On Counting Homomorphisms to Directed Acyclic Graphs

MARTIN DYER
University of Leeds, Leeds, United Kingdom
LESLIE ANN GOLDBERG
University of Liverpool, Liverpool, United Kingdom
AND
\section*{MIKE PATERSON}
University of Warwick, Coventry, United Kingdom

Abstract

It is known that if P and NP are different then there is an infinite hierarchy of different complexity classes that lie strictly between them. Thus, if $\mathrm{P} \neq \mathrm{NP}$, it is not possible to classify NP using any finite collection of complexity classes. This situation has led to attempts to identify smaller classes of problems within NP where dichotomy results may hold: every problem is either in P or is NP-complete. A similar situation exists for counting problems. If $\mathrm{P} \neq \# \mathrm{P}$, there is an infinite hierarchy in between and it is important to identify subclasses of \#P where dichotomy results hold. Graph homomorphism problems are a fertile setting in which to explore dichotomy theorems. Indeed, Feder and Vardi have shown that a dichotomy theorem for the problem of deciding whether there is a homomorphism to a fixed directed acyclic graph would resolve their long-standing dichotomy conjecture for all constraint satisfaction problems. In this article, we give a dichotomy theorem for the problem of counting homomorphisms to directed acyclic graphs. Let H be a fixed directed acyclic graph. The problem is, given an input digraph G, determine how many homomorphisms there are from G to H. We give a graph-theoretic classification, showing that for some digraphs H, the problem is in P and for the rest of the digraphs H the problem is \#P-complete. An interesting feature of the

This work was partially supported by the EPSRC grant Discontinuous Behaviour in the Complexity of Randomized Algorithms.
Some of the work was done while the authors were visiting the Mathematical Sciences Research Institute in Berkeley.
A preliminary version of this article appeared in the Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP 2006).
Authors' addresses: M. Dyer, School of Computing, University of Leeds, Leeds LS2 9JT, UK, e-mail: dyer@comp.leeds.ac.uk; L. A. Goldberg, Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK, e-mail:L.A. Goldberg@liverpool.ac.uk; M. Paterson, DIMAP \& Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK, e-mail: Mike.Paterson@ dcs.warwick.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 0004-5411/2007/12-ART27 \$5.00 DOI 10.1145/1314690.1314691 http://doi.acm.org/ 10.1145/1314690.1314691

dichotomy, which is absent from previously known dichotomy results, is that there is a rich supply of tractable graphs H with complex structure.
Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General
General Terms: Algorithms, Theory
Additional Key Words and Phrases: Counting, directed acyclic graphs, homomorphisms

ACM Reference Format:

Dyer, M., Goldberg, L. A., and Paterson, M. 2007. On counting homomorphisms to directed acyclic graphs. J. ACM 54, 6, Article 27 (December 2007), 23 pages. $\mathrm{DOI}=10.1145 / 1314690.1314691$ http://doi.acm.org/10.1145/1314690.1314691

1. Introduction

It has long been known [Ladner 1975] that, if P and NP are different, there is an infinite hierarchy of different complexity classes which lie strictly between them. Thus, if $\mathrm{P} \neq \mathrm{NP}$, it is not possible to classify NP using any finite collection of complexity classes. This untidy situation has led to attempts to identify smaller classes of problems within NP where dichotomy results may hold: every problem is either in P or is NP-complete. The first such result was due to [Schaefer 1978], for generalized Boolean satisfiability problems, and there has been much subsequent work. A similar situation exists for counting problems. The proof of Ladner's theorem [Ladner 1975] is easily modified to show that, if $\mathrm{P} \neq \# \mathrm{P}$, there is an infinite hierarchy in between. In consequence, problem classes where counting dichotomies may exist are of equal interest. The first such result was proved by Creignou and Hermann [1996], again for Boolean satisfiability, and others have followed. The theorem presented here is of this type: a dichotomy for the class of counting functions determined by the number of homomorphisms from an input digraph to a fixed directed acyclic graph.

A homomorphism from a (directed) graph $G=(V, E)$ to a (directed) graph $H=(\mathcal{V}, \mathcal{E})$ is a function from V to \mathcal{V} that preserves (directed) edges. That is, the function maps every edge of G to an edge of H.

Hell and Nešetriil [1990] gave a dichotomy theorem for the decision problem for undirected graphs H. In this case, H is an undirected graph (possibly with self-loops). The input G is an undirected simple graph. The question is "Is there a homomorphism from G to H ?". Hell and Nešetrill [1990] showed that the decision problem is in P if the fixed graph H has a loop, or is bipartite. Otherwise, it is NP-complete. Dyer and Greenhill [2000] established a dichotomy theorem for the corresponding counting problem in which the question is "How many homomorphisms are there from G to H ?". The relevant notion of completeness for the counting problem is \#P-completeness, which was defined in Valiant [1979]. Dyer and Greenhill showed that the problem is in P if every component of H is either a complete graph with all loops present or a complete bipartite graph with no loops present. ${ }^{1}$ Otherwise, it is \#P-complete. Bulatov and Grohe [2005] extended the counting dichotomy theorem to the case in which H is an undirected multigraph. Their result will be discussed in more detail below.

