B is 1 and #P-hard otherwise. There is also a straightforward extension
to “decomposable” matrices (see Corollary 15 for the precise statement). In [1],
it has been shown that if #CSP(Γ) is in polynomial time, then Γ has a so-called
Mal’tsev polymorphism. The result of this paper provides a further necessary
condition for Γ to give rise to a counting problem solvable in polynomial time.

We can generalise our result for CSP whose language consists of two equiva-
lence relations to weighted CSP, where each domain element d carries a non-
negative real weight ω(d). The weight of a solution σ : V → D is defined to
be the product

∏

v∈V ω(σ(v)), and the goal is to compute the weighted sum
over all solutions (see Theorem 14 for the precise statement of our result).
As an important intermediate step, we even prove our classification result for
weights that are polynomials with integer coefficients.

3

Let us finally describe the connection with statistical physics. Statistical
physics explains properties of substances, such as gases, liquids or crystals,
using probability distributions on certain states of the substance. In one of
the standard models, a substance is considered as a conglomeration of parti-
cles (atoms or molecules) viewed as a graph G = (V, E), also called a lattice,
in which adjacent vertices represent particles interacting in a non-negligible
way. Every particle may have one of k spins ; the interaction between neigh-
bouring particles can be described by a spin system, which is just a symmetric
k × k-matrix K = (Kij). The entry Kij of K corresponds, in a certain way,
to the energy that a pair of interacting particles, one of which has spin i, the
other one has spin j, contributes into the overall energy of G. A configuration
of the system on a graph G = (V, E) is a mapping σ : V → {1, . . . , k}. The
energy of σ is the sum H(σ) =

∑

e={u,v}∈E Kσ(u)σ(v). Then the probability that
G has configuration σ is 1

Z
exp(−H(σ)/cT), where Z =

∑

σ exp(−H(σ)/cT) is
the partition function and T is a parameter of the system (the temperature)
and c is a constant. As is easily seen, this probability distribution obeys the
law “the lower energy a configuration has, the more likely it is”. Observe that
Z = ZA(G) for the matrix A with

Aij = exp(−Kij/cT).

Thus EVAL(A) is just the problem of computing the partition function for
the system described by A. Dyer and Greenhill in [5] dealt with spin systems
in which certain configuration are prohibited and the others are uniformly
distributed, while our results are applicable to arbitrary spin systems.

The article is organised as follows: We start with a few general preliminaries
in Section 2. In Subsection 2.2, we introduce our terminology concerning de-
compositions of matrices (into blocks or connected components) and make a
few simple observations about these decompositions. In Section 3, we prove
the tractability part of our main theorem, which is fairly easy. As a matter of
fact, we prove a slightly more general result that also includes matrices that
are not symmetric. In Section 4, we introduce counting constraint satisfaction
problems and their weighted version for constraint languages that consist of
two equivalence relations. We then show how these problems can be described
by matrices and how they relate to evaluating the partition function of these
matrices. In Section 5, we state our main results in their full generality. The
tractability parts of these results follow from the results of Section 3, so it
remains to prove the hardness results. Section 6 is devoted to the hardness
proof. The organisation of this proof is laid out at the beginning of the section.

4

2 Preliminaries

2.1 Graphs and Matrices

R, Q and Z denote the real numbers, rational numbers and integers, respec-
tively, and Q[X] and Z[X] denote the polynomial rings over Z and Q in an
indeterminate X. Throughout this paper, we let S denote one of these five
rings.

The degree of a polynomial p(X) is denoted by deg(p).

For every set S, Sm×n denotes the set of all m×n-matrices with entries from S.
For a matrix A, Aij denotes the entry in row i and column j. The row rank of a
matrix A ∈ Sm×n is denoted by rank(A). The transpose of A is denoted by A>.
A matrix A ∈ Sm×n is non-negative (positive), if, for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
the leading coefficient of Aij is non-negative (positive, respectively).

Graphs are always undirected, unless we explicitly call them directed graphs.
Graphs and directed graphs may have loops and multiple edges. The in-degree
and out-degree of a vertex in a (directed) graph are defined in the obvious way
and denoted by indeg(v), outdeg(v), respectively.

Our model of real number computation is a standard model, as it is, for
example, underlying the complexity theoretic work on linear programming
(cf. [10]). We can either assume that the numbers involved in our computa-
tions are polynomial time computable or that they are given by an oracle (see
[15] for a detailed description of the model). However, our results do not seem
to be very model dependent. All we really need is that the basic arithmetic
operations are polynomial time computable. Our situation is fairly simple be-
cause all real numbers we encounter are the entries of some matrix A, which
is always considered fixed, and numbers computed from the entries of A us-
ing a polynomial number of arithmetic operations. Instances of the problem
EVAL(A) are just graphs, and we do not have to worry about real numbers
as inputs of our computations.

We assume that the reader is familiar with the basics of the complexity theory
of counting problems, in particular with the class #P. All reductions in this
article are polynomial time Turing reductions. We call two problems polynomial
time equivalent if they are reducible to one another (by polynomial time Turing
reductions). The problem of evaluating a partition function such as (1) (on
page 2) is in #P if A is a non-negative integer matrix; for such matrices our
#P-hardness results are actually #P-completeness results. For other matrices,
the partition function cannot be evaluated in #P simply because its values are
not necessarily integral. For all matrices A we consider, the partition function

5

A can still be evaluated in FP#P, the class of all function problems in the
closure of #P under polynomial time Turing reductions. It is common in the
area (e.g. [13,5]) to refer to such results as #P-completeness results anyway,
but to avoid confusion we refrain from doing so and just state them as hardness
results.

2.2 Block Decompositions

Let B ∈ Sk×`. A submatrix of B is a matrix obtained from B by deleting some
rows and columns. For non-empty sets I ⊆ {1, . . . , k}, J ⊆ {1, . . . , `}, where
I = {i1, . . . , ip} with i1 < . . . < ip and J = {j1, . . . , jq} with j1 < . . . < jq, BIJ

denotes the (p × q)-submatrix with (BIJ)rs = Birjs
for 1 ≤ r ≤ p, 1 ≤ s ≤ q.

A proper submatrix of B is a submatrix B′ 6= B.

Definition 2 Let B ∈ Sk×`.

(1) A decomposition of B consists of two proper submatrices BIJ , BI J such
that
(a) I = {1, . . . , k} \ I,
(b) J = {1, . . . , `} \ J ,
(c) Bij = 0 for all (i, j) ∈ (I × J) ∪ (I × J).
B is indecomposable if it has no decomposition.

(2) A block of B is an indecomposable submatrix BIJ with at least one non-
zero entry such that BIJ , BI J is a decomposition of B.

Indecomposability may be viewed as a form of “connectedness” for arbitrary
matrices. For square matrices there is also a natural graph based notion of
connectedness.

Let A ∈ Sk×k be a square matrix. A principal submatrix of A is a submatrix
of the form AII for some I ⊆

{

1, . . . , k
}

. Instead of AII we just write AI .

The underlying graph of A is the (undirected) graph G(A) with vertex set

{1, . . . , k} and edge set
{

{i, j} | 1 ≤ i, j ≤ n such that Aij 6= 0 or Aji 6= 0
}

.

Note that we define G(A) to be an undirected graph even if A is not symmetric.

Definition 3 Let A ∈ Sk×k.

(1) The matrix A is connected if the graph G(A) is connected.
(2) A connected component of the matrix A is a principal submatrix AC,

where C is the vertex set of a connected component of G(A).

Lemma 4 A connected symmetric matrix is either indecomposable or bipar-
tite. In the latter case, the matrix has precisely two blocks which are each
others transposes.

6

Note that by permuting rows and columns a connected bipartite symmetric
matrix can be transformed into a matrix






0 B

B> 0




 ,

where B and hence B> are indecomposable. The rows of the two blocks B and
B> correspond to the two parts of the bipartition of the graph of the matrix.

There is another useful connection between indecomposability and connected-
ness. For a matrix B ∈ Sk×`, let

bip(B) =






0 B

0 0




 ∈ S(k+`)×(k+`).

Note that bip(B) is the adjacency matrix of a weighted bipartite directed
graph. The following lemma is straightforward.

Lemma 5 Let B ∈ Sk×` and A = bip(B). Then for every block BIJ of B there
is a connected component AC of A such that AC = bip(BIJ), and conversely
for every connected component AC of A there is a block BIJ of B such that
AC = bip(BIJ).

In particular, B is indecomposable if, and only if, A is connected.

3 The Tractable Cases

In this section, we shall prove the tractability part of Theorem 1. Even though
the theorem only speaks about symmetric matrices and (undirected) graphs,
it will be useful to generalise partition functions to directed graphs and prove
a slightly more general result.

Let A ∈ Sk×k be a square matrix that is not necessarily symmetric and G =
(V, E) a directed graph. For every σ : V → {1, . . . , k} we let

ωA(σ) =
∏

(u,v)∈E

Aσ(u)σ(v),

and we let
ZA(G) =

∑

σ:V →{1,...,k}

ωA(σ).

Note that if A is symmetric, G = (V, E) a directed graph, and GU the under-
lying undirected graph, then ZA(GU) = ZA(G). (where ZA(GU) is defined as

7

in (1) on page 2). Thus by EVAL(A) we may denote the problem of computing
ZA(G) for a given directed graph, with the understanding that for symmetric
A we can always consider the input graph as undirected.

Theorem 6 Let A ∈ Sk×k be a matrix.

(1) If each connected component of A has row rank 1, then EVAL(A) is in
polynomial time.

(2) If A is symmetric and each connected component of A either has row rank
at most 1 or is bipartite and has row rank at most 2, then EVAL(A) is
in polynomial time.

PROOF. Let A1, . . . , A` be the connected components of A. Then for every
graph G with connected components G1, . . . , Gm we have

ZA(G) =
m∏

i=1

∑̀

j=1

ZAj
(Gi).

Thus without loss of generality we may assume that A is connected.

(1) If rank(A) ≤ 1 there are numbers a1, . . . , ak, b1, . . . , bk ∈ R such that for
1 ≤ i, j ≤ k we have:

Aij = ai · bj

(the bj can be chosen to be the A1j and ai = Ai1/A11). Let G = (V, E) be a
directed graph and σ : V → {1, . . . , k}. Then

ωA(σ) =
∏

(v,w)∈E

Aσ(v)σ(w) =
∏

(v,w)∈E

aσ(v)bσ(w) =
∏

v∈V

a
outdeg(v)
σ(v) b

indeg(v)
σ(v) .

Thus

ZA(G) =
∑

σ:V →{1,...,k}

ωA(σ) =
∑

σ

∏

v∈V

a
outdeg(v)
σ(v) b

indeg(v)
σ(v) =

∏

v∈V

k∑

i=1

a
outdeg(v)
i b

indeg(v)
i .

The last term can easily be evaluated in polynomial time.

(2) Again we assume that A is connected. The case not covered by (1) is that
A is symmetric and bipartite with rank(A) = 2, so let us assume that A has
these properties. Then there are k1, k2 ≥ 1 such that k1 +k2 = k and a matrix
B ∈ Sk1×k2 with rank(B) = 1 and

A =






0 B

B> 0




 .

8

Let G = (V, E) be a graph. If G is not bipartite then ZA(G) = 0, therefore,
we may assume that G is connected and bipartite, say, with bipartition V1, V2.
Let G12 be the directed graph obtained from G by directing all edges from
V1 to V2, and let G21 be the directed graph obtained from G by directing all
edges from V2 to V1. Recall that

bip(B) =






0 B

0 0




 ∈ Sk×k.

We have
ZA(G) = Zbip(B)(G12) + Zbip(B)(G21).

Since EVAL(bip(B)) is in polynomial time by Theorem 6(1), this shows that
ZA(G) can be computed in polynomial time. 2

4 Constraint Satisfaction Problems

In this section, we study counting constraint satisfaction problems and their
weighted version for constraint languages that consist of two equivalence re-
lations. We show how these problems can be described by matrices and how
they relate to evaluating the partition function of matrices. The results of this
section will enable us to translate results back and force between partition
functions of graphs and counting constraint satisfaction problems. We start
by introducing a weighted version of counting constraint satisfaction problems
and a “partition function” that is defined on the instances of such problems.

Recall that a constraint language Γ on a domain D is a set of relations on D.
The pair (D, Γ) is occasionally called the template of the constraint satisfaction
problem CSP(Γ). An instance of CSP(Γ) is a triple (V, D, C) consisting of a
set V of variables, the domain D, and a set C of constraints 〈s, ρ〉, where
ρ is a relation in Γ and s is a tuple of variables whose length matches the
arity of ρ. A solution is a mapping σ : V → D such that for each constraint
〈(v1, . . . , vr), ρ〉 ∈ C we have (σ(v1), . . . , σ(vr)) ∈ ρ. #CSP(Γ) is the problem of
counting the number of solutions for a given instance P. We shall now define
a weighted version of this problem. Let D be a domain and ω : D → S; we call
ω a weight function on D. Slightly abusing notation, we also use ω to denote
the weight of a solution σ : V → D for an instance P = (V, D, C) of some CSP
with domain D: The weight of σ is defined by

ω(σ) =
∏

v∈V

ω(σ(v)).

For every constraint language Γ with domain D and every weight function
ω : D → S we define a function ZΓ,ω from the instances of CSP(Γ) to S by

9

letting
ZΓ,ω(P) :=

∑

σ

ω(σ)

where the sum ranges over all solutions σ for P. We denote the problem of
computing ZΓ,ω by WCSP(Γ, ω). The triple (D, Γ, ω) is called the weighted
template of the problem WCSP(Γ, ω).

Observe that the problem WCSP(Γ, ω) has exactly the same instances as
the problems CSP(Γ) and #CSP(Γ). In particular, instances of WCSP(Γ, ω)
do not depend on ω. Thus we often introduce instances of WCSP(Γ, ω) as
instances of CSP(Γ) or #CSP(Γ).

4.1 CSPs with two Equivalence Relations

Our main results on (weighted) constraint satisfaction problems are concerned
with constraint languages consisting of two equivalence relations, which we
usually denote by α and β. In this subsection, we associate certain matrices
with constraint languages consisting of two equivalence relations and describe
the corresponding CSP in terms of these matrices. This will enable us in the
next subsection to establish a connection between such CSP and the problem
of computing the partition function of graphs.

So suppose that α and β are equivalence relations on a domain D. Let C1, . . . , Ck

be the equivalence classes of α and D1, . . . , D` the equivalence classes of β.
We define a matrix B(α, β) ∈ Zk×` by

B(α, β)ij = |Ci ∩ Dj|.

Conversely, for every non-negative integer matrix B ∈ Zk×` there are equiva-
lence relations αB, βB on the domain

DB =
{

1, . . . ,
∑

1≤i≤k
1≤j≤`

Bij

}

such that B = B(αB, βB). We fix such relations αB, βB and call (DB, {αB, βB})
the canonical template for B.

We never need an explicit definition of αB and βB, but for example, we can
define the relations as follows: For 1 ≤ i ≤ k we let mi =

∑`
j=1 Bij , and we let

m0 = 0. We define αB in such a way that its equivalence classes are

Ci = {mi−1 + 1, . . . , mi}

for 1 ≤ i ≤ k. For 1 ≤ i ≤ k we let ni0 = mi−1 and, for 1 ≤ j ≤ `,

nij = ni(j−1) + |Bij |.

10

We define βB in such a way its equivalence classes are

Dj =
m⋃

i=1

{ni(j−1) + 1, . . . , nij}

for 1 ≤ j ≤ `. Then for 1 ≤ i ≤ k, 1 ≤ j ≤ ` we have

Ci ∩ Dj = {ni(j−1) + 1, . . . , nij}

and thus |Ci ∩ Dj| = Bij . Therefore, B = B(αB, βB).

We give similar definitions for weighted problems. Again, let α and β are
equivalence relations on a domain D, and let C1, . . . , Ck be the equivalence
classes of α and D1, . . . , D` the equivalence classes of β. Let ω : D → S be a
weight function. We define a matrix B(α, β, ω) ∈ Sk×` by

B(α, β, ω)ij =
∑

d∈Ci∩Dj

ω(d).

The crucial fact is that essentially the problem WCSP({α, β}, ω) only depends
on the matrix B({α, β}, ω). This is made precise in the next lemma.

Lemma 7 Let (D, {α, β}, ω) and (D′, {α′, β ′}, ω′) be two weighted templates,
where α, β and α′, β ′ are equivalence relations on D, D′, respectively. Suppose
that

B({α, β}, ω) = B({α′, β ′}, ω′).

Then the problems WCSP({α, β}, ω) and WCSP({α′, β ′}, ω′) are equivalent
in the following sense: If P = (V, D, C) is an instance of CSP({α, β}) and
P ′ = (V, D′, C′) is the instance of CSP({α′, β ′}) obtained from P by replac-
ing each constraint 〈(u, v), α〉 by 〈(u, v), α′〉 and each constraint 〈(u, v), β〉 by
〈(u, v), β ′〉, then

Z{α,β},ω(P) = Z{α′,β′},ω(P ′).