[^0]In this article, we study the corresponding counting problem for directed graphs. First, consider the decision problem: H is a fixed digraph and, given an input digraph G, we ask "Is there a homomorphism from G to H ?". It is conjectured [Hell and Nešetřil 2004, Conjecture 5.12] that there is a dichotomy theorem for this problem, in the sense that, for every H, the problem is either polynomialtime solvable or NP-complete. Currently, there is no graph-theoretic conjecture stating what the two classes of digraphs will look like. Obtaining such a dichotomy may be difficult. Indeed, Feder and Vardi [1998, Theorem 13] have shown that the resolution of the dichotomy conjecture for layered (or balanced) digraphs, which are a small subset of directed acyclic graphs, would resolve their longstanding dichotomy conjecture for all constraint satisfaction problems. There are some known dichotomy classifications for restricted classes of digraphs. However, the problem is open even when H is restricted to oriented trees [Hell and Nešetřil 2004], which are a small subset of layered digraphs.

The corresponding dichotomy is also open for the counting problem in general digraphs, although some partial results exist [Bulatov and Dalmau 2003; Bulatov and Grohe 2005]. Note that, even if the dichotomy question for the existence problem were resolved, this would not necessarily imply a dichotomy for counting, since the reductions for the existence question may not be parsimonious.

In this article, we give a dichotomy theorem for the counting problem in which H can be any directed acyclic graph. An interesting feature of this problem, which is different from any previous dichotomy theorem for counting, is that there is a rich supply of tractable graphs H with complex structure.

The formal statement of our dichotomy is given below. Here is an informal description. First, the problem is \#P-complete unless H is a layered digraph, meaning that the vertices of H can be arranged in levels, with edges going from one level to the next. We show (see Theorem 6.1 for a precise statement) that the problem is in P for a layered digraph H if the following condition is true (otherwise, it is \#P-complete). The condition is that, for every pair of vertices x and x^{\prime} on level i and every pair of vertices y and y^{\prime} on level $j>i$, the product of the graphs $H_{x, y}$ and $H_{x^{\prime}, y^{\prime}}$ is isomorphic to the product of the graphs $H_{x, y^{\prime}}$ and $H_{x^{\prime}, y}$. The precise definition of $H_{x, y}$ is given below, but the reader can think of it as the subgraph between vertex x and vertex y. The details of the product that we use (from Even and Litman [1997]) are given below. The notion of isomorphism is the usual (graph-theoretic) one, except that certain short components are dropped, as described below. Some fairly complex graphs H satisfy this condition (see, for example, Figure 5), so for these graphs H the counting problem is in P .

Our algorithm for counting graph homomorphisms for tractable digraphs H is based on factoring. A difficulty is that the relevant algebra lacks unique factorization. We deal with this by introducing "preconditioners". See Section 6.

Before giving precise definitions and proving our dichotomy theorem, we note that our proof relies on two fundamental results of Bulatov and Grohe [2005] and Lovász [1967]. These will be introduced below in Section 3.

2. Notation and Definitions

Let $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$. For $m, n \in \mathbb{N}_{0}$, we will write $[m, n]=\{m, m+$ $1, \ldots, n-1, n\}$ and $[n]=[1, n]$. We will generally let $H=(\mathcal{V}, \mathcal{E})$ denote a
fixed "coloring" digraph, and $G=(V, E)$ an "input" digraph. We denote the empty digraph (\emptyset, \emptyset) by $\mathbf{0}$.
2.1. Homomorphisms. Let $G=(V, E)$ and $H=(\mathcal{V}, \mathcal{E})$. If $f: V \rightarrow \mathcal{V}$, and $e=\left(v, v^{\prime}\right) \in E$, we write $f(e)=\left(f(v), f\left(v^{\prime}\right)\right)$. Then f is a homomorphism from G to H (or an H-coloring of G) if $f(E) \subseteq \mathcal{E}$. We will denote the number of distinct homomorphisms from G to H by $\# H(G)$. Note that $\# H(\mathbf{0})=1$ for all H.

Let f be a homomorphism from $H_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ to $H_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$. If f is also injective, it is a monomorphism. Then, $\left|\mathcal{E}_{1}\right|=\left|f\left(\mathcal{E}_{1}\right)\right| \leq\left|\mathcal{E}_{2}\right|$. If there exist monomorphisms f from H_{1} to H_{2} and f^{\prime} from H_{2} to H_{1}, then f is an isomorphism from H_{1} to H_{2}. Then, $\left|\mathcal{E}_{1}\right|=\left|f\left(\mathcal{E}_{1}\right)\right| \leq\left|\mathcal{E}_{2}\right|=\left|f^{\prime}\left(\mathcal{E}_{2}\right)\right| \leq\left|\mathcal{E}_{1}\right|$, so $\left|f\left(\mathcal{E}_{1}\right)\right|=\left|\mathcal{E}_{2}\right|$, which implies $f\left(\mathcal{E}_{1}\right)=\mathcal{E}_{2}$. If there is an isomorphism from H_{1} to H_{2}, we write $H_{1} \cong H_{2}$ and say H_{1} is isomorphic to H_{2}. The relation \cong is easily seen to be an equivalence. We will usually use H_{1} and H_{2} to denote equivalence classes of isomorphic graphs, and write $H_{1}=H_{2}$ rather than $H_{1} \cong H_{2}$.