In particular, WCSP({α, β}, ω) and WCSP({α′, β ′}, ω′) are polynomial time
equivalent.

The proof of this lemma is straightforward, but to familiarise the reader with
the technical notions, we shall give it nevertheless. We need one more defini-
tion: For every matrix B ∈ Sk×`, the canonical weighted template

(Dw
B, {αw

B, βw
B}, ω

w
B)

is defined as follows:

• The domain is Dw
B = {1, . . . , k} × {1, . . . , `},

• the equivalence relation αw
B is equality on the first component,

• the equivalence relation βw
B is equality on the second component,

11

• the weight function ωw
B : Dw

B → S is defined by ωw
B((i, j)) = Bij.

Then clearly B = B(αw
B, βw

B, ωw
B). Thus by Lemma 7, which we will prove

soon, for every weighted template (D, {α, β}, ω), where α and β are equiva-
lence relations on D with B(α, β, ω) = B, the problems WCSP({α, β}, ω) and
WCSP({αw

B, βw
B}, ω

w
B) are equivalent. In the following, we write ZB instead of

Z{αw
B

,βw
B
},ωw

B
and WCSP(B) instead of WCSP({αw

B, βw
B}, ω

w
B).

Recall that for every instance P = (V, Dw
B, C) of CSP({αw

B, βw
B}) (and thus of

WCSP(B)) we have

ZB(P) =
∑

σ:V →Dw
B

solution

ωw
B(σ)

=
∑

σ:V →Dw
B

solution

∏

v∈V

ωw
B(σ(v))

=
∑

σ:V →{1,...,k}×{1,...,`}
solution

∏

v∈V

Bσ(v)

PROOF of Lemma 7. Without loss of generality we may assume that

(D′, α′, β ′, ω′) = (Dw
B, αw

B, βw
B , ωw

B).

Let P be an instance of CSP({α, β}) and P ′ the instance of CSP({α′, β ′})
obtained from P as described in the statement of the lemma. We shall prove
that

Z{α,β},ω(P) = ZB(P ′).

The crucial observation is that for every solution σ′ : V → D′ = {1, . . . , k} ×
{1, . . . , `} of P ′, its weight ω′(σ′) is precisely the sum of the weights ω(σ),
where the sum ranges over all solutions σ : V → D that map each variable
v ∈ V with σ′(v) = (i, j) to the intersection of the ith equivalence class of α
and the jth equivalence class of β.

Let us make this precise: Let C1, . . . , Ck and D1, . . . , D` be the equivalence
classes of α and β, respectively. For every σ : V → D, we let F (σ) : V →
{1, . . . , k} × {1, . . . , `} be the mapping defined by

F (σ)(v) = (i, j) ⇐⇒ σ(v) ∈ Ci ∩ Dj .

We observe that σ is a solution for P if and only if F (σ) is a solution for
P ′. To see this, let 〈(u, v), α〉 ∈ C be a constraint of P. Then 〈(u, v), α′〉 is a
constraint of P ′. If σ is a solution of P, then σ(u) and σ(v) are in the same
equivalence class of α, that is, there is some i such that σ(v), σ(v) ∈ Ci. But
σ(v), σ(v) ∈ Ci implies that F (σ)(u) = (i, j) and F (σ)(v) = (i, j′) for some
j, j′ ∈ {1, . . . , `}. Hence, recalling that α′ = αw

B is the equality relation on

12

the first component, F (σ)(u) and F (σ)(v) are in the same equivalence class
of α′. Essentially the same argument shows that, conversely, if F (σ)(u) and
F (σ)(v) are in the same equivalence class of α′, then σ(u) and σ(v) are in the
same equivalence class of α. Thus σ satisfies the constraint 〈(u, v), α〉 ∈ C if
and only if F (σ) satisfies the corresponding constraint 〈(u, v), α′〉. Constraints
involving β are dealt with similarly.

Now let σ′ : V → {1, . . . , k} × {1, . . . , `} be a solution of P ′. Then we have

ω′(σ′) =
∏

v∈V

Bσ′(v)

=
∏

v∈V

∑

d∈Ci∩Dj

where σ′(v)=(i,j)

ω(d) (because B = B(α, β, ω))

=
∑

σ:V →D
F (σ)=σ′

∏

v∈V

ω(σ(v))

=
∑

σ∈F−1(σ′)

ω(σ).

Thus

ZB(P ′) =
∑

σ′:V →{1,...,k}×{1,...,`}
solution of P ′

ω′(σ′)

=
∑

σ′:V →{1,...,k}×{1,...,`}
solution of P ′

∑

σ∈F−1(σ′)

ω(σ)

=
∑

σ:V →D
solution of P

ω(σ)

= Z{α,β},ω(P).

This completes the proof of the lemma. 2

Note that for a non-negative integer matrix B ∈ Zk×` we have defined both a
canonical template (DB, {αB, βB}) and a canonical weighted template (Dw

B, {αw
B, βw

B}, ω
w
B),

and they are not the same (that is, (DB, {αB, βB}) 6= (Dw
B, {αw

B, βw
B)). How-

ever, it is easy to see that they define equivalent constraint satisfaction prob-
lems:

Corollary 8 For every non-negative integer matrix B ∈ Zk×` the problems
#CSP({αB, βB}) and WCSP(B) are equivalent (in the sense that each in-
stance yields the same result).

PROOF. Define a weight function ω : DB → R on the canonical template
for B by letting ω(d) = 1 for all d ∈ DB. Then we have B(αB, βB, ω) = B,

13

and the problems CSP({αB, βB}), #CSP({αB, βB}), and WCSP({αB, βB}, ω)
have the same instances. Furthermore, for each instance P we have

ZB(P) = Z{αB ,βB},ω(P) (by Lemma 7)

=
∑

σ:V →DB
σ solution of P

ω(σ)

=
∑

σ:V →DB
σ solution of P

1,

which is precisely the number of solutions of P. 2

The following useful lemma is an immediate consequence of the definitions.

Lemma 9 Let B, B′ ∈ Sk×` be such that B′ is obtained from B by permuting
rows and/or columns. Then ZB = ZB′.

4.2 Back and Forth between CSP and H-colouring

The next lemma shows that weighted CSP for two equivalence relations are
equivalent to evaluation problems for weighted bipartite graphs.

Lemma 10 Let B ∈ Sk×`. Then the problems WCSP(B) and EVAL(bip(B))
are polynomial time equivalent.

PROOF. The proof is based on the observation that if G = (V, E) is a bipar-
tite graph with bipartition V1, V2, then we can define two natural equivalence
relations α, β on the set of edges by letting e, e′ be α-equivalent if they have a
common endpoint in V1 and β-equivalent if they have a common endpoint in
V2. Conversely, if E is a set and α and β are two equivalence relations on E,
then we can define a bipartite graph G with edge set E by letting the vertices
of G be the equivalence classes of α and β and letting an edge connect the
α-class and β-class that it belongs to.

Let

A = bip(B) =






0 B

0 0




 ∈ S(k+`)×(k+`).

We first reduce EVAL(A) to WCSP(B). Let G = (V, E) be a directed graph.
Observe that ZA(G) = 0 unless there is a bipartition V1, V2 of V such that
E ⊆ V1 × V2 (that is, all edges are directed from V1 to V2). In the following,
we assume that there is such a bipartition V1, V2.

14

We have to construct an instance P of WCSP(B) such that ZA(G) = ZB(P).
Let (D, {α, β}, ω) be the canonical weighted template for B. We let P be the
following instance of WCSP(B):

• The variables of P are the edges of G.
• The domain is D = {1, . . . , k} × {1, . . . , `}, the domain of the canonical

weighted template.
• For all edges e, e′ ∈ E that have the same endpoint in V1, there is a constraint
〈(e, e′), α〉.

• For all edges e, e′ ∈ E that have the same endpoint in V2, there is a constraint
〈(e, e′), β〉.

We now show how to associate with every σ : V → {1, . . . , k + `} such that
ωA(σ) 6= 0 a solution σ∗ : E → D for P.

Let σ : V → {1, . . . , k + `} such that ωA(σ) 6= 0. Then σ(V1) ⊆ {1, . . . , k}
and σ(V2) ⊆ {k + 1, . . . , `}. We define σ∗ : E → D by letting σ∗((u, v)) =
(σ(u), σ(v) − k) for every edge (u, v) ∈ E. It is not hard to see that σ∗ is a
solution for the instance P. For example, if e = (u, v), e′ = (u, v′) ∈ E are
edges that have the same endpoint in V1 then σ∗(e) and σ∗(e′) have the same
first coordinate σ(u) and therefore are in relation α of the canonical weighted
template. Thus the constraint 〈(e, e′), α〉 is satisfied. Conversely, every solution
for P is of the form σ∗ for some σ with ωA(σ) 6= 0. Furthermore, we have

ωA(σ) =
∏

(v,w)∈E

Bσ(v)σ(w) = ωB(σ∗).

Thus

ZA(G) =
∑

σ

ωA(σ) =
∑

σ∗

ωB(σ∗) = ZB(P).

This yields a reduction from EVAL(A) to WCSP(B).

To reduce WCSP(B) to EVAL(A), let P = (V, D, C)) be an instance of
WCSP(B). Let

α′ := {(u, v) ∈ V 2 | 〈(u, v), α〉 ∈ C} and β ′ := {(u, v) ∈ V 2 | 〈(u, v), β〉 ∈ C}.

Without loss of generality we may assume that α′ and β ′ are equivalence rela-
tions. To see this, just note that since α and β are equivalence relations, every
solution σ : V → D also satisfies all constraints of the form 〈(u, v), α〉, where
(u, v) is in the reflexive symmetric transitive closure of α′, and 〈(u, v), β〉,
where (u, v) is in the reflexive symmetric transitive closure of β ′. Let C1, . . . , Ck

be the equivalence classes of α′ and D1, . . . , D` the equivalence classes of β ′.
Let G be the directed graph defined as follows: The vertex set is {1, . . . , k+`},
and for 1 ≤ i ≤ k, 1 ≤ j ≤ ` there are |Ci ∩ Dj | edges from i to (k + j). It is

15

easy to see that ZB(P) = ZA(G). This yields a reduction from WCSP(B) to
EVAL(A). 2

The following lemma is needed to derive the hardness part of Theorem 1 from
the hardness results on weighted CSP.

Lemma 11 Let A ∈ Sk×k. Then WCSP(A) is polynomial time reducible to
EVAL(A).

PROOF. Let A′ = bip(A). By Lemma 10, it suffices to prove that EVAL(A′)
is reducible to EVAL(A).

Let G = (V, E) be a directed graph. If G is not bipartite with all edges directed
from one part to the other, then ZA′(G) = 0. Therefore, we assume that there
is a partition V1, V2 of V such that E ⊆ V1 × V2. We claim that

ZA′(G) = ZA(G). (2)

Note that for every σ′ : V → {1, . . . , 2k} with ωA′(σ′) 6= 0 we have σ′(V1) ⊆
{1, . . . , k} and σ′(V2) ⊆ {k + 1, . . . , 2k}.

For σ : V → {1, . . . , k}, let f(σ) : V → {1, . . . , 2k} be defined by f(σ)(v1) =
σ(v1) and f(σ)(v2) = σ(v2)+k for all v1 ∈ V1, v2 ∈ V2. Then ωA(σ) = ωA′(σ′).
Moreover, f is one-to-one, and for every σ′ : V → {1, . . . , 2k} with ωA′(σ′) 6= 0
there exists σ : V → {1, . . . , k} such that σ′ = f(σ). This proves (2). 2

We close this section with another lemma which will be used later.

Lemma 12 Let B ∈ Sk×`. Then EVAL(B · B>) is polynomial time reducible
to WCSP(B).

PROOF. By Lemma 10, it suffices to show that EVAL(B ·B>) is polynomial
time reducible to EVAL(bip(B)).

For a given graph G = (V, E), let G′ = (V ′, E ′) be the digraph obtained from G
by replacing every edge by two edges pointing to a new vertex. More precisely,
let V ′ = V ∪ VE, where VE = {ve | e ∈ E}, and E ′ = {(u, v(u,v)), (v, v(u,v)) |
(u, v) ∈ E}.

Observe that for every mapping σ′ : V ′ → {1, . . . , k + `} with ωbip(B)(σ
′) 6= ∅

we have σ(V) ⊆ {1, . . . , k} and σ(VE) ⊆ {k + 1, . . . , `}. Thus

Zbip(B)(G
′) =

∑

σ′:V ′→{1,...,k+`}

ωbip(B)(σ
′)

16

=
∑

σ:V →{1,...,k}

∑

σE :VE→{k+1,...,`}

∏

e=(u,v)∈E

Bσ(u)σE (ve)−kBσ(v)σE (ve)−k

=
∑

σ:V →{1,...,k}

∏

e=(u,v)∈E

∑̀

i=1

Bσ(u)iBσ(v)i

= ZB·B>(G).

Thus the mapping G 7→ G′ yields a polynomial time reduction from EVAL(B ·
B>) to EVAL(bip(B)). 2

5 The results

We are now able to state the main results of the paper in their most general
form.

Theorem 13 Let A be a symmetric matrix with non-negative entries from S.
EVAL(A) is in polynomial time if the row rank of each non-bipartite connected
component of A is at most 1 and the row rank of each bipartite component is
at most 2. Otherwise EVAL(A) is #P-hard.

Note that for S = R, Theorem 13 is equivalent to Theorem 1.

Theorem 14 Let B ∈ Sk×` be a non-negative matrix. WCSP(B) is in polyno-
mial time if and only if the row rank of each block of B is at most 1. Otherwise
WCSP(B) is #P-hard.

The difficult parts of these theorems are the hardness results. They follow
from Theorem 16, to be stated and proved in the next section. We now show
how to prove the theorems using Theorem 16 and the results of Sections 3 and
4.

PROOF of Theorem 13 and Theorem 14. The hardness part of Theo-
rem 14 is precisely Theorem 16. The tractability part of Theorem 13 follows
from Theorem 6. It remains to prove the hardness part of Theorem 13 and
the tractability part of Theorem 14.

For the former, let A be a symmetric matrix with non-negative entries from S

that either has a non-bipartite connected component of row rank at least 2 or
a bipartite connected component of row rank at least 3. By Lemma 4, in both
cases A has a block of row rank at least 2. Then by Theorem 16, WCSP(A)
is #P-hard. Hence by Lemma 11, EVAL(A) is #P-hard.

17

To prove the tractability part of Theorem 14, let B ∈ Sk×` be a non-negative
matrix such that the row rank of every block of B is at most 1. Then by
Lemma 5, the row rank of every connected component of the matrix bip(B) ∈
S(k+`)×(k+`) is at most 1. Hence by Theorem 6(1), EVAL(bip(B)) is in polyno-
mial time. By Lemma 10, it follows that WCSP(B) is in polynomial time. 2

Making use of Corollary 8 we derive a classification result for the counting
constraint satisfaction problem.

Corollary 15 Let α, β be equivalence relations on a set D. #CSP({α, β}) is
in polynomial time if and only if the row rank of each block of B(α, β) is at
most 1. Otherwise #CSP({α, β}) is #P-hard.

6 The Main Hardness Theorem

Theorem 16 Let B ∈ Sk×` be non-negative such that at least one block of B
has row rank at least 2. Then WCSP(B) is #P-hard.

6.1 Outline of the proof

Before we prove Theorem 16, we give a brief outline of the proof. Let B ∈ Sk×`

be a non-negative matrix such that at least one block of B has row rank at
least 2.

Step 1: From numbers to polynomials (Subsection 6.2).

In this first step of the proof we show that we can assume that all non-zero
entries of B are powers of some indeterminate X. More precisely, we prove that
there is a matrix B∗ whose non-zero entries are powers of X such that B∗ also
has a block of row rank at least 2 and WCSP(B∗) is polynomial time reducible
to WCSP(B). The construction is based on a lemma, which essentially goes
back to [5], stating that the problem WCSP(B) is equivalent to the problem
of counting all solutions of a given weight. For simplicity, let us assume here
that all entries of B are non-negative integers; additional tricks are required
for real matrices. We can use the lemma to filter out powers of a particular
prime p from all entries of B. This way we obtain a matrix B′ whose non-
zero entries are powers of a prime p. Using a technique which corresponds to
“thickening” in the graph context (cf. [13,5]), we can replace the entries of
this matrix by arbitrary powers, and by interpolation we can then replace p
by the indeterminate X. This gives us the desired matrix B∗.

18

From now on, we assume that all non-zero entries of B are powers of X.

Step 2: Further preparations (Subsections 6.3–6.6).

The second step consists of a sequence of reductions that further simplify the
structure of the matrix B. At the end of these reductions, B satisfies a set
of General Conditions, which imply that it has a cell structure as the matrix
displayed in Figure 2 (on page 43), where the ∗-cells contain powers of X
greater than 1. (More precisely, we prove that there is a matrix B′ of the
desired form such that the weighted CSP of B′ is reducible to that of B.)