In this article, we consider the particular case where $H=(\mathcal{V}, \mathcal{E})$ is a directed acyclic graph (DAG). Thus, in particular, H has no self-loops, and $\# H(G)=0$ if G is not a DAG.
2.2. LAYERED GRAPHS. A DAG $H=(\mathcal{V}, \mathcal{E})$ is a layered digraph ${ }^{2}$ with ℓ layers if \mathcal{V} is partitioned into $(\ell+1)$ levels $\mathcal{V}_{i}(i \in[0, \ell])$ such that $\left(u, u^{\prime}\right) \in \mathcal{E}$ only if $u \in \mathcal{V}_{i-1}, u^{\prime} \in \mathcal{V}_{i}$ for some $i \in[\ell]$. We will allow $\mathcal{V}_{i}=\emptyset$, in which case H may be disconnected. We will call \mathcal{V}_{0} the top and \mathcal{V}_{ℓ} the bottom. Nodes in \mathcal{V}_{0} are called sources and nodes in \mathcal{V}_{ℓ} are called sinks. (Note that the usage of the words source and sink varies. In this article, a vertex is called a source only if it is in \mathcal{V}_{0}. A vertex in \mathcal{V}_{i} for some $i \neq 0$ is not called a source, even if it has in-degree 0 , and similarly for sinks.) Layer i is the edge set $\mathcal{E}_{i} \subseteq \mathcal{E}$ of the subgraph $H^{[i-1, i]}$ induced by $\mathcal{V}_{i-1} \cup \mathcal{V}_{i}$. More generally, we will write $H^{[i, j]}$ for the subgraph induced by $\cup_{k=i}^{j} \mathcal{V}_{k}$.

Let \mathcal{G}_{ℓ} be the class of all layered digraphs with ℓ layers and let \mathcal{C}_{ℓ} be the subclass of \mathcal{G}_{ℓ} in which every connected component spans all $\ell+1$ levels. If $H \in \mathcal{C}_{\ell}$ and $G=(V, E) \in \mathcal{C}_{\ell}$, with V_{i} denoting level $i(i \in[0, \ell])$ and E_{i} denoting layer $i(i \in[\ell])$, then any homomorphism from G to H is a sequence of functions $f_{i}: V_{i} \rightarrow \mathcal{V}_{i}(i \in[0, \ell])$ which induce a mapping from E_{i} into $\mathcal{E}_{i}(i \in[\ell])$.

We use equality in \mathcal{C}_{ℓ} to define an equivalence relation on \mathcal{G}_{ℓ}. In particular, for $H_{1}, H_{2} \in \mathcal{G}_{\ell}, H_{1} \equiv H_{2}$ if and only if $\widehat{H_{1}}=\widehat{H_{2}}$, where $\widehat{H_{i}} \in \mathcal{C}_{\ell}$ is obtained from H_{i} by deleting every connected component that spans fewer than $\ell+1$ levels.
2.3. Sums and Products. If $H_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ are disjoint digraphs, the union $H_{1}+H_{2}$ is the digraph $H=\left(\mathcal{V}_{1} \cup \mathcal{V}_{2}, \mathcal{E}_{1} \cup \mathcal{E}_{2}\right)$. Clearly, $\mathbf{0}$ is the additive identity and $H_{1}+H_{2}=H_{2}+H_{1}$. If G is connected then $\#\left(H_{1}+H_{2}\right)(G)=$ $\# H_{1}(G)+\# H_{2}(G)$, and if $G=G_{1}+G_{2}$ then $\# H(G)=\# H\left(G_{1}\right) \# H\left(G_{2}\right)$.
The layered cross product [Even and Litman 1997] $H=H_{1} \times H_{2}$ of layered digraphs $H_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right), H_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right) \in \mathcal{G}_{\ell}$ is the layered digraph $H=(\mathcal{V}, \mathcal{E}) \in$ \mathcal{G}_{ℓ} such that $\mathcal{V}_{i}=\mathcal{V}_{1 i} \times \mathcal{V}_{2 i}(i \in[0, \ell])$, and we have $\left(\left(u_{1}, u_{2}\right),\left(u_{1}^{\prime}, u_{2}^{\prime}\right)\right) \in \mathcal{E}$ if and only if $\left(u_{1}, u_{1}^{\prime}\right) \in \mathcal{E}_{1}$ and $\left(u_{2}, u_{2}^{\prime}\right) \in \mathcal{E}_{2}$. We will usually write $H_{1} \times H_{2}$ simply

[^1]

Fig. 1. A disconnected product.
as $H_{1} H_{2}$. It is clear that $H_{1} H_{2}$ is connected only if both H_{1} and H_{2} are connected. The converse is not necessarily true. See Figure 1.

Nevertheless, we have the following lemma.
LEMMA 2.1. If $H_{1}, H_{2} \in \mathcal{C}_{\ell}$ and both of these graphs contain a directed path from every source to every sink then exactly one component of $H_{1} H_{2}$ spans all $\ell+1$ levels. In each other component level 0 and level ℓ are empty.

Proof. There is a directed path from every source of $H_{1} H_{2}$ to every sink. Thus, the sources and sinks are all in the same connected component.

Note that $H_{1} H_{2}=H_{2} H_{1}$, using the isomorphism $\left(u_{1}, u_{2}\right) \mapsto\left(u_{2}, u_{1}\right)$.
If $G, H_{1}, H_{2} \in \mathcal{C}_{\ell}$ then any homomorphism $f: G \rightarrow H_{1} H_{2}$ can be written as a product $f_{1} \times f_{2}$ of homomorphisms $f_{1}: G \rightarrow H_{1}$ and $f_{2}: G \rightarrow H_{2}$, and any such product is a homomorphism. Thus, $\# H_{1} H_{2}(G)=\# H_{1}(G) \# H_{2}(G)$. Observe that the directed path P_{ℓ} of length ℓ gives the multiplicative identity $\mathbf{1}$ and that $\mathbf{0} H=H \mathbf{0}=\mathbf{0}$ for all H. It also follows easily that $H\left(H_{1}+H_{2}\right)=H H_{1}+H H_{2}$, so \times distributes over + . The algebra $\mathcal{A}=\left(\mathcal{G}_{\ell},+, \times, \mathbf{0}, \mathbf{1}\right)$ is a commutative semiring. The + operation is clearly cancellative. ${ }^{3}$ We will show in Lemma 3.6 that \times is also cancellative, at least for \mathcal{C}_{ℓ}. In many respects, this algebra resembles arithmetic on \mathbb{N}_{0}, but there is an important difference. In \mathcal{A} we do not have unique factorization into primes. A prime is any $H \in \mathcal{G}_{\ell}$ that has only the trivial factorization $H=\mathbf{1} H$. Here, we may have $H=H_{1} H_{2}=H_{1}^{\prime} H_{2}^{\prime}$ with $H_{1}, H_{2}, H_{1}^{\prime}, H_{2}^{\prime}$ prime and no pair equal, even if all the graphs are connected.

Example 2.2. Let $\vec{K}_{1, m}$ be the usual undirected bipartite clique $K_{1, m}$, but with all edges directed from the root vertex, and let $\vec{K}_{m, 1}$ be $\vec{K}_{1, m}$ with all edges reversed. The graphs $H_{1}, H_{2}, H_{1}^{\prime}, H_{2}^{\prime}$ will all have three layers. Each has top layer $\vec{K}_{1, m_{1}}$, middle layer a disjoint union of $K_{1, m}$'s, and bottom layer $\vec{K}_{m_{3}, 1}$. We specify the subgraphs in each layer in the following table. We show H_{1} in Figure 2, where all edges are directed downwards.

Graph	Layer 1	Layer2	Layer3
H_{1}	$\vec{K}_{1,4}$	$\vec{K}_{1,8}+\vec{K}_{1,2}+\vec{K}_{1,1}+\vec{K}_{1,1}$	$\vec{K}_{12,1}$
H_{2}	$\vec{K}_{1,9}$	$\vec{K}_{1,8}+\vec{K}_{1,4}+\vec{K}_{1,2}+\vec{K}_{1,1}+\vec{K}_{1,1}+\vec{K}_{1,1}+\vec{K}_{1,1}+\vec{K}_{1,1}+\vec{K}_{1,1}$	$\vec{K}_{20,1}$
H_{1}^{\prime}	$\vec{K}_{1,6}$	$\vec{K}_{1,8}+\vec{K}_{1,4}+\vec{K}_{1,1}+\vec{K}_{1,1}+\vec{K}_{1,1}+\vec{K}_{1,1}$	$\vec{K}_{16,1}$
H_{2}^{\prime}	$\vec{K}_{1,6}$	$\vec{K}_{1,8}+\vec{K}_{1,2}+\vec{K}_{1,2}+\vec{K}_{1,1}+\vec{K}_{1,1}+\vec{K}_{1,1}$	$\vec{K}_{15,1}$

[^2]

Fig. 2. The graph H_{1} in Example 2.2.
It is clear that $H_{1}, H_{2}, H_{1}^{\prime}, H_{2}^{\prime}$ are connected, and it is not difficult to show that none of them has a nontrivial factorization. However, it is easy to verify that $H_{1} H_{2}=H_{1}^{\prime} H_{2}^{\prime}$.

The layered cross product was defined in Even and Litman [1997] in the context of interconnection networks. It is similar to the (nonlayered) direct product [Imrich and Klavžar 2000], which also lacks unique factorisation, but they are not identical. In general, they have different numbers of vertices and edges.

3. Fundamentals

Our proof relies on two fundamental results of Bulatov and Grohe [2005] and Lovász [1967].

First, we give the basic result of Lovász [1967]. (See also Hell and Nešetřil [2004, Theorem 2.11].) If $H=(\mathcal{V}, \mathcal{E})$ and $G=(V, E)$ are DAGs, we denote the number of monomorphisms from G to H by $\diamond H(G)$. The following is essentially a special case of a theorem of Lovász [1967, Theorem 3.6], though stated rather differently. We give a proof since it yields additional information.

Theorem 3.1 [LovÁsz 1967]. If $\# H_{1}(G)=\# H_{2}(G)$ for all G, then $H_{1}=H_{2}$.

Proof. Let f be any homomorphism from G to H. Then f^{-1} induces a partition I of V into disjoint sets $S_{I, 1}, \ldots, S_{I, k_{I}}$ such that each $S_{I, i}\left(i \in\left[k_{I}\right]\right)$ is independent in G. Each partition I fixes subsets $S_{I, i} \subseteq V$ which map to the same $u_{i} \in \mathcal{V}$. Let \mathcal{I} be the set of all such induced partitions. With the relation $I \preceq I^{\prime}$ whenever I is a refinement of $I^{\prime}, \mathrm{P}_{G}=(\mathcal{I}, \preceq)$ is a poset. Note that P_{G} depends only on G. We will write \perp for the partition into singletons, so $\perp \preceq I$ for any $I \in \mathcal{I}$. Let G / I be the digraph obtained from G by identifying all vertices in $S_{I, i}\left(i \in\left[k_{I}\right]\right)$. Then we have