All reductions carried out in step 2 are some form of “gadget constructions”,
and neither of them is particularly difficult. However, there are a lot of them.
In the following, we outline the main (sub)steps in more detail:

Step 2a: Expanding the constraint language (Subsection 6.3). We
show that we can expand the constraint language underlying our problems
without increasing the complexity. Of course a larger constraint language
makes it easier to prove hardness.

Step 2b: Permutable Equivalence Relations (Subsection 6.4). We re-
view a result due to [1] stating that the counting CSP for a language consisting
of two non-permutable equivalence relations is hard and adapt the result to
our weighted context.

Step 2c: Eliminating the 0-Entries (Subsection 6.5). We show that
we can assume our matrix to be positive.

Step 2c: Re-arranging the 1-Entries (Subsection 6.6). We show that
we can arrange the 1-entries of the matrix in order to obtain a matrix of the
desired form.

Step 3: Proving Hardness (Subsections 6.7 and 6.8).

In this step, we give the actual hardness proof for matrices B of the form
obtained in Step 2.

19

Step 3a: Separate Ones (Subsection 6.7). We first consider the case
that B has at least two cells containing 1-entries (cf. Figure 2 on page 43). It
is not hard to see that in this case we may assume that all diagonal entries of
B are 1s. Essentially, we show that we can reduce the problem EVAL(A) for a
symmetric non-singular 2×2-matrix A to WCSP(B). For such matrices A the
problem EVAL(A) is #P-hard by a reduction from the problem of counting
MAXCUTs of a graph.

Step 3b: All 1s together (Subsection 6.8). This part of the proof is
the hardest, and it is difficult to describe on a high level. We assume that all
entries of B are positive and that a principal submatrix in the upper left corner
of B contains all the 1s. We define a sequence B[k], for k ≥ 1, of matrices that
are obtained from B by some construction on the instances that is remotely
similar to “stretching” and “thickening” (cf. [13,5]), but more complicated.
We show that WCSP(B[k]) is reducible to WCSP(B) for all k.

The entries of the B[k] are polynomials with integer coefficients (no longer just
powers of X as the entries of B). Employing a little bit of complex analysis,

we prove that for some k, B
[k]
11 has an irreducible factor p(X) such that the

multiplicity of p(X) in B
[k]
11 is higher than in all other entries in the first row

and column, and the multiplicity in the corresponding diagonal entries is also
sufficiently high. Using similar tricks as in Step 1, we can filter out the powers
of this irreducible polynomial p(X). We obtain a matrix whose weighted CSP
is #P-hard by Step 3a.

6.2 From numbers to polynomials

Let q be an arbitrary element of the ring S. A q-matrix is a matrix B such
that all non-zero entries of B are powers of q. We are mainly interested in
X-matrices, where X is an indeterminate. (We view X-matrices as matrices
over the ring Z[X]). Note that X-matrices are always non-negative.

In this section, we shall prove the following lemma:

Lemma 17 (X-Lemma) Let B ∈ Sm×n be a non-negative matrix that has a
block of row rank at least 2.

Then there exists an X-matrix C ∈ Z[X]m×n such that C has a block of row
rank at least 2 and WCSP(C) is reducible to WCSP(B).

The proof consists of a sequence of lemmas; it will be completed at the end of
the section. We decided to first prove the lemma for S ∈ {Z, Q, Z[X], Q[X]}
and state all intermediate lemmas in this section only for integer and rational

20

matrices. The proof for real matrices is very similar, but requires one additional
idea. It will be given in one chunk at the end of this section.

While our main purpose in this section is a proof of the X-Lemma 17, along
the way we obtain other useful results. In particular, the Prime Elimination
Lemma 24 will be used later.

We shall frequently use the standard interpolation technique based on the
following well known lemma.

Lemma 18 (Lemma 3.2, [5]) Let w1, . . . , wr be known distinct nonzero con-
stants. Suppose that we know values f1, . . . , fr such that

fs =
r∑

i=1

ciw
s
i

for 1 ≤ s ≤ r. the coefficients c1, . . . , cr can be evaluated in polynomial time.

We need more general versions of some results of [5]. First of all we show that
a transformation similar to ‘thickening’ can be devised for weighted CSP. For
every matrix B ∈ Sm×n and every ` ≥ 0, we let B(`) denote the matrix whose
entries are (Bij)

`.

Lemma 19 For every matrix B ∈ Sm×n and every ` ≥ 0, the problem WCSP(B(`))
is polynomial time reducible to WCSP(B).

PROOF. Note that the canonical weighted template for B(`) has the same
domain D and the same equivalence relations α, β as the canonical weighted
template for B and the weight function ω(`) defined by ω(`)(d) = ω(d)`.

Take an instance P = (V, D, C) of WCSP(B(`)). Then

• replace every v ∈ V with v1, . . . , vl and denote the resulting set by V ′;
• replace every constraint 〈(u, v), α〉 with 〈(u1, v1), α〉;
• replace every constraint 〈(u, v), β〉 with 〈(u1, v1), β〉;
• for v ∈ V and 1 ≤ i, j ≤ l, include the constraints 〈(vi, vj); α〉, 〈(vi, vj); β〉;
• denote the resulting set of constraints by C′ and the problem (V ′, D, C′)

by P ′.

Clearly, P ′ is an instance of WCSP(B) with ZB(P) = ZB(`)(P ′). 2

We occasionally denote matrices over a polynomial ring such as Q[X] by B(X),
just to emphasise that the entries of the matrix are polynomials in X. Then

21

for every element a of the underlying ring, by B(a) we denote the matrix
obtained by substituting X by a in each entry.

The proofs of the following two lemmas are straightforward:

Lemma 20 For every matrix B(X) ∈ Q[X]m×n there is positive integer a
such that rank(B(a)) = rank(B(X)).

Lemma 21 (Substitution Lemma) For every matrix B(X) ∈ Q[X]m×n

and every a ∈ Q, the problem WCSP(B(a)) is polynomial time reducible to
WCSP(B(X)).

For a matrix B ∈ Sm×n and an instance P = (V, D, C) of WCSP(B), we define
a set PB(P) of potential weights for P by

PB(P) =
{

∏

1≤i≤m
1≤j≤n

(B)
mij

ij | 0 ≤ mij ≤ |V | for 1 ≤ i ≤ m, 1 ≤
j ≤ n

such that
∑

1≤i≤m
1≤j≤n

mij = |V |
}

.

Then

{ωB(σ) | σ is a solution of P} ⊆ PB(P).

Note that for fixed B the size of PB(P) is polynomial in the size of P and that
PB(P) can be computed in polynomial time. Also note that

ZB(P) =
∑

w∈PB(P)

w · NB(P, w), (3)

where NB(P, w) denotes the number of solutions σ of P such that ωB(σ) = w.
Let COUNT(B) denote the following problem:

Input: WCSP(B)-instance P, w ∈ S.

Objective: Compute NB(P, w).

Lemma 22 Let B ∈ Sm×n. Then the problems WCSP(B) and COUNT(B)
are polynomial time equivalent.

PROOF. The following proof mainly follows the proof of Lemma 3.3 from
[5]. As is noticed above the set PB(P) can be constructed in polynomial time.
Thus (3) yields a polynomial time reduction from WCSP(B) to COUNT(B).

To prove the converse, let P, w be an instance of COUNT(B). Suppose that
w1, . . . , wt are the non-zero elements of PB(P). If w 6∈ PB(P) then NB(P, w) =

22

0. Assume now that w = wj ∈ PB(P). For 1 ≤ ` ≤ t, consider the number
ZB(`)(P). We have

ZB(`)(P) =
∑

σ a solution
to P

∏

v∈V

ω`
B(v) =

∑

w∈PB(P)

w`NB(P, w).

If S is a numerical ring then we complete the proof applying Lemma 18. If S

is a polynomial ring then denote the value ZB(`)(P) by f`(X) and notice the
equations above can be represented in the matrix form













f1(X)

f2(X)
...

ft(X)













=













w1(X) w2(X) · · · wt(X)

w2
1(X) w2

2(X) · · · w2
t (X)

...
...

...

wt
1(X) wt

2(X) · · · wt
t(X)













·













NB(P, w1)

NB(P, w2)
...

NB(P, wt)













. (4)

On the one hand, the determinant of the square matrix is Vandermonde. Since
all w1, . . . , wt are distinct and non-zero, it is also non-zero. On the other hand,
this determinant is a non-zero polynomial; let us denote it by d(X). Therefore,
there is an integer

a ≤ t · max
1≤j≤t

deg(wj) + 1

such that d(a) 6= 0. Substituting a instead of X in (4), we obtain a numerical
matrix equation of the form













f1(a)

f2(a)
...

ft(a)













=













w1(a) w2(a) · · · wt(a)

w2
1(a) w2

2(a) · · · w2
t (a)

...
...

...

wt
1(a) wt

2(a) · · · wt
t(a)













·













NB(P, w1)

NB(P, w2)
...

NB(P, wt)













.

with a regular matrix, which we can solve to find the desired value NB(P, wj). 2

We now give a sequence of lemmas that contain statements for both numerical
and polynomial matrices. The statements are essentially the same for both,
but require a slightly different phrasing and slightly different proofs. We always
state the modifications required in the polynomial case in square brackets.

Lemma 23 Let B ∈ Qk×` [B ∈ Q[X]k×`] be a non-negative matrix with at
least one block of rank at least 2. Then there is a non-negative matrix C ∈
Zk×` [C ∈ Z[X]k×`] satisfying the same condition and such that WCSP(C) is
polynomial time reducible to WCSP(B).

23

PROOF. Let N be the least common denominator of entries of B [of coeffi-
cients of entries of B]. We set C to be the matrix with entries Cij = N · Bij .
Since for any WCSP(B)-instance P

ZC(P) = N |V |ZB(P),

the problems WCSP(B) and WCSP(C) are polynomial time equivalent. 2

Lemma 24 (Prime Elimination Lemma) Let B ∈ Zm×n [B ∈ Z[X]m×n]
be a non-negative matrix, and p a prime number [an irreducible polynomial].
Let C be the matrix obtained from B by replacing all entries divisible by p with
0. Then there is a polynomial time reduction from WCSP(C) to WCSP(B).

PROOF. We shall reduce WCSP(C) to COUNT(B); this is sufficient by
Lemma 22. Given an instance P = (V, D, C) of WCSP(C), we first compute
the set

PC(P) = (PB(P) − {w | w divisible by p}).

Then for each w ∈ PC(P) − {0}, we compute the number NB(P, w) using an
oracle to COUNT(B). Then we compute

ZC(P) =
∑

w∈PC(P)

NB(P, w) · w.

2

Let p be a prime number [an irreducible polynomial]. For an integer a ∈ Z [a
polynomial a ∈ Z[X]] we let

a|p =







pmax{k|k≥0, pk divides a}, if a 6= 0,

0 otherwise.

For a matrix B ∈ Zm×n [a matrix B ∈ Z[X]m×n] we let B|p be the matrix
with entries (B|p)ij = (Bij)|p.

Lemma 25 (Prime Filter Lemma) Let B ∈ Zm×n [B ∈ Z[X]m×n] be a
non-negative matrix, and p a prime number [an irreducible polynomial]. Then
WCSP(B|p) is polynomial time reducible to WCSP(B).

PROOF. Let ω be the weight function of the canonical weighted template for
B and ω′ the one corresponding to B|p. Let P be an instance of WCSP(B|p).
Note that for every solution σ of P we have ω′(σ) = (ω(σ))|p. Then by (3),

ZB|p(P) =
∑

w∈PB(P)

w|p · NB(P, w).

24

Thus WCSP(B|p) is polynomial time reducible to COUNT(B) and hence, by
Lemma 22, to WCSP(B). 2

Lemma 26 (Prime Rank Lemma) Let B ∈ Zm×n [B(X) ∈ Z[X]m×n] be
a non-negative matrix which has a block of rank at least 2. Then there is some
prime number [irreducible polynomial] p such that there is a block of B|p of
rank at least 2.

PROOF. Suppose that for all primes [irreducible polynomials] p every block
of the matrix B|p has rank at most 1. We shall prove that any two rows from
the same block of B are linearly dependent, which is impossible.

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two rows from a block of B. Then
we have

ai =
∏

p

ai|p and bi =
∏

p

bi|p

for all i, where the (finite) products are taken over all primes [irreducible
polynomials] p dividing an entry of B. Since for every prime [irreducible poly-
nomial] p the rank of B|p is 1, there are λp, µp ∈ Z [Z[X], respectively] such
that λpai|p = µpbi|p for 1 ≤ i ≤ n. Let

Λ =
∏

p

λp and M =
∏

p

µp.

Then

Λai = Λ ·
∏

p

ai|p =
∏

p

λpai|p =
∏

p

µpbi|p = M ·
∏

p

bi|p = Mbi

for 1 ≤ i ≤ n. This shows that indeed a and b are linearly dependent. 2

Recall that for every q ∈ S, a q-matrix is a matrix whose non-zero entries are
powers of q.

Lemma 27 (Renaming Lemma) Let p ∈ Z[X] \ {0, 1,−1} and B ∈
Z[X]m×n a p-matrix. Let q ∈ Z[X], and let C be the matrix obtained from
B by replacing powers of p with corresponding powers of q, that is, by letting

Cij =







ql, if Bij = pl for some l ≥ 0,

0, if Bij = 0.

Then WCSP(C) is polynomial time reducible to WCSP(B).

PROOF. Let us denote Y be an indeterminate and C ′ the matrix obtained
from C by replacing powers of p with corresponding powers of Y . Let `max be

25

maximum such that Y `max is an entry of C ′. For every instance P of WCSP(C ′)
with, say, m variables, ZC′(P) is a polynomial in Y of degree at most m · `max.
Using an oracle to WCSP(B), we can evaluate this polynomial for Y = p.
By Lemma 19, we can actually evaluate the polynomial for Y = pi for all
i ≥ 0. Since p 6∈ {−1, 0, 1}, this gives us sufficiently many distinct values to
interpolate and compute the coefficients of the polynomial. Then we can also
compute its value for Y = q, that is, ZC(P). 2

We are now ready to prove the X-Lemma.

PROOF of the X-Lemma 17. We first prove the lemma for S ∈ {Z, Q, Z[X], Q[X]}.
Let S ∈ {Z, Q, Z[X], Q[X]} and B ∈ Sm×n. If S ∈ {Q, Q[X]}, we first apply
Lemma 23. Thus without loss of generality we may assume that S ∈ {Z, Z[X]}.
By the Prime Filter Lemma 25 and the Prime Rank Lemma 26, we may as-
sume that B is a p-matrix for some prime [irreducible polynomial] p. Now we
can apply the Renaming Lemma 27 with q = X. This completes the proof of
the X-Lemma for S ∈ {Z, Q, Z[X], Q[X]}.

It remains to prove the lemma for real matrices (see [15] for details about the
model of real computation we use). The proof is very similar to the proof for
integer matrices, the only difference being that we have to replace the primes
involved there by suitable real numbers forming what we will call l-basis for
the matrix B.

Let B ∈ Rk×` be a non-negative matrix. Let a1, . . . , am be the positive entries
of B. For 1 ≤ i ≤ m, let ri = ln ai. We view R as a vector space over Q and
are interested in the subspace LB generated by r1, . . . , rm. Let 1 ≤ i1 < . . . <
in ≤ m such that ri1 , . . . , rin form a basis of LB. For 1 ≤ j ≤ n, let bj = aij .
We call {b1, . . . , bn} an l-basis for B. Note that every positive entry of B has a
unique representation bq1

1 . . . bqn
n , where q1, . . . , qn ∈ Q. Since for every positive

s ∈ Z the problem WCSP(B(s)) is reducible to WCSP(B), we may actually
assume without loss of generality that every positive entry of B has a unique
representation b`1

1 . . . b`n
n , where `1, . . . , `n ∈ Z. Also note that if B has a block

of row rank at least 2 then so does B(s) for every s ≥ 1. Observe that for every
instance P and w ∈ PB(P), w 6= 0, we have ln w ∈ LB. Thus w has a unique
representation bm1

1 . . . bmn
n with m1, . . . , mn ∈ Z. Thus the elements of an l-

basis play the same role as that played by primes or irreducible polynomials
for integer computations.

For 1 ≤ s ≤ n and a = b`1
1 . . . b`n

n we let a|bs
= b`s

s , and we let A|bs
be the

matrix with (A|bs
)ij = (Aij)|bs

if Aij > 0 and (A|bs
)ij = 0 if Aij = 0.

Analogously to the Prime Filter Lemma 25 we can prove that for 1 ≤ s ≤ n

26

the problem WCSP(B|bs
) is polynomial time reducible to WCSP(B). Here we

use the fact that for every instance P every element of the set PB(P) has a
unique representation in terms of our l-basis.

Analogously to the Prime Rank Lemma 26 we can prove that if B has a block
of row rank at least 2 then for some b ∈ {b1, . . . , bn} the matrix B|b has a
block of row rank at least 2.

To complete the proof, assume that B has a block of row rank at least 2 and
let b ∈ {b1, . . . , bn} such that B|b also satisfies this condition. Let X be an
indeterminate and C the matrix obtained from B|b by replacing each entry
b` by X`. Let P be an instance with m variables. We want to compute the
polynomial q(X) = ZC(P), which is a polynomial of degree at most m · `max

in X, where `max is the maximum such that X`max is an entry of C. Observing
that for 0 ≤ r ≤ m we have

Z(B|b)(r)(P) = q(br),

we can compute the coefficients of q by Lemma 19 and interpolation. This
completes the proof of the X-Lemma. 2

6.3 Expanding the Constraint Language

Clearly, proving hardness of a CSP becomes easier if the constraint language
gets richer. In this section, we will show that the constraint language of our
weighted CSP with two equivalence relations can be expanded by certain rela-
tions without increasing the complexity. Specifically, for every element of the
domain we will add a unary relation that consists only of this element. This
will enable us to specify partial solutions in an instance by adding constraints
that ensure that certain variables get mapped to specific domain elements. A
different perspective on these unary relations is that we add “constants” for
the domain elements to our language. Furthermore, if B is a square matrix, we
will add a binary relation that contains the diagonal elements of B, or more
precisely, the elements (i, i) of the canonical weighted template.

The results of this subsection are twofold. First, and most importantly, we
show how to reduce the problems over the richer languages to those over the
basic language (just consisting of two equivalence relations). For the added
constants (unary relations for all domain elements), this will be done in the
Constant Reduction Lemma 32. For the language with the relation that con-
tains the diagonal elements, the situation is slightly more complicated, because
we only have the extension of the language for square matrices, but would like
to apply it to all matrices. In the Symmetrisation Lemma 33, we show that
the weighted CSP of the square matrix B ·B> over the expanded language is

27

reducible to the the weighted CSP of B over the basic language. This shows
that it is sufficient to prove hardness for the weighted CSP of a symmetric
matrix over the expanded language.

But now we are facing a new problem: We have taken B to be an X-matrix,
but this does not mean that the symmetric matrix C = B · B> is also an
X-matrix. We could apply the X-Lemma again to the matrix C and would
obtain an X-matrix C ′ such that the weighted CSP for C ′ is reducible to that
of C. But it is not clear that the reduction also works for the problems over
our expanded language. Therefore, we will have to prove an extended version
of the X-Lemma (the Extended X-Lemma 36) that also works for the richer
language.

Let us now define the extensions of our constraint language. Let B ∈ Z[X]n×m

be a matrix and (D, {α, β}, ω) be the canonical weighted template for B.
Recall that D = {1, . . . , m} × {1, . . . , n}.

For d ∈ D, let κd be the unary one-element relation {(d)} and K(D) the set
{κd | d ∈ D}. We let WCSPK(B) be the weighted CSP over the language
consisting of α and β and all the κd, that is,

WCSPK(B) = WCSP({α, β} ∪ K(D), ω).

Furthermore, if m = n, let θ be the unary relation {(i, i) | 1 ≤ i ≤ m} on D
consisting of all ‘diagonal’ elements, and let

WCSPKD(B) = WCSP({α, β} ∪ K(D) ∪ {θ}, ω).

To better understand the problems WCSPK(B) and WCSPKD(B), let us de-
scribe the corresponding “partition functions” ZΓ,ω directly. To simplify the
notation, we let

ZK
B = Z{α,β}∪K(D),ω

be the partition function of WCSPK(B) and

ZKD
B = Z{α,β}∪K(D)∪{θ},ω

the partition function of WCSPKD(B).

First, let P = (V, D, C) be an instance of the problem WCSPK(B) (or equiv-
alently, an instance of the problem CSP({α, β} ∪K(D))). Note first that if C
contains constraints 〈v, κd〉 and 〈v, κd′〉 for d 6= d′, then the instance P has no
solutions and thus ZK

B (P) = 0. From now on, we only consider instances that
do not have constraints 〈v, κd〉 and 〈v, κd′〉 for d 6= d′. For each such instance

28

P = (V, D, C), let ϕP be the partial mapping from V to D defined by

ϕP(v) =







d if 〈v, κd〉 ∈ C,

undefined otherwise.

Note that the instance P is completely specified by the partial mapping ϕP

and the reduct of P to the language {α, β}, that is, by the instance P|{α,β} =
(V, D, C|{α,β}) with

C|{α,β} = {〈(u, v), γ〉 ∈ C | u, v ∈ V, γ ∈ {α, β}}.

Furthermore, we have

ZK
B (P) =

∑

σ:V →D
σ solution of P

ω(σ) =
∑

σ:V →D with ϕP⊆σ
σ solution of P|{α,β}

ω(σ).

Here we write ϕP ⊆ σ to denote that ϕP is a restriction of σ.

Conversely, observe that if P ′ = (V, D, C′) is an instance of WCSP(B) and
ϕ is a partial mapping from V to D, then there is exactly one instance P
of WCSPK(B) such that ϕP = ϕ and P|{α,β} = P ′. Thus WCSPK(B) is the
problem of computing the weighted sum over all solutions extending a given
partial solution for an instance P ′ of WCSP(B).

The problem WCSPKD(B) has a less intuitive meaning, because the diago-
nal of the matrix B is somewhat arbitrary in the sense that it depends on a
specific order of the equivalence classes of α and β. But having a distinguish-
able diagonal will be extremely useful later, because it will help us to “pin
down” specific entries of the matrix that ultimately cause the hardness of the
weighted CSP. Let us briefly discuss how instances of WCSPKD(B) relate to
their reducts over {α, β}. Let P = (V, D, C) of the problem WCSPKD(B) (or
equivalently, an instance of the problem CSP({α, β} ∪ K(D) ∪ {θ})). Let ϕP

be defined as above and

UP = {v ∈ V | 〈v, θ〉 ∈ C}.

Then P is completely specified by ϕP , UP , and and the reduct P|{α,β}. Con-
versely, for all instances P ′ = (V, D, C′) of WCSP(B), partial mappings ϕ from
V to D, and subsets U ⊆ V , there is exactly one instance P of WCSPK(B)
such that ϕP = ϕ, UP = U , and P|{α,β} = P ′.

Our first goal will be to prove that WCSPK(B) is reducible to WCSP(B). The
proof relies on a result from [1], which we state as Lemma 31. In addition, we
need several lemmas similar to those in the previous subsection. The proofs
are usually completely analogous to those of the corresponding lemmas in the
previous subsection. We usually need versions of the lemmas for WCSPK(B)

29

and WCSPKD(B). The modifications required for the KD-version are stated
in square brackets.

Lemma 28 For every matrix B ∈ Z[X]m×n [with m = n] and every ` ≥ 0,
the problem WCSPK(B(`)) [WCSPKD(B(`))] is polynomial time reducible to
WCSPK(B) [WCSPKD(B)].

PROOF. Analogous to the proof of Lemma 19. 2

Lemma 29 (Extended Substitution Lemma) Let B(X) ∈ Z[X]m×n

[with m = n]. For every a ∈ Z, the problem WCSPK(B(a)) [WCSPKD(B(a))]
is polynomial time reducible to WCSPK(B(X)) [WCSPKD(B(X))].

PROOF. As Lemma 21, this is obvious. 2

Lemma 30 (Extended Renaming Lemma) Let p ∈ Z[X] and B ∈
Z[X]m×n [with m = n] be a p-matrix. Let q ∈ Z[X] \ {0, 1,−1}, and let C
be the matrix obtained from B by replacing powers of p with corresponding
powers of q.

Then WCSPK(B) [WCSPKD(B)] is polynomial time reducible to WCSPK(C)
[WCSPKD(C)].

PROOF. Analogously to the proof of the Renaming Lemma 27.

Lemma 31 ([1]) Let Γ be a constraint language over a domain D. Then
#CSP(Γ ∪ K(D)) is polynomial time reducible to #CSP(Γ).

We write P ≤ P ′ to denote that problem P is polynomial time reducible to
problem P ′.

Lemma 32 (Constant Reduction Lemma) Let p(X) ∈ Z[X] be an irre-
ducible polynomial and B ∈ Z[X]m×n a p-matrix. Then WCSPK(B) is poly-
nomial time reducible to WCSP(B).

PROOF. By Lemma 20, the Substitution Lemma 21, the Renaming Lemma 27,
the Extended Substitution Lemma 29, and the Extended Renaming Lemma 30,
there is a non-negative matrix C ∈ Zm×n, which is obtained from B by sub-
stituting X by a suitable integer a, such that both the problems WCSP(B),
WCSP(C) and the problems WCSPK(B), WCSPK(C) are polynomial time
equivalent. Let C be such a matrix and let (DC , {αC , βC}) be the canonical
template for C. By Corollary 8, WCSP(C) is polynomial time equivalent to

30

#CSP({αC , βC}). By Lemma 31 of [1], the problem #CSP({αC , βC}∪K(DC))
is polynomial time reducible to #CSP({αC , βC}).

We shall prove that WCSPK(C) is polynomial time reducible to #CSP({αC , βC}∪
K(DC). Then the statement of the lemma follows by the following chain of
reductions:

WCSPK(B) ≤ WCSPK(C) ≤ #CSP({αC, βC} ∪ K(DC))

≤ #CSP({αC, βC}) ≤ WCSP(C) ≤ WCSP(B).

It remains to reduce WCSPK(C) to #CSP({αC , βC}∪K(DC). It is important
for the following reduction to understand the construction of the canonical
template and the canonical weighted template for C and the difference between
the two (see Subsection 4.1). The canonical weighted template has one domain
element (i, j) for each matrix entry Cij, and the weight of (i, j) is precisely
Cij. The canonical template has Cij domain elements for the matrix entry Cij ,
and these elements form the intersection of the ithe equivalence class of αC

and the jth class of βC . Let C1, . . . , Cm be the equivalence classes of αC and
D1, . . . , Dn the equivalence classes of βC , both enumerated in such a way that
for 1 ≤ i ≤ m and 1 ≤ j ≤ n we have

Cij = |Ci ∩ Dj|.

Now let P = (V, D, C) be an instance of WCSPK(C). We have to construct
an instance P ′ = (V ′, DC , C′) of #CSP({αC , βC} ∪ K(DC)) such that ZK

C (P)
is the number of solutions of P ′. Note that D is the domain of the canonical
weighted template for C, that is, D = {1, . . . , m} × {1, . . . , n}. If C contains
a constraint 〈v, κ(i,j)〉, then without loss of generality we may assume that
Cij 6= 0, because otherwise we have ZK

C (P) = 0. If Cij 6= 0 then Ci ∩ Dj 6= ∅.
Let us fix an (arbitrary) element dij ∈ Ci ∩ Dj for all i, j with Cij 6= 0. Now
the idea is to replace the constraint 〈v, κ(i,j)〉 by 〈v, κdij

〉. However, this fixes v
in all solutions to be mapped to dij and thus reduces the number of solutions
too strongly — the correct number would be obtained if v was allowed to be
mapped to any element of Ci ∩ Cj . Unfortunately, we cannot express this in
our limited constraint language. Instead, we introduce an additional variable
v′ that we fix to be mapped to dij, and we only require v to be mapped to any
element in the same α-class and β-class as v′.

Let FP be the set of all fixed values, that is, the set of all v ∈ V such that
there is a constraint of the form 〈v, κ(i,j)〉 in C. We define an instance P ′ =
(V ′, DC , C′) of #CSP({αC , αC} ∪ K(DC)) as follows:

• V ′ = V ∪ {v′ | v ∈ FP}.
• For every constraint of the form 〈(u1, u2), α〉, 〈(v1, v2), β〉 ∈ C, we include

the constraints 〈(u1, u2), αC〉, 〈(v1, v2), βC〉 into C′.

31

• For every 〈(v), (i, j)〉 ∈ C, we include 〈(v, v′), αC〉, 〈(v, v′), βC〉 and 〈(v′), κdij
〉

into C′.

Using the same idea as in the proof of Lemma 7, it is easy to see that ZK
C (P)

equals the number of solutions to P ′. 2

In the next lemma, we turn to WCSPKD(B). The lemma shows that we can
work with symmetric matrices, and it also shows that we can get rid of the
diagonal relation θ in the constraint language of WCSPKD(B).

Lemma 33 (Symmetrisation Lemma) Let B ∈ Z[X]m×n be a non-negative
matrix and C = B · B>. Then

(1) C is a symmetric non-negative matrix.
(2) rank(C) = rank(B).
(3) If B has a block of rank at least 2 then C also has such a block.
(4) WCSPKD(C) is polynomial time reducible to WCSPK(B).

PROOF. Since C is the Gram matrix of the collection of rows of B, its rank
equals rank(B). Notice that the same holds for every block of C. Therefore,
for any block of B, the matrix C has a block of the same rank. This proves
(1)–(3).

To prove (4), let DB = (D, α, β, ω) and DC = (D′, α′, β ′, ω′) be the canonical
weighted templates for B and C, respectively. Recall that D = {1, . . . , m} ×
{1, . . . , n} and D′ = {1, . . . , m}2. Also recall that the rows of B [C] correspond
to the equivalence classes of α [α′, respectively] and the columns of B [C]
correspond to the equivalence classes of β [β ′, respectively].

Take an instance P ′ = (V ′, D′, C′) of WCSPKD(C). We define an instance
P = (V, D, C) of WCSPK(B) (=WCSP({α, β} ∪ K(D))) as follows:

(i) V = {v1, v2 | v ∈ V ′} ∪ {v3, v4 | 〈v, κ(i,j)〉 ∈ C′};
(ii) for every constraint 〈(v, w), α′〉 ∈ C′, we include 〈(v1, w1), α〉 into C, and

for every constraint 〈(v, w), β ′〉 ∈ C′, we include 〈(v2, w2), α〉 into C;
(iii) for every v ∈ V ′ we include 〈(v1, v2), β〉 into C;
(iv) for every constraint 〈(v), κ(i,j)〉 ∈ C′, we include the constraints 〈(v3), κ(i,1)}〉,

〈(v4), κ(j,1)}〉, 〈(v
1, v3), α〉, 〈(v2, v4), α〉 into C;

(v) for every constraint 〈(v), θ〉 ∈ C′, we include 〈(v1, v2), α〉 into C.

To understand this, observe that the constraints in (ii) say that whenever
v, w ∈ V ′ are forced to be mapped to the same row of C, then v1 and w1 are
forced to the same row of B. If v and w are forced to the same column of C,
then v2 and w2 are forced to the same row(!) of B. The constraints in (iii)

32

force v1 and v2 to the same column of B. The constraints in (iv) say that if
v ∈ V ′ is forced to the (i, j)-entry of C, then v3 is forced to the first element
of the ith row and v4 is forced to the first element of the jth row. Finally, (v)
says that if v′ ∈ V is forced onto the diagonal, then v1 and v2 are forced to the
same row; since by (iii) they are also forced to the same column, this implies
that they are forced to the same position.

Now let us try to understand how solutions for P ′ relate to solutions for P.
Observe first that the domain of ϕP , that is, the variables that are fixed by
constraints κd, is the set of all variables of the form v3, v4. Note that variables
v3, v4 are only added for those v ∈ V ′ that occur in some constraint 〈v, κ(i,j)〉.

Let σ′ be a solution of P ′. Let Ψ(σ′) be the set of all solutions σ for P such
that for all v ∈ V ′, if σ′(v) = (i, j), then σ(v1) = (i, k) and σ(v2) = (j, k) for
some k ∈ {1, . . . , n}. Then the sets Ψ(σ′), where σ′ ranges over all solutions of
P ′, form a partition of the space of solutions of P. To see that every solution
σ of P belongs to some Ψ(σ′), just recall that by (iii), v1 and v2 must be
mapped to the same column.

More formally, for every solution σ of P we define a mapping σ′ : V ′ → D′ by
letting, for every v ∈ V ′,

σ′(v) = (i, j) if σ(v1) = (i, k) and σ(v2) = (j, k).

This mapping is well-defined on V ′, because by the constraints (iii) there
always exists a suitable k. Then, clearly, σ ∈ Ψ(σ′). To see that σ′ is a solution
of P ′, note the following:

• For every constraint 〈(u, v), α′〉 ∈ C′, the constraint 〈(u1, v1), α〉 implies
that σ(u1), σ(v1) are in the same row, say, i. Hence, (σ′(u), σ′(v)) =
((i, j), (i, k)) ∈ α′ for certain 1 ≤ j, k ≤ m.

• For every constraint 〈(u, v), β ′〉 ∈ C′, the constraint 〈(u2, v2), α〉 implies
that σ(u2), σ(v2) are in the same row, say, j. Therefore, (σ′(u), σ′(v)) =
((i, j), (k, j)) ∈ β ′ for certain 1 ≤ i, k ≤ m.