$$
\# H(G)=\# H(G / \perp)=\sum_{I \in \mathcal{I}} \diamond H(G / I)=\sum_{I \in \mathcal{I}} \diamond H(G / I) \zeta(\perp, I),
$$

where $\zeta\left(I, I^{\prime}\right)=1$ if $I \preceq I^{\prime}$, and $\zeta\left(I, I^{\prime}\right)=0$ otherwise, defines the ζ-function of P_{G}. More generally, the same reasoning gives

$$
\# H(G / I)=\sum_{I \leq I^{\prime}} \diamond H\left(G / I^{\prime}\right)=\sum_{I^{\prime} \in \mathcal{I}} \diamond H\left(G / I^{\prime}\right) \zeta\left(I, I^{\prime}\right)
$$

Now Möbius inversion for posets van Lint and Wilson [2001, Ch. 25] implies that the matrix $\zeta: \mathcal{I} \times \mathcal{I} \rightarrow\{0,1\}$ has a unique inverse $\mu: \mathcal{I} \times \mathcal{I} \rightarrow \mathbb{Z}$. It follows directly that

$$
\diamond H(G)=\sum_{I \in \mathcal{I}} \# H(G / I) \mu(\perp, I)
$$

Using the assumption of the theorem, for every G, we now have

$$
\begin{equation*}
\diamond H_{1}(G)=\sum_{I \in \mathcal{I}} \# H_{1}(G / I) \mu(\perp, I)=\sum_{I \in \mathcal{I}} \# H_{2}(G / I) \mu(\perp, I)=\diamond H_{2}(G) \tag{1}
\end{equation*}
$$

In particular this implies $\forall H_{2}\left(H_{1}\right)=\diamond H_{1}\left(H_{1}\right)>0$, so there is a monomorphism f from H_{1} into H_{2}. By symmetry, there is also a monomorphism f^{\prime} from H_{2} into H_{1}.

Remark 3.2. In this article, the digraph H is always a DAG, so it has no selfloops. However, if we generalize to the situation in which H_{1} and H_{2} can have both looped and unlooped vertices (but every vertex in G is unlooped), as in the usual definition of the general H-coloring problem [Dyer and Greenhill 2000], the above proof is no longer valid. The reason is that $S_{I, i}$ must be an independent set if u_{i} is unlooped, but can be arbitrary if u_{i} is looped. Thus, P_{G} no longer depends only on G. However, if H_{1} and H_{2} have all their vertices looped, an obvious modification of the proof goes through. Whether the theorem remains true for H with both looped and unlooped vertices is, as far as we know, an open question.

Note that, if $G \in \mathcal{C}_{\ell}$, the poset P_{G} possesses a (unique) element T such that $I \preceq \top$ for all $I \in \mathcal{I}$, with $G / \top=P_{\ell}$. The following variant of Theorem 3.1 restricts H_{1}, H_{2} and G to C_{ℓ}.

THEOREM 3.3. If $H_{1}, H_{2} \in \mathcal{C}_{\ell}$ and $\# H_{1}(G)=\# H_{2}(G)$ for all $G \in \mathcal{C}_{\ell}$, then $H_{1}=H_{2}$.

The proof follows from the proof of Theorem 3.1 since the only instances of G used in that proof are of the form H_{1} / I or H_{2} / I and these are in \mathcal{C}_{ℓ}. Similar reasoning gives the following corollaries.

COROLLARY 3.4. Suppose $H_{k}=\left(\mathcal{V}_{k}, \mathcal{E}_{k}\right),(k=1,2)$. If there is any $G=$ (V, E) with $\# H_{1}(G) \neq \# H_{2}(G)$, there is a G such that $0<|V| \leq \max _{k=1,2}\left|\mathcal{V}_{k}\right|$.

Proof. Clearly G must be non-empty. Assume $\left|\mathcal{V}_{1}\right| \leq\left|\mathcal{V}_{2}\right|$. If $\left|\mathcal{V}_{1}\right|<\left|\mathcal{V}_{2}\right|$, taking $G_{0}=\left(\left\{v_{0}\right\}, \emptyset\right)$ gives $\# H_{1}\left(G_{0}\right)=\left|\mathcal{V}_{1}\right| \neq\left|\mathcal{V}_{2}\right|=\# H_{2}\left(G_{0}\right)$, so we may take $|V|=1 \leq\left|\mathcal{V}_{2}\right|$. Otherwise, since $H_{1} \neq H_{2}$, either $\diamond H_{2}\left(H_{1}\right) \neq \diamond H_{1}\left(H_{1}\right)$ or $\diamond H_{2}\left(H_{2}\right) \neq \diamond H_{1}\left(H_{2}\right)$. In the former case, we can use Eq. (1) with $G=H_{1}$ to see that one of the H_{1} / I must be such that $\# H_{1}\left(H_{1} / I\right) \neq \# H_{2}\left(H_{1} / I\right)$. In the latter case, one of the H_{2} / I must be such that $\# H_{2}\left(H_{2} / I\right) \neq \# H_{1}\left(H_{2} / I\right)$. But all the graphs $H_{1} / I, H_{2} / I$ have at most $\max _{i=1,2}\left|\mathcal{V}_{i}\right|$ vertices.