• For every constraint 〈v, θ〉 ∈ C′, the constraint 〈(v1, v2), α〉 implies that
σ(v1) = σ(v2) are in the same row, say, i. Hence σ′(v) = (i, i) ∈ θ.

• For every v such that 〈(v), κ(i,j)〉 ∈ C′, the constraints 〈(v3), κ(i,1)}〉,
〈(v4), κ(j,1)}〉 imply σ(v3) = (i, 1) and σ(v4) = (j, 1). Then the constraints
〈(v1, v3), α〉, 〈(v2, v4), α〉 imply that σ(v1) is in row i and σ(v2) in row j.
Thus σ′(v) = (i, j) ∈ κ(i,j).

33

Finally, we have

ZK
B (P) =




∏

〈(v),κ(i,j)〉∈C′

Bi1Bj1



 ·











∑

σ′ solution
to P ′

∑

σ∈Ψ(σ′)

∏

v∈V ′

σ′(v)=(i,j)
σ(v1)=(i,k),σ(v2)=(j,k)

BikBjk











=




∏

〈(v),κ(i,j)〉∈C′

Bi1Bj1



 ·








∑

σ′ solution
to P ′

∏

v∈V ′

σ′(v)=(i,j)

n∑

k=1

BikBjk








=




∏

〈(v),κ(i,j)〉∈C′

Bi1Bj1



 ·








∑

σ′ solution
to P ′

∏

v∈V ′

σ′(v)=(i,j)

Cij








=




∏

〈(v),κ(i,j)〉∈C′

Bi1Bj1



 · ZKD
C (P ′).

Since the term
∏

〈(v),κ(i,j)〉∈C′ Bi1Bj1 can easily be computed in polynomial time,
this yields the desired reduction. 2

The last goal of this section is to prove the Extended X-Lemma 36, a version
of the X-Lemma 17 for the extended language of WCSPKD(B). To prove this
lemma, we need to extend further results of the previous subsection.

By COUNTKD(B) we denote the problem of finding the number NKD
B (P, w)

of solutions σ of an instance P of WCSPKD(B) such that ωB(σ) = w.

Lemma 34 Let B ∈ Z[X]m×m. Then the problems WCSPKD(B) and COUNTKD(B)
are polynomial time equivalent.

PROOF. Analogous to the proof of Lemma 22.

Lemma 35 (Extended Prime Filter Lemma) Let B ∈ Z[X]m×m be a non-
negative matrix, and p an irreducible polynomial. Then WCSPKD(B|p) is poly-
nomial time reducible to WCSPKD(B).

PROOF. Analogous to the proof of the Prime Filter Lemma 25.

Finally, we have reached our goal:

34

Lemma 36 (Extended X-Lemma) Let B ∈ Z[X]m×m be a symmetric non-
negative matrix that has a block of row rank at least 2.

Then there exists a symmetric X-matrix C ∈ Z[X]m×m such that C has a
block of row rank at least 2 and WCSPKD(C) is reducible to WCSPKD(B).

Moreover, if B is positive then C can also be assumed to be positive.

PROOF. By the Extended Prime Filter Lemma 35 and the Prime Rank
Lemma 26, we may assume that B is a p-matrix for some irreducible polyno-
mial p. Now we can apply the Extended Renaming Lemma 30 with q = X.

6.4 Permutable Equivalence Relations

For binary relations γ and δ, we let γ ◦ δ be the relation consisting of all pairs
(x, y) such that there exists a z with (x, z) ∈ α and (z, y) ∈ β. Two equivalence
relations α, β are said to be permutable if

α ◦ β = β ◦ α.

As is easily seen, α, β are not permutable if and only if there are 1 ≤ i, j ≤ m,
1 ≤ k, l ≤ n such that B(α, β)ik, B(α, β)il, B(α, β)jk 6= 0, but B(α, β)jl = 0.

Lemma 37 ([1]) If α, β are equivalence relations that are not permutable,
then the problem #CSP({α, β}) is #P-hard.

Our first result in this section is an extension of this lemma to the weighted
problem:

Lemma 38 (Non-Permutability Lemma) Let B ∈ Z[X]m×n be a nonneg-
ative matrix such that there exists 1 ≤ i, k ≤ n, 1 ≤ j, ` ≤ n with Bik, Bi`,
Bjk 6= 0 and Bj` = 0. Then WCSP(B) is #P-hard.

PROOF. Let 1 ≤ i, k ≤ n, 1 ≤ j, ` ≤ n such that Bik, Bil, Bjk 6= 0 and
Bjl = 0. Take an integer a such that the matrix B′ = B(a) is non-negative
and B′

ik, B
′
il, B

′
jk 6= 0. By the Substitution Lemma 21, the problem WCSP(B′)

is polynomial time reducible WCSP(B). Let (DB′ , {α′, β ′}) be the canonical
template for B′. By Corollary 8, #CSP({αB′ , βB′}) is polynomial time re-
ducible to WCSP(B′). Furthermore, α′ and β ′ are not permutable, and thus
by Lemma 37, #CSP({α′, β ′}) is #P-hard. 2

35

6.5 Eliminating the 0-Entries

The goal of this section is to prove the following lemma:

Lemma 39 (0-Elimination Lemma) Let B ∈ Z[X]m×m be a non-negative
symmetric matrix that has a block of row rank at least 2.

Then there exists an n ≤ m and a positive symmetric X-matrix C ∈ Z[X]n×n

such that C has a block of row rank at least 2 and WCSPKD(C) is reducible
to WCSPKD(B).

Since any X-matrix is non-negative, the lemma amounts to eliminating 0-
entries. The basic idea is to let C be a connected component of B, but this does
not quite work, because we do not know how to filter out all those solutions
for an instance of WCSPKD(B) that map all variables to a fixed connected
component of B. Lemma 41 gives a way to circumvent this problem.

Let us call a matrix quasi-diagonal if it is of the form displayed in Figure 1.
Of course the blocks B1, . . . , Bk may be of different sizes.

Lemma 40 Let B ∈ Z[X]m×m be a symmetric matrix that has a block of row
rank at least 2. Then there exists a permutation π of {1, . . . , m} such that the
matrix πB ∈ Z[X]m×m with (πB)ij = Bπ(i)π(j) is quasi-diagonal with blocks
B1, . . . , Br, and rank(B1) ≥ 2.

Furthermore, WCSPKD(πB) and WCSPKD(B) are polynomial time equiva-
lent.

PROOF. The proof is straightforward. For the equivalence of the two prob-
lems, recall Lemma 9. 2













B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bk













Fig. 1. A quasi-diagonal matrix B

Lemma 41 Let B(X) ∈ Z[X]m×m be a non-negative quasi-diagonal symmet-
ric matrix with blocks B1, . . . , Bk. Furthermore, assume that B1 is positive and
rank(B1) ≥ 2.

36

Suppose that B1 is an n × n-matrix, and let C ∈ Z[X]n×n be the matrix with
entries

Cij = Bij · B1i · B1j .

Then C is positive, rank(C) ≥ 2, and WCSPKD(C) is polynomial time re-
ducible to WCSPKD(B).

PROOF. Clearly, C is positive, as its entries are products of the (positive)
entries of B1.

To prove that rank(C) ≥ 2, consider a submatrix B{i,i′}{j,j′} of B1 of row rank
2. Then the following determinant is non-zero:

∣
∣
∣
∣
∣
∣
∣

Bij Bij′

Bi′j Bi′j′

∣
∣
∣
∣
∣
∣
∣

6= 0.

Then we have
∣
∣
∣
∣
∣
∣
∣

Cij Cij′

Ci′j Ci′j′

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

BijB1iB1j Bij′B1iB1j′

Bi′jB1i′B1j Bi′j′B1i′B1j′

∣
∣
∣
∣
∣
∣
∣

= B1iB1i′B1jB1j′ ·

∣
∣
∣
∣
∣
∣
∣

Bij Bij′

Bi′j Bi′j′

∣
∣
∣
∣
∣
∣
∣

6= 0.

It remains to prove that WCSPKD(C) is polynomial time reducible to WCSPKD(B).
Let D = (D, α, β, ω) and D′ = (D′, α′, β ′, ω′) be the canonical weighted tem-
plate for C and B, respectively. Note that

D = {1, . . . , n}2 ⊆ {1, . . . , m}2 = D′.

Furthermore, let θ be the diagonal of D and θ′ the diagonal of D′. The κd for
d ∈ D are the same on both D and D′.

Let P = (V, D, C) be an instance of WCSPKD(C). We transform it to an
instance P ′ = (V ′, D′, C′) of WCSPKD(B) as follows:

(i) V ′ = V ∪ {v1, v2 | v ∈ V } ∪ {x}.
(ii) For every constraint from C we include into C′ the analogous constraint

replacing α, β, θ by α′, β ′, θ′, respectively, and κd by κd.
(iii) For every v ∈ V we include into C′ the constraints 〈(v, v1), α〉, 〈(v, v2), β〉,

〈(v1, x), β〉, 〈(v2, x), α〉.
(iv) We include the constraint 〈x, κ(1,1)〉.

Note that the constraints (iii) and (iv) guarantee that x is forced to (1, 1), and
for every v ∈ V , v1 is forced into the same row as v and column 1, and v2 is
forced into row 1 and the same column as v.

37

Now let σ be a solution of WCSPKD(C). Define

σ′ : V ∪ {v1, v2 | v ∈ V } ∪ {x} → D

as follows: For every v ∈ V , let σ′(v) = σ(v). If σ(v) = (i, j), let σ′(v1) =
(i, 1) and σ′(v2) = (1, j). Finally, let σ′(x) = (1, 1). Then σ′ is a solution of
WCSPKD(B).

Conversely, if σ′ is a solution of WCSPKD(B) of non-zero weight ω′(σ′), then
σ′(x) = (1, 1), and for all v ∈ V with σ′(v) = (i, j) we have σ′(v1) = (i, 1) and
σ′(v2) = (1, j). Now ω′(σ′) 6= 0 implies that (i, j) ∈ D, because all entries of
row 1 and column 1 of B that are outside of B1 are zero.

Thus there is a one-to-one correspondence between solutions σ of P and so-
lutions σ′ of P ′ of non-zero weight.

For every σ : V → D, let σ1 and σ2 the projection of σ on the first and second
component, respectively, that is, if σ(v) = (i, j), then σ1(v) = i and σ2(v) = j.
Then

ω′(σ′) = B11 ·
∏

v∈V

Bσ1(v)σ2(v) · Bσ1(v)1 · B1σ2(v) = B11 · ω(σ).

Thus the mapping P 7→ P ′ yields the desired reduction from WCSPKD(C) to
WCSPKD(B). 2

Proof of the 0-Elimination Lemma 39. Let B ∈ Z[X]m×m be a non-
negative symmetric matrix that has a block of row rank at least 2. By Lemma 40,
we may assume that B is quasi-diagonal with blocks B1, . . . , Bk (as in Figure 1)
and that B1 has row rank at least 2. Suppose that B1 is an n × n-matrix.

If B1 is positive, we can apply Lemma 41 and then the Extended X-Lemma 36
to the resulting C.

If B1 is not positive, then there are 1 ≤ i, j, k, ` ≤ n such that Bik, Bi`,
Bjk 6= 0, and Bj` = 0 (this follows from the fact that B1 is a block and hence
indecomposable). Then by the Non-Permutability Lemma 38, WCSP(B) and
hence WCSPKD(B) is #P-hard. In this case, we can simply let

C =






1 X

X 1






2

38

6.6 Re-arranging the 1-Entries

The goal of this subsection is to prove that the 1-entries of our matrix can
be arranged in square cells around diagonal. That is, we show that it will be
sufficient to consider matrices of the form displayed in Figure 2 (on page 43),
where the ∗-cells contain powers of X greater than 1. This is the content of
the General Conditioning Lemma 47.

The following lemma implies that we can always assume that our matrix
contains 1-entries.

Lemma 42 Let p be an irreducible polynomial and B ∈ Z[X]m×n be a non-
negative matrix such that such that every entry of B is divisible by p. Then
WCSPKD(1

p
B) is polynomial time reducible to WCSPKD(B).

PROOF. Take P = (V, D, C) ∈ WCSPKD(1
p
B). Then

ZKD
1
p
B (P) =

1

p|V |
ZKD

B (P).

2

Recall that a principal submatrix of an (m×m)-matrix B is a submatrix BK

of B, for some K ⊆ {1, . . . , n}, that is obtained from B by deleting all rows
and columns whose index is not in K.

A row [column] of the matrix B is called an 1-row [1-column] if 1 occurs in it.

Lemma 43 (1-Row Lemma) Let B ∈ Z[X]m×m be a symmetric positive
X-matrix, and let C be the principal submatrix of B obtained by removing all
non-1-rows and all non-1-columns and A the submatrix obtained by removing
all non-1-rows. Then

(1) WCSPKD(C) is polynomial time reducible to WCSPKD(B);
(2) WCSPK(A) is polynomial time reducible to WCSPK(B).

PROOF. (1) Without loss of generality we may assume that the first n rows
of B are the 1-rows and thus that the first n-columns are the 1-columns. Let
C ′ denote the n×n-matrix with entries C ′

ij = `i ·`j ·Cij, where `i is the number

of 1s in the ith row of C. We first show that WCSPKD(C ′) is polynomial time
reducible to WCSPKD(B). Let D = (D, α, β, ω) and D′ = (D′, α′, β ′, ω′) be the
canonical weighted templates of C ′ and B, respectively. Then D = {1, . . . , n}2

and D′ = {1, . . . , m}2. Let θ, θ′ be the diagonals of D and D′.

39

We use ∆ to denote the maximal degree of X in C ′. Let P = (V, D, C)
be an instance of WCSPKD(C ′). We define an instance P ′ = (V ′, D′, C′) of
WCSPKD(B) as follows:

(i) Let V ′ = V ∪ {v1, . . . , vk, v
1, . . . , vk | v ∈ V }, where k = |V | · ∆ + 1.

(ii) For every constraint 〈(u, v), α〉 ∈ C, add the constraint 〈(u, v), α′〉 to
C′. Similarly, for every constraint 〈(u, v), β〉 ∈ C, add the constraint
〈(u, v), β ′〉 to C′, and for every constraint 〈(v), θ〉 ∈ C, add the constraint
〈(v), θ′〉 to C′.

(iii) For every constraint 〈v, κd〉 ∈ C, add the constraint 〈v, κd〉 to C′.
(iv) For every v ∈ V and 1 ≤ i ≤ k, add the constraints 〈(v, vi), α〉 and

〈(v, vi), β〉 to C′.
(v) For every v ∈ V and 1 ≤ i < k, add the constraints〈(vi, vi+1), α〉,

〈(vi, vi+1), β〉, 〈(v
i, vi+1), α〉, and 〈(vi, vi+1), β〉 to C′.

The constraints (i)–(iii) just make sure that the restriction of a solution of P ′

to V is a solution of P. By (iv), for every v ∈ V , the variables v1, . . . , vk are
forced to the same row as v and the variables v1, . . . , vk to the same column.
By the constraints in (v), for every v ∈ V the variables v1, . . . , vk are forced
to the same entry, and so are the vertices v1, . . . , vk.

Let σ′ : V ′ → D′ be a solution of P ′. Then

ω′(σ′) =
∏

v∈V

Bσ′(v) · B
k
σ′(v1) · B

k
σ′(v1).

Observe that deg(ω′(σ′)) < k if and only if for every v ∈ V ,

Bσ′(v1) = Bσ′(v1) = 1.

This is only possible if σ′(v) is contained in a 1-row and in a 1-column, that is,
in D. In this case, the restriction σ of σ′ to V is a solution of P. Conversely,
for every solution σ of P there is an extension σ′ that is a solution of P ′ with
deg(ω′(σ′)) < k. As can be easily seen, there are

`
|V1|
1 · . . . · `|Vn|

n · `
|V 1|
1 · . . . · `|V

n|
n

such extensions where Vi denotes the set of variables v such that σ(v) = (i, j)
for a certain j, and V i denotes the set of variables v such that σ(v) = (j, i)
for a certain j. Therefore,

∑

σ′

σ restriction of σ′

ω′(σ′) = ω(σ).

Thus
ZKD

C′ =
∑

σ solution of P

ω(σ) =
∑

σ′ solution of P ′

deg(ω′(σ′))<k

ω(σ′).

40

This yields a reduction from WCSPKD(C ′) to COUNTKD(B) and thus to
WCSPKD(B) by Lemma 34.

Observe that C = C ′|X . By the Extended Prime Filter Lemma 35, WCSPKD(C ′|X)
is polynomial time reducible to WCSPKD(C ′) and thus to WCSPKD(B).

(2) The proof in this case is similar. Let A′ denote the n × m-matrix with
entries A′

ij = `i · Aij, where `i is the number of 1s in the ith row of A. We

first show that WCSPK(A′) is polynomial time reducible to WCSPK(B). Let
D′′ = (D′′, α, β, ω) be the canonical weighted templates of A′. Then D′′ =
{1, . . . , m} × {1, . . . , n}.

We use ∆ to denote the maximal degree of X in A′. Let P = (V, D′′, C)
be an instance of WCSPK(A′). We define an instance P ′ = (V ′, D′, C′) of
WCSPK(B) as follows:

(i) Let V ′ = V ∪ {v1, . . . , vk | v ∈ V }, where k = |V | · ∆ + 1.
(ii) For every constraint 〈(u, v), α〉 ∈ C, add the constraint 〈(u, v), α′〉 to

C′. Similarly, for every constraint 〈(u, v), β〉 ∈ C, add the constraint
〈(u, v), β ′〉 to C′.

(iii) For every constraint 〈v, κd〉 ∈ C, add the constraint 〈v, κd〉 to C′.
(iv) For every v ∈ V and 1 ≤ i ≤ k, add the constraints 〈(v, vi), α〉 to C′.
(v) For every v ∈ V and 1 ≤ i < k, add the constraints〈(vi, vi+1), α〉,

〈(vi, vi+1), β〉, to C′.

As well as in part (1), the constraints (i)–(iii) just make sure that the restric-
tion of a solution of P ′ to V is a solution of P. By (iv), for every v ∈ V , the
variables v1, . . . , vk are forced to the same row as v. By the constraints in (v),
for every v ∈ V the variables v1, . . . , vk are forced to the same entry.

Let σ′ : V ′ → D′ be a solution of P ′. Then

ω′(σ′) =
∏

v∈V

Bσ′(v) · B
k
σ′(v1).

Observe that deg(ω′(σ′)) < k if and only if for every v ∈ V ,

Bσ′(v1) = 1.

This is only possible if σ′(v) is contained in a 1-row, that is, in D′′. In this case,
the restriction σ of σ′ to V is a solution of P. Conversely, for every solution σ
of P there is an extension σ′ that is a solution of P ′ with deg(ω′(σ′)) < k. As
can be easily seen, there are

`
|V1|
1 · . . . · `|Vn|

n

41

such extensions, where Vi denotes the set of variables v such that σ(v) = (i, j)
for a certain j. Therefore,

∑

σ′

σ restriction of σ′

ω′(σ′) = ω(σ).

Then we finish the proof as in the previous case. 2

A 1-cell in a matrix B ∈ Sm×n is a submatrix BKL such that Bij = 1 for
all i ∈ K, j ∈ L and Bij 6= 1 for all i ∈ K, j ∈ {1, . . . , n} \ L and i ∈
{1, . . . , m} \ K, j ∈ L.

Lemma 44 Let B ∈ Z[X]m×n be a symmetric matrix such that not all 1-
entries of B are contained in 1-cells. Then WCSP(B) is #P-hard.

PROOF. If not all 1-entries of B are contained in 1-cells, then there are
i, j, k, ` ∈ {1, . . . , m} such that Bik = Bi` = Bjk = 1 and Bj` 6= 1. Let B′ be
the matrix obtained from B by replacing all entries different from 1 by 0. By
the Prime Elimination Lemma 24, WCSP(B′) is polynomial time reducible to
WCSP(B). By the Non-Permutability Lemma 38, WCSP(B′) is #P-hard.

Lemma 45 Let B ∈ Z[X]m×n be an X-matrix and let C = (BB>)|X. Then
for every 1-cell BKL of B, the principal submatrix CKK is a 1-cell of C.

PROOF. Let C = (BB>)|X and note that Cij = 1 if and only if Bik = Bjk =
1 for some k ∈ {1, . . . , n}. The claim follows. 2

By the results we have proved so far, from now on we may assume that our
matrix B satisfies the following conditions. (This will be proved in the General
Conditioning Lemma 47.)

Conditions 46 (General Conditions) B ∈ Z[X]m×m such that:

(A) rank(B) ≥ 2.
(B) B is symmetric.
(C) All entries of B are powers of the indeterminate X.

For 1 ≤ i, j ≤ n, let `ij = deg(Bij) (so Bij = X`ij).
(D) There are a k ≥ 2 and 1 = m0 < m1 < . . . < mk = m + 1 such that, for

1 ≤ i ≤ k − 1, the principal submatrices B{mi−1,...,mi−1} are 1-cells of B,
the principal submatrix B{mk−1,...,mk−1} may be a 1-cell (or may be not),
and all 1-entries of B are contained in one of these 1-cells.

42














































1 · · · 1
...

. . .
... ∗ · · · ∗ ∗

1 · · · 1

1 · · · 1

∗
...

. . .
... · · · ∗ ∗

1 · · · 1
...

...
. . .

...
...

...
...

. . .
...

...

1 · · · 1

∗ ∗ · · ·
...

. . .
... ∗

1 · · · 1

∗ ∗ · · · ∗ ∗/1














































Fig. 2. The cellular structure of the matrix B

Condition (D) means that B has a cellular structure as indicated in Figure 2.
The ∗-cells contain no 1-entries; the bottom right cell is either a 1-cell or a
∗-cell. The 1-cells are squares on the diagonal, but they may be of different
sizes.

Lemma 47 (General Conditioning Lemma) Let B ∈ Sm×n a non-negative
matrix that has a block of rank at least 2. Then there is k ≤ m and a k × k-
matrix B′ satisfying Conditions 46 such that WCSPKD(B′) is polynomial time
reducible to WCSP(B).

PROOF.

By the X-Lemma 17, there is an X-matrix B1 ∈ Z[X]m×n of rank at least
2 such that WCSP(B1) ≤ WCSP(B). By the Symmetrisation Lemma 33 the
Constant Reduction Lemma 32, the Extended X-Lemma 36 and the Extended
Renaming Lemma 30, there is a symmetric X-matrix B2 ∈ Z[X]m×m that has
a block of row rank at least 2 such that WCSPKD(B2) ≤ WCSP(B1). By the 0-
Elimination Lemma 39, there is a positive symmetric X-matrix B3 ∈ Z[X]k×k

of rank at least 2 such that WCSPKD(B3) ≤ WCSPKD(B2) (for some k ≤ m).

Note that B3 satisfies conditions (A)–(C). By Lemma 42, we may assume
that B3 contains at least one 1-entry. If B3 contains 1-entries that are not
contained in some 1-cell, then WCSP(B3) is #P-hard by Lemma 44, and thus

43

we can reduce WCSPKD(B′) for any matrix B′ to WCSPKD(B3). Thus we
may assume that all 1-entries of B3 are contained in 1-cells. If B3 contains
exactly one 1-cell, then this 1-cell must be a principal submatrix, because B3

is symmetric. By permuting the rows and columns, we can bring B3 into the
desired form satisfying (D) with k = 1. If B3 contains more than one 1-cell,
then by Lemma 45, after suitably permuting rows and columns the matrix
B4 = (B3 · B>

3)|X satisfies (D). Since B4 contains two 1-cells, its rank is at
least 2, thus it also satisfies (A). It immediately follows from the definition of
B4 that it satisfies (B) and (C). Finally, WCSPKD(B4) ≤ WCSPKD(B3) by
the Symmetrisation Lemma 33 and the Extended Prime Filter Lemma 35. 2

Thus it remains to prove the #P-hardness of WCSPKD(B) for all matrices B
satisfying the General Conditions 46.

6.7 Matrices with at least two 1-cells

In this section, we will take care of those matrices B with at least two 1-cells.
The main result of this section is the following lemma:

Lemma 48 (Two 1-Cell Lemma) Let B ∈ Z[X]m×m be a positive symmet-
ric matrix that has at least two 1-cells. Then WCSPKD(B) is #P-hard.

We first show that we may assume that a matrix with at least two 1-cells
satisfies the General Conditions 46 and the following conditions:

Conditions 49 (Two 1-Cell Conditions) (E) B has at least two 1-cells.
(F) All diagonal entries of B are 1.

Lemma 50 Let B ∈ Z[X]m×m be a positive symmetric matrix that has at least
two 1-cells. Then there is a matrix B′ satisfying the General Conditions 46
and the Two 1-Cell Conditions 49 such that WCSPKD(B′) is polynomial time
reducible to WCSPKD(B).

PROOF. Unfortunately, to prove this lemma we need to repeat some of
the earlier proofs (specifically parts of the proof of the General Conditioning
Lemma 47) and make sure that they preserve the property of having two
1-cells.

Let B ∈ Z[X]m×m be a positive symmetric matrix that has at least two 1-cells.
Let i, j, i′, j′ be indices such that Bij = Bi′j′ = 1 and Bi′j 6= 1. Let p be an
irreducible polynomial that divides Bi′j . Let B1 be the matrix obtained from
B|p by replacing all powers of p by the corresponding powers of X. By the

44

Extended Prime Filter Lemma 35 and the Extended Renaming Lemma 30,
WCSPKD(B1) is reducible to WCSPKD(B).

B1 satisfies conditions (A)–(C) and (E). We may further assume that all 1-
entries of B1 are contained in 1-cells, because otherwise WCSP(B1) is #P-hard
by Lemma 44. If all 1-cells of B1 are on the diagonal, then we can satisfy (D)
simply by permuting rows and columns. Otherwise, after suitably permuting
rows and columns the matrix B2 = (B1·B

>
1)|X satisfies (D), and it still satisfies

(E). Arguing as in the proof of the General Conditioning Lemma 47, we can
show that B2 also satisfies (A)–(C) and that WCSPKD(B2) is reducible to
WCSPKD(B1).

Condition 49 (F) can be achieved by the 1-Row Lemma 43. 2

Let B be a matrix satisfying the General Conditions 46. The cells of B are
the submatrices BIJ , where I = {mi−1, . . . , mi − 1}, J = {mj−1, . . . , mj − 1}
for some 1 ≤ i, j ≤ k. These are precisely the “cells” of Figure 2 (on page 43).
We call B a cell matrix if for all cells BIJ all entries within the cell BIJ are
equal, that is, for i, i′ ∈ I and j, j′ ∈ J we have Bij = Bi′j′.

Lemma 51 Let B ∈ Zm×m[X] be a matrix satisfying the General Condi-
tions 46 and the Two 1-Cell Conditions 49. Then there is a cell matrix C ∈
Zm×m[X] that still satisfies the General Conditions 46 and the Two 1-Cell
Conditions 49, such that WCSPKD(C) is polynomial time reducible to WCSPKD(B).

PROOF. Observe that for every matrix B satisfying Conditions 46 and 49,
the matrix B′ = (B · B>)|X also satisfies the conditions, and the problem
WCSPKD(B′) is polynomial time reducible to WCSPKD(B). (We have already
used this in the proof of Lemma 50.)

Furthermore, for 1 ≤ i, j ≤ m we have B′
ij = Xnij , where nij = min1≤k≤m{deg(Bik)+

deg(Bjk)}. Since Bjj = 1 and thus deg(Bjj) = 0,

deg(B′
ij) ≤ deg(Bij).

Let B0 = B and, for i ≥ 0, Bi+1 = (Bi ·B
>
i)|X . Since the degrees of all entries

are decreasing, there is a k such that Bk+1 = Bk. We shall prove that C = Bk

is a cell matrix.

Let CIJ be a cell of C that is not a 1-cell, and let i ∈ I, j ∈ J such that
deg(Cij) is minimum among the degrees of all entries of the cell. Then, since
C = C ′ = (C · C>)|X , for all j′ ∈ J ,

deg(Cij′) = deg(((C · C>)|X)ij)

45

= min
1≤q≤n

{deg(Ciq) + deg(Cj′q)}

≤ deg(Cij),

because Cj′j = 1. Thus by the minimality of deg(Cij) we have

deg(Cij) = deg(Cij′).

Now for all i′ ∈ J , analogously we get

deg(Ci′j′) ≤ deg(Cij′),

which implies deg(Cij) = deg(Cij′) = deg(Ci′j′). Thus Cij = Ci′j′. 2

We now prove the #P-hardness of WCSP(B) for cell-matrices B satisfying
Conditions 46 and 49 that have exactly two 1-cells.

Lemma 52 Let B(X) ∈ Z[X]m×m be of the form




















1 · · · 1 Xδ · · · Xδ

...
...

...
...

1 · · · 1 Xδ · · · Xδ

Xδ · · · Xδ 1 · · · 1
...

...
...

...

Xδ · · · Xδ 1 · · · 1




















.

Then the problem WCSP(B(X)) is #P-hard.

PROOF. Let k, ` be the sizes of the two 1-cells in B(X).

Since by Lemma 10, EVAL((B(X) · B(X)>) is polynomial time reducible to
WCSP(B(X)), it suffices to prove that EVAL((B(X) · B(X)>) is #P-hard.

Analogously to the proof of Lemma 22 (also see [5]) it can be shown that for
every symmetric matrix A ∈ Sn×n the following graph version GCOUNT(A)
of the problem COUNT(A) can be reduced to EVAL(A):

Input: Graph G = (V, E), w ∈ S.

Objective: Compute NA(G, w), the number of mappings
σ : V → {1, . . . , k} with ωA(σ) = w.

46

This implies (as in the Prime Filter Lemma 25) that EVAL((B(X)·B(X)>)|X)
is polynomial time reducible to EVAL((B(X)·B(X)>) and thus to WCSP(B(X)).
Observe that (B(X) · B(X)>)|X = B(X). Let C = B(2); we shall actually
prove that EVAL(C) is #P-hard.

In [5], Dyer and Greenhill considered a generalised version of EVAL(A), in
which vertex-weights are also allowed. Let A ∈ Rn×n be a symmetric matrix
and F ∈ Rn×n a diagonal matrix with positive diagonal entries (the idea is that
the entry Fii denotes the weight assigned to i). For every graph G = (V, E),
let

ZA,F (G) =
∑

σ:V →{1,...,n}

∏

{u,v}∈E

Aσ(u)σ(v)

∏

v∈V

Fσ(v)σ(v) .

EVAL(A, F) is the problem of computing ZA,F (G) for a given graph G. Dyer
and Greenhill [5] proved that EVAL(A) is polynomial time reducible to EVAL(A, F).

Let G = (V, E) be a graph. For every partition (V1, V2) of V , let s(V1, V2) =
|E ∩ (V1 × V2)| be the number of edges from V1 to V2. Observe that

ZC(G) =
∑

(V1,V2) Partition of V

∑

σ1:V1→{1,...,`}

∑

σ2:V2→{`+1,...,k}

2δ·s(V1,V2)

=
∑

(V1,V2) Partition of V

k|V1|`|V2|2δ·s(V1,V2)

= ZA,F (G),

where

A =






1 2δ

2δ 1




 and F =






k 0

0 `




 .

Thus EVAL(A, F) and therefore EVAL(A) is reducible to EVAL(C). It is
easy to see that the #P-hard problem #MAX-CUT of counting the number
of maximum cuts of a given graph is reducible to GCOUNT(A) and hence to
EVAL(A). To see this, G = (V, E) be a graph. Each mapping σ : V → {1, 2}
gives rise to a cut (σ−1(1), σ−1(2)) of the graph, and the weight ωA(σ) of the
mapping is 2δ·k, where k is the number of edges from σ−1(1) to σ−1(2)). 2

Lemma 53 Let B ∈ Zn×n[X] be a cell-matrix satisfying the General Condi-
tions 46 and the Two 1-Cell Conditions 49. Then WCSPKD(B) is #P-hard.

PROOF. Let δ = min{deg(Bij) | Bij 6= 1} and ∆ = max{deg(Bij) | Bij 6=
1}.

47

Let BIJ be a cell of B whose entries are Xδ. By symmetry and the definition
of the cells, we have

C = B(I∪J) (I∪J) =




















1 . . . 1 Xδ · · · Xδ

...
...

...
...

1 · · · 1 Xδ · · · Xδ

Xδ · · · Xδ 1 · · · 1
...

...
...

...

Xδ · · · Xδ 1 · · · 1




















.

By Lemma 52, WCSP(C) is #P-hard. We shall reduce WCSP(C) to WCSPKD(B).

Let D′ = (D′, α′, β ′, ω′) be the canonical weighted template of B. Let θ′ be the
diagonal of D′ and, for d ∈ D′, κd = {d}. Recall that D′ = {1, . . . , n}2. Let
D = (I ∪ J)× (I ∪ J) ⊆ D′. α = α′ ∩D2, β = β ′ ∩D2, and ω = ω′|D. Observe
that D = (D, α, β, ω) is isomorphic to the canonical weighted template for C.
It will be more convenient to work with this template than with the canonical
one.

Let P = (V, D, C) be an instance of WCSP(C). We define an instance P ′ =
(V ′, D′, C′) of WCSPKD(B) (see Figure 3) as follows: Let k = |V | ·∆ + 1, and
let i0 ∈ I, j0 ∈ J .

(i) Let V ′ = V ∪ {vi
j | v ∈ V, 1 ≤ i ≤ 4, 1 ≤ j ≤ k} ∪ {x, y}.

(ii) For every constraint 〈(u, v), α〉 ∈ C, add the constraint 〈(u, v), α′〉 to
C′. Similarly, for every constraint 〈(u, v), β〉 ∈ C, add the constraint
〈(u, v), β ′〉 to C′.