Corollary 3.5. Suppose $H_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ are in \mathcal{C}_{ℓ}. If there is any $G \in \mathcal{C}_{\ell}$ with $\# H_{1}(G) \neq \# H_{2}(G)$, then there is such a G such that $0<|V| \leq \max _{k=1,2}\left|\mathcal{V}_{k}\right|$.

Therefore, we can find a witness to the predicate $\exists G: \# H_{1}(G) \neq \# H_{2}(G)$, if one exists, among the graphs of the form H_{1} / I and H_{2} / I.

Lemma 3.6. If $H_{1} H=H_{2} H$ for $H_{1}, H_{2}, H \in \mathcal{C}_{\ell}$, then $H_{1}=H_{2}$.
Proof. Suppose $G \in \mathcal{C}_{\ell}$. Since $H \in \mathcal{C}_{\ell}, \# H(G) \neq 0$. Also, since H_{1} and H_{2} are in \mathcal{C}_{ℓ} and $H_{1} H=H_{2} H$, then $\# H_{1}(G) \# H(G)=\# H_{2}(G) \# H(G)$, so $\# H_{1}(G)=$ $\# H_{2}(G)$. Now use Theorem 3.3.

Here is another similar lemma that we will need. Recall that \equiv denotes the equivalence relation on G_{ℓ} which ignores "short" components.

Lemma 3.7. If $H_{1}, H_{2}, H \in \mathcal{C}_{\ell}$ and each of these contains a directed path from every source to every sink and $H_{1} H \equiv H_{2} H$, then $H_{1}=H_{2}$.

Proof. Suppose $G \in \mathcal{C}_{\ell}$. Since $H \in \mathcal{C}_{\ell}, \# H(G) \neq 0$. Let $\widehat{H_{1}}$ be the single full component of $H_{1} H$ from Lemma 2.1. Similarly, let $\widehat{H_{2}}$ be the single full component of $\mathrm{H}_{2} \mathrm{H}$. Then, since $G \in \mathcal{C}_{\ell}$,

$$
\# \widehat{H_{1}}(G)=\# H_{1} H(G)=\# H_{1}(G) \# H(G)
$$

and

$$
\# \widehat{H_{2}}(G)=\# H_{2} H(G)=\# H_{2}(G) \# H(G) .
$$

So since $\# \widehat{H_{1}}(G)=\# \widehat{H_{2}}(G)$ by the equivalence in the statement of the lemma, we have $\# H_{1}(G)=\# H_{2}(G)$. Now use Theorem 3.3.

The second fundamental result is a theorem of Bulatov and Grohe [2005, Theorem 1], which provides a powerful generalization of a theorem of Dyer and Greenhill [2000].

Let $A=\left(A_{i j}\right)$ be a $k \times k$ matrix of non-negative rationals. We view A as a weighted digraph such that there is an edge (i, j) with weight $A_{i j}$ if $A_{i j}>0$. Given a digraph $G=(V, E), \operatorname{Eval}(A)$ is the problem of computing the partition function

$$
\begin{equation*}
Z_{A}(G)=\sum_{\sigma: V \rightarrow\{1, \ldots, k\}} \prod_{(u, v) \in E} A_{\sigma(u) \sigma(v)} \tag{2}
\end{equation*}
$$

In particular, if A is the adjacency matrix of a digraph $H, Z_{A}(G)=\# H(G)$. Thus, $\operatorname{Eval}(A)$ has the same complexity as $\# H$. If A is symmetric, corresponding to a weighted undirected graph, the following theorem characterizes the complexity of $\operatorname{Eval}(A)$.

THEOREM 3.8 [BuLATOV AND Grohe 2005]. Let A be a non-negative rational symmetric matrix.
(1) If A is connected and not bipartite, then $\operatorname{EvAL}(A)$ is in polynomial time if the row rank of A is at most 1 ; otherwise $\operatorname{EvAL}(A)$ is $\# P$-complete.
(2) If A is connected and bipartite, then $\operatorname{EvAL}(A)$ is in polynomial time if the row rank of A is at most 2 ; otherwise $\operatorname{EVAL}(A)$ is $\# P$-complete.
(3) If A is not connected, then $\operatorname{EVAL}(A)$ is in polynomial time if each of its connected components satisfies the corresponding condition stated in (1) or (2); otherwise $\operatorname{EvAL}(A)$ is \#P-complete.

4. Reduction from Acyclic H to Layered H

Let $H=(\mathcal{V}, \mathcal{E})$ be a DAG. Clearly $\# H$ is in $\# \mathrm{P}$. We will call H easy if $\# H$ is in P and hard if \#H is \# P-complete. We will show that H is hard unless it can be represented as a layered digraph. Essentially, we do this using a "gadget" consisting of two opposing directed k-paths to simulate the edges of an undirected graph and then apply Theorem 3.8. To this end, let $N_{k}\left(u, u^{\prime}\right)$ be the number of paths of length k from u to u^{\prime} in H. Say that vertices $u, u^{\prime} \in \mathcal{V}$ are k-compatible if, for some vertex w, there is a length- k path from u to w and from u^{\prime} to w. We say that H is k-good if, for every k-compatible pair $\left(u, u^{\prime}\right)$, there is a rational number λ such that $N_{k}(u, v)=\lambda N_{k}\left(u^{\prime}, v\right)(\forall v \in \mathcal{V})$.

LEMMA 4.1. If there is a k such that H is not k-good then \#H is \# P-complete.
Proof. Fix k, u, and u^{\prime} such that u and u^{\prime} are k-compatible, but there is no appropriate λ. Let A be the adjacency matrix of H and let $A^{\prime}=A^{k}\left(A^{k}\right)^{T}$. Note that $\left(A^{k}\right)_{u, w}=N_{k}(u, w)$.