(iii) Add the constraints 〈x, κ(i0,j0)〉 and 〈y, κ(j0,i0)〉.
(iv) For every v ∈ V , 1 ≤ i ≤ 4, and 1 ≤ j < k, add the constraints

〈(vi
j, v

i
j+1), α〉 and 〈(vi

j , v
i
j+1), β〉.

(v) For every v ∈ V , add the constraints 〈(x, v1
1), β〉, 〈(x, v2

1), α〉, 〈(y, v3
1), β〉,

〈(y, v4
1), α〉.

(vi) For every v ∈ V , add the constraints 〈(v, v1
1), α〉, 〈(v, v2

1), β〉, 〈(v, v3
1), α〉,

〈(v, v4
1), β〉.

The constraints in (ii) make sure that the restriction of a solution of P ′ to V
is a solution of P, provided that the range of the solution of P ′ is contained
in D. The constraints in (iii) guarantee that x is mapped to (i0, j0) and y is
mapped to (j0, i0). The constraints in (iv) guarantee that vi

j and vi
j′ get the

same value for all i, j, j′. The constraints in (v) force v1
1 into column j0, v2

1

into row i0, v3
1 into column i0, and v4

1 into row j0. Finally, the constraints in
(vi) force v into the same row as v1

1 and v3
1, which also implies that v1

1 and v3
1

are forced in the same row. Moreover, they force v into the same column as

48

�����
�
�
�
����

�
�
�
�

������
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�
������

��������

���� ��

V

v

α β α
β

β α
β

α

x y

Fig. 3.

v2
1 and v4

1 .

For every solution δ′ of P ′, let σ be the restriction of σ′ to V . Observe that

ω′(σ′) = X2δ · XK(σ′) ·
∏

v∈V

σ(v)

for some K such that 0 ≤ K(σ′) ≤ 4|V |∆. The crucial observation is:

• If σ′(vi
1) ∈ D′ for all v ∈ V and 1 ≤ i ≤ 4, then K(σ′) = 2k|V |δ.

• If σ′(vi
1) ∈ D \ D′ for some v ∈ V and 1 ≤ i ≤ 4, then K(σ′) ≥ 2k|V |δ + k.

Since deg(
∏

v∈V σ(v)) ≤ |V | · ∆ < k by the definition of k and since σ′(v) ∈
D′ ⇐⇒ σ′(v1

1), . . . , σ
′(v4

1) ∈ D′ (by the constraints in (vi)), it follows that

deg(ω′(σ′)) < 2δ + 2k|V |δ + k ⇐⇒ σ′(V) ⊆ D′.

This yields a reduction from WCSP(C) to COUNTKD(B) and thus to WCSPKD(B)
by Lemma 34. 2

Proof of the Two 1-Cell Lemma 48. Follows immediately from Lem-
mas 50, 51, and 53. 2

6.8 Matrices with a single 1-cell

In this section we consider the remaining case that B ∈ Z[X]m×m is a matrix
satisfying the General Conditions 46 and only has one 1-cell. Our goal is to
prove the following lemma:

Lemma 54 (Single 1-Cell Lemma) Let B ∈ Z[X]m×m be a matrix that
satisfies the General Conditions 46 and has exactly one 1-cell. Then WCSPKD(B)
is #P-hard.

49

We will complete the proof of the One 1-Cell Lemma at the end of the section
and then summarise how the Main Hardness Theorem 16 can be obtained
from our lemmas.

Before we get to the heart of the matter, we need two more simple reductions
in the style of the previous sections.

Lemma 55 Let B ∈ Zm×m[X], 1 ≤ s ≤ m, 1 ≤ t ≤ m, and let C ∈ Zm×m[X]
the matrix with

Cij = Bij · (Bii)
s · (Bjj)

t

for 1 ≤ i ≤ m, 1 ≤ j ≤ m. Then WCSPKD(C) is polynomial time reducible to
WCSPKD(B).

PROOF. Note that the canonical templates for B and C only differ in their
weight functions ωB, ωC. Let P = (V, D, C) be an instance of WCSPKD(C).
We construct an instance P ′ = (V ′, D, C′) of WCSPKD(B) as follows:

(i) V ′ = V ∪ {v1
1, . . . , v

1
s , v

2
1, . . . , v

2
t | v ∈ V };

(ii) C′ = C ∪ C1 ∪ C2 where:
• C1 = {〈(v1

1), θ〉, . . . , 〈(v
1
s), θ〉, 〈(v

2
1), θ〉, . . . , 〈(v

2
t), θ〉 | v ∈ V },

• C2 = {〈(v, v1
1), α〉, . . . , 〈(v, v1

s), α〉, 〈(v, v2
1), β〉, . . . , 〈(v, v2

t), β〉 | v ∈ V }.

Every solution σ of P can be extended to a solution of P ′ in a unique way,
because, for any element d ∈ D, there is only one ‘diagonal’ element from the
α-class and only one from β-class containing d. Conversely, the restriction of
any solution of P ′ onto V is a solution of P. Finally, for a solution of P and
the corresponding solution σ′ of P ′, we have

ωB(σ′)=
∏

v∈V

Bσ1(v)σ2(v) · B
s
σ1(v)σ1(v) · B

t
σ2(v)σ2(v)

=
∏

v∈V

Cσ1(v)σ2(v)

= ωC(σ).

Here σ(v) = (σ1(v), σ2(v)) for all v ∈ V . 2

We will use the previous lemma to show that we may assume that our matrix
B satisfies the following conditions (in addition to the General Conditions 46).

Conditions 56 (Single 1-Cell Conditions) Let B ∈ Z[X]m×m be a matrix
satisfying the General Conditions 46, and, for 1 ≤ i, j ≤ m, let `ij = deg(Bij).
Let r be the column of the first entry greater than 1 in row 1 of B, that is,
r = min{j | 1 ≤ j ≤ m, `1j > 0}.

50

(G) B has exactly one 1-cell.
(H) The first (r − 1) rows of B are identical.
(I) For 1 ≤ i < r, r ≤ i′ ≤ m, and 1 ≤ j ≤ m,

`ij ≤ `i′j.

Lemma 57 Let B ∈ Z[X]m×m be a matrix that satisfies the General Con-
ditions 46 and has precisely one 1-cell. Then there is a matrix B′ satisfy-
ing the General Conditions 46 and the One 1-Cell Conditions 56 such that
WCSPKD(B′) is polynomial time reducible to WCSPKD(B).

PROOF. Observe that if a matrix B satisfies (A)–(D), (G), and (H), then (I)
can easily be satisfied by applying Lemma 55. Indeed, it is not hard to see that
C obtained from B as in Lemma 55 for s = t such that max{`1r, . . . , `1m} <
s · min{`rr, . . . , `mm}, satisfies (A)–(D), (G), (H) and (I). So we only have to
worry about (A)–(D), (G), and (H).

Note that B already satisfies conditions (A)–(D) and (G).

The proof is by induction on m: For m = 2, condition (H) is trivially satisfied.
So let m ≥ r > 2 and suppose that B does not satisfy (H). Let C be (r−1)×m
matrix consisting of the first (r − 1)-rows of B. By the 1-Row Lemma 43 (2),
WCSPK(C) is polynomial time reducible to WCSPK(B). Since Ci1 = 1 for
1 ≤ i ≤ r − 1, but the rows of C are not identical, we have rank(C) ≥ 2. Let
D = C · C>. By the Symmetrisation Lemma 33, WCSPKD(D) is polynomial
time reducible to WCSPK(C).

D is an (r − 1) × (r − 1)-matrix with rank(D) = rank(C) > 1. We apply the
General Conditioning Lemma 47 to D and obtain a (k×k)-matrix D′, for some
k ≤ r− 1, that satisfies the General Conditions 46 such that WCSPKD(D′) is
polynomial time reducible to WCSPKD(D). If D′ has at least two 1-cells, then
by the Two 1-Cell Lemma 48, WCSPKD(D′) is #P-hard. Hence WCSPKD(B)
is #P-hard, and we can take B′ to be an arbitrary matrix satisfying the
conditions.

If D′ has only one 1-cell, then by the induction hypothesis there is a matrix D′′

satisfying Conditions (A)–(D), (G), (H) such that WCSPKD(D′′) is reducible
to WCSPKD(D′) and hence to WCSPKD(B). 2

For the rest of this section, we fix a matrix B ∈ Z[X]m×m that satisfies the
General Conditions 46 and the Single 1-Cell Conditions 56. We also let `ij =
deg(Bij) for 1 ≤ i, j ≤ m and r = min{j | 1 ≤ j ≤ m, `1j > 0}.

51

Lemma 58 Let k be a natural number and B[k] the matrix with B
[k]
ij = Bij ·

(B1j)
k−1. Then WCSPKD(B[k]) is polynomial time reducible to WCSPKD(B).

PROOF. Let D = (D, α, β, ω) be the canonical weighted template for B and
note that the canonical template for B[k] is the same except for its weight
function, which we denote by ωk.

Let P = (V, D, C) be an instance of WCSPKD(B[k]). We construct an instance
P ′ = (V ′, D, C′) of WCSPKD(B) as follows

(i) V ′ = V ∪ {v1, . . . , vk−1 | v ∈ V } ∪ {x}.
(ii) Add all constraints in C to C′.
(iii) Add a constraint 〈x, κ(1,1)〉 to C′.
(iv) For every v ∈ V , add the constraints 〈(v1, x), α〉, . . . , 〈(vk−1, x), α〉 to C.
(v) For every v ∈ V , add the constraints 〈(v, v1), β〉, . . . , 〈(v, vk−1), β〉.

The constraints in (ii) guarantee that the restriction of every solution of P ′

to V is a solution of P. The constraint (iii) makes sure that x is mapped to
(1, 1). Thus the constraints in (iv) guarantee that all vi are mapped to the
first row. The constraints in (v) make sure that for every v the vi are mapped
to the same column as v. Thus (iv) and (v) together imply that if v is mapped
to (i, j) by a solution, then v1, . . . , vk−1 are mapped to (1, j).

Thus every solution σ of P can be extended to a solution σ′ of P ′ in a unique
way, and conversely, the restriction σ of any solution σ′ of P ′ to V is a solution
of P. Furthermore, for every solution σ′ of P ′,

ω(σ′) = B11 ·
∏

v∈V

Bσ1(v)σ2(v) · B
k−1
1σ2(v)

= B11 ·
∏

v∈V

Cσ1(v)σ2(v)

= B11 · ωk(σ).

Here σ(v) ∈ (σ1(v), σ2(v)). Note that the factor B11 is needed to account for
the variable x with σ′(x) = (1, 1). 2

We need a few facts about polynomials. We consider polynomials over the field
Q of rational numbers, which we view as a subfield of the complex numbers
C. Let f ∈ Q[X] and λ ∈ C. Then mult(λ, f) denotes the multiplicity of λ in
f if λ is a root of f and mult(λ, f) = 0 otherwise. The kth root of a complex
number λ is the k-element set λ1/k = {µ | µk = λ}. Slightly abusing notation
we will denote λ1/k any element from this set. We shall use the following basic
facts on polynomials, roots and their multiplicity.

52

Lemma 59 Let f ∈ Q[X] be a polynomial and λ ∈ C a complex number.

(1) There exists a unique (up to a scalar factor) irreducible polynomial pλ ∈
Q[X] such that λ is a root of pλ. If λ is a root of f then pλ|f .

(2) If mult(λ, f) = s then f = ps
λf for some f ∈ Q[X] with f(λ) 6= 0.

(3) For every root λ of f(X), λ1/k is a root of f(Xk). Moreover,

mult(λ1/k, f(Xk)) = mult(λ, f(X)).

The following lemma is the technical core of the whole proof. It is very hard
to motivate the particular construction or give simple intuitions as to why it
works. The general idea is to construct a matrix C with WCSPKD(C) being
reducible to WCSPKD(B) such that C has more than one 1-cell, so that we
can apply the Two 1-Cell Lemma of the previous subsection. It seems a good
strategy to generate an infinite family of matrices Ck by some kind of uniform
“powering” construction and hope that at least one of the Ck works. The
construction below is essentially the simplest we could come up with that
does exactly this.

Recall that B ∈ Z[X]m×m is a matrix that satisfies the General Conditions 46
and the Single 1-Cell Conditions 56, and

`ij = deg(Bij), (5)

r = min{j | 1 ≤ j ≤ m, `1j > 0}. (6)

In the following, for k ≥ 1, we let

C [k] = B[k] · (B[k])>. (7)

Observe that C [k] is a symmetric positive matrix in Z[X]m×m.

For every root λ of C
[1]
11 , every r ≤ j ≤ m and k, we denote the multiplicity of

λ1/k in C
[k]
1j by m(λ, j, k), and we let

m(λ, j) = min
k≥1

m(λ, j, k).

Lemma 60 (1) For any root λ of C
[1]
11 , any r ≤ j ≤ m and any positive in-

teger k, mult(λ1/k, C
[k]
11) = mult(λ, C

[1]
11) ≥ m(λ, j) and mult(λ1/k, C

[k]
jj) ≥

m(λ, j).

(2) For any root λ of C
[1]
11 , any r ≤ j ≤ m such that the first and jth rows

are linearly dependent and any positive integer k,

mult(λ1/k, C
[k]
11) = mult(λ1/k, C

[k]
1j) = mult(λ1/k, C

[k]
jj).

53

(3) For any r ≤ j ≤ m such that the first and the jth row are linearly

independent, there is a root λ of C
[1]
11 such that mult(λ, C

[1]
11) > m(λ, j)

PROOF. Let j ∈ {r, . . . , m}. Let b = min{`j1 − `11, . . . , `jm − `1m}. By the
One 1-Cell Condition 56(I), b ≥ 0.

To simplify the notation, let a1 = `11 = 0, . . . , ar−1 = `1r−1 = 0, ar =
`1r, . . . , am = l1m, b1 = `j1− b, . . . , bm = `jm− b and ci = bi−ai for 1 ≤ i ≤ m.
Note that ci ≥ 0 for 1 ≤ i ≤ m and all the ci are equal to 0 if and only if the
first and jth rows are linearly dependent. Note also that if the first and jth
rows are linearly independent, then not all of the ci are equal.Then

B =













Xa1 Xa2 Xa3 · · · Xam

...
...

...
...

Xb+b1 Xb+b2 Xb+b3 · · · Xb+bm

...
...

...
...













,

B[k] =















Xka1 Xka2 Xka3 · · · Xkam

...
...

...
...

Xb+

=c1
︷ ︸︸ ︷

b1−a1 +ka1 Xb+

=c2
︷ ︸︸ ︷

b2−a2 +ka2 Xb+

=c3
︷ ︸︸ ︷

b3−a3 +ka3 · · · Xb+

=cm
︷ ︸︸ ︷

bm−am +kam

...
...

...
...















.

For the matrix C [k] we have

C
[k]
11 =X2ka1 + X2ka2 + . . . + X2kam, (8)

C
[k]
1j =Xb(Xc1+2ka1 + Xc2+2ka2 + . . . + Xcm+2kam), (9)

C
[k]
jj =X2b(X2c1+2ka1 + X2c2+2ka2 + . . . + X2cm+2kam). (10)

Take a root λ of C
[1]
11 . Then λ 6= 0, because a1 = 0. Let k ≥ 1. Note first that

(8) and Lemma 59(3) imply that λ1/k is a root of C
[k]
11 with

mult(λ1/k, C
[k]
11) = mult(λ, C

[1]
11). (11)

If the first and jth rows are linearly dependent, then c1 = c2 = . . . = cm = 0.
Thus by Equalities (8)–(10),

C
[k]
1j = Xb · C

[k]
11 and C

[k]
jj = X2b · C

[k]
11 .

54

Since λ 6= 0, it follows that

mult(λ1/k, C
[k]
11) = mult(λ1/k, C

[k]
1j) = mult(λ1/k, C

[k]
jj).

This proves Lemma 60(2).

In the following, we assume that rows 1 and j are linearly independent. In
particular, not all the ci are equal. If, for some k, λ1/k is not a root of C

[k]
1j , then

m(λ, j) = 0, and Lemma 60(1) and (3) hold trivially for λ. In the following,

we assume that λ1/k is a root of C
[k]
1j . Our first goal is to find m(λ, j).

Let α ∈ C such that λ = eα. Then for every k ≥ 1,

C
[k]
1j (λ1/k) = eαb/k

(

eα(2a1+
c1
k

) + eα(2a2+
c2
k

) + . . . + eα(2am+ cm
k

)
)

= 0

(because λ1/k is a root of C
[k]
1j). Consider the function

fλ(z) = eα(2a1+c1z) + eα(2a2+c2z) + . . . + eα(2am+cmz).

For every k ≥ 1 we have fλ(1/k) = 0.

Claim 1. Suppose that g(z) = u(z) + iv(z) is a function that is analytic in
the real segment [0, 1] and that {rn}n≥1, {sn}n≥1 from the real segment [0, 1]
such that limn→∞ rn = limn→∞ sn = 0 and u(rn) = v(sn) = 0 for all n ≥ 1.
Then

(a) g(0) = 0;
(b) there are sequences {r′n}n≥1, {s

′
n}n≥1 from the real segment [0, 1] such that

lim
n→∞

r′n = lim
n→∞

s′n = 0

and u′(r′n) = v′(s′n) = 0 for all n ≥ 1, where u′, v′ denote the derivatives of
the corresponding functions.

PROOF. Without loss of generality we may assume that {rn}, {sn} are
monotone. Then, since g is continuous,

g(0) = lim
z→0

g(z) = lim
z→0

u(z) + i lim
z→0

v(z) = lim
n→∞

u(rn) + i lim
n→∞

v(sn) = 0.

Furthermore, let u0, v0 denote the restrictions of u, v onto the real interval
[0, 1]. Then u0, v0 are continuous and differentiable real functions. Therefore,
for any n, there are r′n ∈ [rn+1, rn] and s′n ∈ [sn+1, sn] such that u′

0(r
′
n) =

v′
0(s

′
n) = 0. Clearly, limn→∞ r′n = limn→∞ s′n = 0 and u′(r′n) = u′

0(r
′
n) = 0,

v′(s′n) = v′
0(s

′
n) = 0.

55

This completes the proof of Claim 1.

The function fλ(z) is analytic everywhere including [0, 1]. Moreover, for any
k,

fλ(1/k) = eα(2a1+
c1
k

) + eα(2a2+
c2
k

) + . . . + eα(2am+ cm
k

) =
C

[k]
1j (λ1/k)

eb/k
= 0.

Therefore, by Claim 1, for any ` ≥ 1, the `th derivative f
(`)
λ (0) = 0.

Computing the derivatives at 0 we get

f
(l)
λ (0) = (αc1)

le2αa1 + (αc2)
le2αa2 + . . . + (αcm)le2αam = 0.

Observe that for 1 ≤ i ≤ r − 1 we have ci = c1 by the One 1-Cell Condi-
tion 56 (H). Without loss of generality we may assume that

c1 = . . . = cs1, cs1+1 = . . . = cs2, . . . , cst−1+1 = . . . = cst
= 0,

where s0 = 0, st = m, and that cs1, . . . , cst
are all different. (We therefore

assume that c1 6= 0. It may well not be the case, but we use this assumption
only once in the next paragraph, and it is easy to see that what we really need
is t > 1.) Moreover, we have t ≥ 2, because not all the ci are equal by our
assumption that rows 1 and j are linearly independent, and s1 ≥ r − 1.

Denoting Yi = e2αasi−1+1 + . . . + e2αasi , 1 ≤ i ≤ t− 1, we get a system of linear
equations







cs1Y1 + cs2Y2 + . . . + cst−1Yt−1 = 0

(cs1)
2Y1 + (cs2)

2Y2 + . . . + (cst−1)
2Yt−1 = 0

...

(cs1)
t−1Y1 + (cs2)

t−1Y2 + . . . + (cst−1)
t−1Yt−1 = 0

The determinant of the system is Vandermonde. Therefore, Y1 = . . . = Yt−1 =
0. Denoting

g1(X)=X2a1 + . . . + X2as1

...

gt−1(X)=X2ast−2+1 + . . . + X2ast−1

gt(X)=X2ast−1+1 + . . . + X2ast ,

56

we have g1(λ) = . . . = gt−1(λ) = 0 and, since C
[1]
11 (X) = g1(X) + . . . +

gt−1(X) + gt(X) and λ is a root of C
[1]
11 , gt(λ) = 0 as well. (If c1 = 0 then we

have g2(λ) = . . . = gt(λ) = 0, from which we conclude g1(λ) = 0.)

Everything we have done so far is independent of the specific root λ. Thus, for
every irreducible polynomial g with g|C [1]

11 , we have g|g1, . . . , gt. Let h1, . . . , hq

be the different irreducible divisors of C
[1]
11 . Without loss of generality we may

assume that the leading coefficients of the hi are positive. Then

C
[1]
11 = g1(X)hr11

1 (X) . . . hr1q

q (X) + . . . + gt(X)hrt1
1 (X) . . . hrtq

q (X)

= hm1
1 (X) . . . hmq

q (X)

·
(

g1(X)h
r′11
1 (X) . . . h

r′1q
q (X) + . . . + gt(X)h

r′t1
1 (X) . . . h

r′tq
q (X)

)

,

for suitably chosen polynomials gi(X) and non-negative integers rij, r
′
ij, and

mi = min(r1i, . . . , rti). To simplify the notation, we set

h(X) = hm1
1 (X) . . . hmq

q (X), fi(X) = gi(X)h
r′
i1

1 (X) . . . h
r′
iq

q (X).

Then gi(X) = h(X) · fi(X) for 1 ≤ i ≤ t and

C
[1]
11 = h(X) ·

(

f1(X) + . . . + ft(X)
)

.

Since s1 ≥ r − 1, the polynomial g1 is the only one with a non-zero constant
term. Thus g1 and gi for 2 ≤ i ≤ t differ by more than a constant factor. Since
h(X) is the greatest common divisor of g1, . . . , gt, the degree of at least one of
the polynomials fi is positive. Let 1 ≤ i ≤ t. Since all coefficients of gi and the
leading coefficient of h(X) are positive, the leading coefficient of fi is positive.
Thus

deg(f1(X) + . . . + ft(X)) > 0. (12)

To simplify the notation in Claims 2 and 3, suppose now that λ is a root of
h1.

Claim 2. m(λ, j) = m1.

PROOF. We need to show that mult(λ1/k, C
[k]
1j) ≥ m1 for all k and that there

is a positive integer k such that mult(λ1/k, C
[k]
1j) = m1.

As is easily seen, for any k,

C
[k]
1j =Xb(Xcs1g1(X

k) + . . . + Xcstgt(X
k))

57

=Xbh(Xk)
(

Xcs1f1(X
k) + . . . + Xcstft(X

k)
)

. (13)

Therefore mult(λ1/k, C
[k]
1j) ≥ mult(λ, h) = m1.

Regroup the summands in fλ(z):

fλ(z) = eαcs1z(e2αa1 + . . . + e2αas1) + . . . + eαcstz(e2αast−1+1 + . . . + e2αast)

=h(λ)
(

λcs1zf1(λ) + . . . + λcstzft(λ)
)

.

Let

f̄(X, z) = Xcs1zf1(X) + . . . + Xcstzft(X).

Then fλ(z) = h(λ) · f̄(λ, z).

Let β1 = λcs1/t!, . . . , βt = λcst/t!. Then, for any ` ≤ t,

fλ

(

`

t!

)

= h(λ) · f̄

(

λ,
`

t!

)

= h(λ) ·
(

β`
1f1(λ) + . . . + β`

tft(λ)
)

.

Suppose for contradiction that f̄(λ, `/t!) = 0 for l = 1, . . . , t. Consider the
system







β1f1(λ) + . . . + βtft(λ) = 0

(β1)
2f1(λ) + . . . + (βt)

2ft(λ) = 0
...

(β1)
tf1(λ) + . . . + (βt)

tft(λ) = 0

Since βi 6= βi′ whenever i 6= i′, we get f1(λ) = . . . = ft(λ) = 0, which
contradicts (12).

Thus for some ` ≤ t, f̄(λ, `/t!) 6= 0. Pick such an ` and let k = t!/`. Note that

f̄
(

Xk, 1/k
)

= Xcs1f1(X
k) + . . . + Xcstft(X

k)

and recall (13). Since f̄(λ, 1/k) 6= 0, λ1/k is not a root of the polynomial on

the left hand side, and by (13) this implies mult(λ1/k, C
[k]
1j) = m1.

This completes the proof of Claim 2.

Claim 3. For every every positive integer k, mult(λ1/k, C
[k]
jj) ≥ m1.

PROOF. Let us consider C
[k]
jj :

58

C
[k]
jj =X2b(X2c1+2ka1 + . . . + X2cm+2kam)

=X2b(X2c1(Xk)2a1 + . . . + X2cm(Xk)2am)

=X2bh(Xk)(X2cs1f1(X
k) + . . . + X2cstft(X

k)).

Then

mult(λ1/k, C
[k]
jj) ≥ mult(λ1/k, h(Xk)) = mult(λ, h(X)) = m1.

This completes the proof of Claim 3.

Clearly, Lemma 60(1) follows from Claims 1 and 2. To prove (3), we recall
that

C
[1]
11 = hm1

1 (X) . . . hmq

q (X)
(

f1(X) + . . . + ft(X)
)

.

Thus every root λ of f1(X) + . . . + ft(X) is also a root of C
[1]
11 and, therefore,

it is a root of one of h1, . . . , hq. Then mult(λ, C
[1]
11) > m(λ, j). Choose k by

Claim 2. Then

mult(λ1/k, C
[k]
11) = mult(λ, C

[1]
11) > mi = mult(λ1/k, C

[k]
1j).

Note that such a number k exists for every root λ such that mult(λ, C
[1]
11) >

m(λ, j). 2

Lemma 61 There exist j ∈ {r, . . . , m}, a root λ of C
[1]
11 and a positive integer

k such that

(1) mult(λ1/k, C
[k]
1j) < mult(λ1/k, C

[k]
11);

(2) for every i ∈ {r, . . . , m}, mult(λ1/k, C
[k]
1j) ≤ mult(λ1/k, C

[k]
ii) .

PROOF. We choose λ and j ∈ {r, . . . , m} such that the first and jth rows
of B are linearly independent and m(λ, j) is the least number for all pairs

λ, j satisfying Lemma 60(3). By Lemma 60(1), mult(λ1/k, C
[k]
jj) ≥ m(λ, j) =

mult(λ1/k, C
[k]
1j) for a certain k. For any i 6= j, if m(λ, i) ≤ m(λ, j) and the first

and ith rows are linearly independent, then the pair λ, i satisfies Lemma 60(3),

m(λ, i) = m(λ, j) by the choice of λ, j and mult(λ1/k, C
[k]
ii) ≥ m(λ, i) =

m(λ, j) = mult(λ1/k, C
[k]
1j). If m(λ, i) ≥ m(λ, j) and the first and ith rows

are linearly independent, then

mult(λ1/k, C
[k]
ii) ≥ m(λ, i) ≥ m(λ, j) = mult(λ1/k, C

[k]
1j).

Finally, if the first and ith rows are linearly dependent, then, by Lemma 60(2),

mult(λ1/k, C
[k]
1i) = mult(λ1/k, C

[k]
11) > m(λ, j)

59

and

mult(λ1/k, C
[k]
ii) ≥ mult(λ1/k, C

[k]
11) > m(λ, j).

2

Finally, we are ready to put everything together.

PROOF of the Single 1-Cell Lemma 54. Let B ∈ Z[X]m×m be a ma-
trix that satisfies the General Conditions 46 and has exactly one 1-cell. By
Lemma 57, we may assume that B satisfies the Single 1-Cell-Conditions 56.

We use the same notation as above; in particular, we define r as in (6) on
page 53 and C [k] as in (7) on page 53.

Choose j, λ, k according to Lemma 61. Let

t = mult(λ1/k, C
[k]
1j).

Then mult(λ1/k, C
[k]
11) > t and mult(λ1/k, C

[k]
ii) ≥ t for r ≤ i ≤ m. Let pλ be an

irreducible polynomial such that λ is a root of pλ and let

C = (C [k])|pλ
.

By the Extended Prime Filter Lemma 35 WCSPKD(C) is polynomial time
reducible to WCSPKD(C [k]) and hence to WCSPKD(B).

Case 1. For all u, v,

mult(λ1/k, C [k]
uv) ≥ t.

In this case, the matrix C ′ obtained from C by dividing by pt
λ is a positive sym-

metric matrix with at least two 1-cells, because C1j = Cj1 = 1, but C11 6= 1.
Then WCSPKD(C ′) is #P-hard by the Two 1-Cell Lemma 48. By Lemma 42,
WCSPKD(C ′) is reducible to WCSPKD(C) and hence to WCSPKD(B).

Case 2. There are u, v such that

mult(λ1/k, C [k]
uv) < t.

In this case, let s be the least multiplicity of λ1/k in the entries of C [k]. Denote
by C ′ the matrix C divided by ps

λ. Let u, v be indices with mult(λ1/k, C [k]
uv) < t.

60

We claim that u ≥ r or v ≥ r. To see this, recall that by the Single 1-Cell
Condition 56 (H), the first r − 1 rows of B and hence of B[k] are identical.

Since C [k] = B[k] · (B[k])>, this implies that for u′, v′ ≤ r − 1 we C
[k]
u′v′ = C

[k]
11 ,

and mult(λ1/k, C
[k]
11) > t > s. This proves our claim that u, v ≥ r.

We have C ′
uv = C ′

vu = 1, and C ′
uu 6= 1 or C ′

vv 6= 1. Therefore, C ′ has at least
two 1-cells. Then WCSPKD(C ′) is #P-hard by the Two 1-Cell Lemma 48. 2

Proof of Theorem 16. Let B ∈ Sk×` be a non-negative matrix such that
at least one block of B has row rank at least 2. By the General Condition-
ing Lemma 47, without loss of generality, we may assume that the matrix
B satisfies the General Conditions 46. If B has at least two 1-cells, then
WCSPKD(B) is #P-hard by the Two 1-Cell Lemma 48. If B has just one
1-cell, then WCSPKD(B) is #P-hard by the Single 1-Cell Lemma 54. 2

7 Conclusions

We give a complete complexity theoretic classification for the problem of eval-
uating the partition function of a symmetric non-negative matrix A, which
may be viewed as the adjacency matrix of an undirected weighted graph H .
Our proofs explore a correspondence between this evaluation problem and
weighted constraint satisfaction problems for constraint languages with two
equivalence relations.

Peculiarly, our proof does not go through for matrices with negative entries.
Indeed, we do not know whether the evaluation problem for the matrix






−1 1

1 1






is #P-hard. (Observe that the evaluation problem for this matrix is equivalent
to the problem of counting induced subgraphs with an even number of edges.)

The more important open problem is to obtain a classification result for the
evaluation problem for non-symmetric matrices, corresponding to directed
graphs. We believe that with our results such a classification may now be
within reach, in particular because our main hardness result goes through for
directed graphs. The ultimate goal of this line of research is a classification of
counting and weighted CSP for arbitrary constraint languages. Towards a so-
lution of this problem, one may try to reduce the weighted CSP to evaluation
problems for directed graphs. It is interesting to note that the known reduc-

61

tion between the corresponding decision problems does not give a reduction
between the counting problems we are interested in here.

Acknowledgement We wish to thank Mark Jerrum for many useful discus-
sions.

References

[1] A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. In Proceedings of the 44th IEEE Symposium

on Foundations of Computer Science, FOCS’03, pages 562–571, 2003.

[2] A.A. Bulatov. A dichotomy theorem for constraints on a three-element set. In
Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science,

FOCS’02, pages 649–658, 2002.

[3] A.A. Bulatov. Tractable conservative constraint satisfaction problems. In
Proceedings of the 18th Annual IEEE Simposium on Logic in Computer Science,
pages 321–330, 2003.

[4] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting
problems. Information and Computation, 125(1):1–12, 1996.

[5] M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms.
Random Structures and Algorithms, 17:260–289, 2000.

[6] M.E. Dyer, L.A. Goldberg, and M. Jerrum. Counting and sampling H-
colourings. In J.D.P. Rolim and S.P. Vadhan, editors, Proceedings of the

6th International Workshop on Randomization and Approximation Techniques,
volume 2483 of Lecture Notes in Computer Science, pages 51–67. Springer-
Verlag, 2002.

[7] T. Feder and M.Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group theory.
SIAM Journal of Computing, 28:57–104, 1998.

[8] L.A. Goldberg, M. Jerrum, and M. Paterson. The computational complexity of
two-state spin systems. Random Structures and Algorithms, 23:133–154, 2003.

[9] L.A. Goldberg, S. Kelk, and M. Paterson. The complexity of choosing an
H-colouring (nearly) uniformly at random. In Proceedings of the 34rd ACM

Simposium on Theory of Computing, pages 53–62, 2002.

[10] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and

Combinatorial Optimazation. Springer-Verlag, 1993. 2nd edition.

[11] P. Hell and J. Nešeťril. On the complexity of H-coloring. Journal of

Combinatorial Theory, Ser.B, 48:92–110, 1990.

62

[12] P. Hell, J. Nešeťril, and X. Zhu. Duality and polynomial testing of tree
homomorphisms. Trans. of the AMS, 348(4):1281–1297, 1996.

[13] F. Jaeger, D.L. Vertigan, and D.J.A. Welsh. On the computational complexity
of the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge

Philosophical Society, 108:35–53, 1990.

[14] P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997.

[15] K. Ko. Complexity Theory of Real Functions. Birkhäuser, 1991.

[16] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the

10th ACM Symposium on Theory of Computing, pages 216–226, 1978.

63