First, we show that $\operatorname{EvaL}\left(A^{\prime}\right)$ is \# P-hard. Note that A^{\prime} is symmetric with nonnegative rational entries. We can view A^{\prime} as the (edge-weighted) adjacency matrix of a graph. Let $A^{\prime \prime}$ be the square sub-matrix of A^{\prime} corresponding to the connected component containing u and u^{\prime}. Note that u and u^{\prime} are in the same connected component since they are k-compatible. Also, the graph has loops on vertices u and u^{\prime}, so the subgraph corresponding to $A^{\prime \prime}$ is not bipartite. To show that $\operatorname{EvaL}\left(A^{\prime}\right)$ is \# P-complete, we need only show that the rank of $A^{\prime \prime}$ is bigger than 1 . To do this, we just need to find a 2×2 submatrix that is non-singular, i.e., with nonzero determinant. Take the principal submatrix indexed by rows u and u^{\prime} and columns u and u^{\prime}. The determinant is

$$
\left(\sum_{w} N_{k}(u, w)^{2}\right)\left(\sum_{w} N_{k}\left(u^{\prime}, w\right)^{2}\right)-\left(\sum_{w} N_{k}(u, w) N_{k}\left(u^{\prime}, w\right)\right)^{2}
$$

By Cauchy-Schwartz, the determinant is non-negative, and is zero only if λ exists, which we have assumed not to be the case. Thus $\operatorname{EvaL}\left(A^{\prime}\right)$ is \#P-complete.

Now we use the hardness of $\operatorname{Eval}\left(A^{\prime}\right)$ to show that $\operatorname{Eval}(A)$ is \#P-hard. To do this, take an undirected graph G that is an instance of $\operatorname{EvaL}\left(A^{\prime}\right)$. Construct a digraph G^{\prime} by taking every edge $\left\{v, v^{\prime}\right\}$ of G and replacing it with a digraph consisting of a directed length- k path P_{k} from v to a new vertex w and a directed length- k path P_{k} from v^{\prime} to w. Note that $\operatorname{Eval}(A)$ on G^{\prime} is the same as $\operatorname{Eval}\left(A^{\prime}\right)$ on G. Thus, $\operatorname{Eval}(A)$ is \# P-complete, and \#H has the same complexity.

Remark 4.2. We have used the path P_{k} as a gadget in the above reduction, in order to simulate an edge of an undirected graph. We can use any other DAG G having a single source and single sink in the same way, and we do that below.

Remark 4.3. The statement of Lemma 4.1 is not symmetrical with respect to the direction of edges in H. However, let us define the digraph H^{R} to be that obtained from H by reversing every edge. Then, $\# H^{R}$ and $\# H$ have the same complexity. To see this, simply observe that $\# H^{R}\left(G^{R}\right)=\# H(G)$ for all G.

We are now in a position to prove the main result of this section.
LEmma 4.4. If H is a DAG, but it cannot be represented as a layered digraph, then \#H is \# P-hard.

Proof. Suppose that H contains two paths of different lengths from u to u^{\prime}. Choose $k>0$, the length of the shorter path, as small as possible. Choose $k^{\prime}>k$, the length of the longer path, as large as possible subject to the choice of k. Suppose that k edges of the longer path take us from u to b and that k edges of the longer path take us from a to u^{\prime}. We claim that H has no length $-k$ path from a to b. Since u and a are k-compatible, Lemma 4.1 will then give the conclusion.

If $k^{\prime} \geq 2 k$, the claim follows from the fact that H has no cycles. (Either $a=b$ or there is a path from b to a on the longer path.) If $k^{\prime}<2 k$ then the claim follows from the choice of k^{\prime}. If there were a length k path from a to b, then we could go from u to a following the longer path, from a to b on a k-edge path and from b to u^{\prime} again following the longer path. The concatenation of these paths would have length greater than k^{\prime}.

5. A Structural Condition for Hardness

We can now formulate a sufficient condition for hardness of a layered digraph $H=(\mathcal{V}, \mathcal{E}) \in \mathcal{G}_{\ell}$. Suppose $s \in \mathcal{V}_{i}$ and $t \in \mathcal{V}_{j}$ for $i<j$. If there is a directed path in H from s to t, we let $H_{s t}$ be the subgraph of H induced by s, t, and all components of $H^{[i+1, j-1]}$ to which both s and t are incident. Otherwise, we let $H_{s t}=\mathbf{0}$.

Lemma 5.1. If there exist $x, x^{\prime} \in \mathcal{V}_{0}$ and $y, y^{\prime} \in \mathcal{V}_{\ell}$ such that $H_{x y} H_{x^{\prime} y^{\prime}} \not \equiv$ $H_{x y^{\prime}} H_{x^{\prime} y}$, and at most one of $H_{x y}, H_{x y^{\prime}}, H_{x^{\prime} y}^{\prime}, H_{x^{\prime} y^{\prime}}$ is $\mathbf{0}$, then $\# H$ is $\# P$-complete.

Proof. If exactly one of $H_{x y}, H_{x y^{\prime}}, H_{x^{\prime} y}, H_{x^{\prime} y^{\prime}}$ is $\mathbf{0}$, then Lemma 4.1 applies. Suppose that none of $H_{x y}, H_{x y^{\prime}}, H_{x^{\prime} y}^{\prime}, H_{x^{\prime} y^{\prime}}$ is $\mathbf{0}$. Note that x, x^{\prime}, y and y^{\prime} are all in the same component of H and that this component is in \mathcal{C}_{ℓ}. By Lemma 2.1, $H_{x y} H_{x^{\prime} y^{\prime}}$ contains a single component $H_{x y ; x^{\prime} y^{\prime}}$ that spans all $\ell+1$ levels. So if $G \in \mathcal{C}_{\ell}, \# H_{x y} H_{x^{\prime} y^{\prime}}(G)=\# H_{x y ; x^{\prime} y^{\prime}}(G)$. Similarly, $H_{x y^{\prime}} H_{x^{\prime} y}$ contains a single component $H_{x y^{\prime} ; x^{\prime} y}$ that spans all $\ell+1$ levels and $\# H_{x y^{\prime}} H_{x^{\prime} y}(G)=\# H_{x y^{\prime} ; x^{\prime} y}(G)$. By the assumption in the lemma, $H_{x y ; x^{\prime} y^{\prime}} \neq H_{x y^{\prime} ; x^{\prime} y}$. So, by Theorem 3.3, there is a $\Gamma \in \mathcal{C}_{\ell}$ such that

$$
\begin{equation*}
\# H_{x y ; x^{\prime} y^{\prime}}(\Gamma) \neq \# H_{x y^{\prime} ; x^{\prime} y}(\Gamma) . \tag{3}
\end{equation*}
$$

We can assume without loss of generality that Γ has a single source and sink since $H_{x y ; x^{\prime} y^{\prime}}$ and $H_{x y^{\prime} ; x^{\prime} y}$ do. By Corollary 3.5, we can also assume that Γ has at most $|\mathcal{V}|$ vertices. Equation (3) implies

$$
\begin{equation*}
\# H_{x y}(\Gamma) \# H_{x^{\prime} y^{\prime}}(\Gamma) \neq \# H_{x y^{\prime}}(\Gamma) \# H_{x^{\prime} y}(\Gamma) . \tag{4}
\end{equation*}
$$

Fig. 3. The graph of Example 5.2.

We now follow the proof of Lemma 4.1, replacing the path gadget with Γ as indicated in Remark 4.2. The matrix A is indexed by sources u of H and sinks w, and $A_{u w}$ is $\# H_{u w}(\Gamma)$. Then $A^{\prime}=A A^{T}$ so $A_{u u^{\prime}}^{\prime}=\sum_{w} A_{u w} A_{u^{\prime} w}$.

As in the proof of Lemma 4.1, we first show that $\operatorname{EvaL}\left(A^{\prime}\right)$ is \#P-hard. Let $A^{\prime \prime}$ be the square submatrix corresponding to the connected component containing x and x^{\prime}. Note that they are in the same connected component since $\Gamma \in \mathcal{C}_{\ell}$, and $H_{x, y} \neq \mathbf{0}$ and $H_{x^{\prime} y} \neq \mathbf{0}$, so $A_{x y} \neq 0$ and $A_{x^{\prime} y} \neq 0$. Consider the principal submatrix indexed by rows x and x^{\prime} and columns x and x^{\prime}. The determinant is

$$
\left(\sum_{w} A_{x w}^{2}\right)\left(\sum_{w} A_{x^{\prime} w}^{2}\right)-\left(\sum_{w} A_{x w} A_{x^{\prime} w}\right)^{2}
$$

As before, this is zero only if there is a λ such that $A_{x w}=\lambda A_{x^{\prime} w}$ for all w, and this is false by (4) which says $A_{x y} A_{x^{\prime} y^{\prime}} \neq A_{x y^{\prime}} A_{x^{\prime} y}$. Thus, the rank of $A^{\prime \prime}$ is bigger than 1 and $\operatorname{Eval}\left(A^{\prime}\right)$ is \#P-complete.

Now let B be the adjacency matrix of H. Reduce $\operatorname{Eval}\left(A^{\prime}\right)$ to $\operatorname{Eval}(B)$ as follows. Take an undirected graph G that is an instance of $\operatorname{EvaL}\left(A^{\prime}\right)$. Construct a digraph G^{\prime} by taking every edge $\left\{v, v^{\prime}\right\}$ of G and replacing it with a digraph consisting of a copy of Γ with source v and a copy of Γ with source v^{\prime} with the sinks identified. Note that $\operatorname{Eval}(B)$ on G^{\prime} is the same as $\operatorname{Eval}\left(A^{\prime}\right)$ on G. Thus, $\operatorname{EvAL}(B)$ is \# P-complete, and \#H has the same complexity.

Clearly, checking the condition of the Lemma and carrying out the search for the gadget Γ both require only constant time (since the size of H is a constant). Note that if $x, x^{\prime}, y, y^{\prime}$ are not all in the same component of H then at least two of $H_{x y}, H_{x^{\prime} y^{\prime}}, H_{x y^{\prime}}, H_{x^{\prime} y}$ are $\mathbf{0}$, so Lemma 5.1 has no content.

Example 5.2. Consider the H in Figure 3. We have $H_{x y} H_{x^{\prime} y^{\prime}}=H_{x y}$ and $H_{x y^{\prime}} H_{x^{\prime} y}=H_{x^{\prime} y}$. Clearly, $H_{x y}$ and $H_{x^{\prime} y}$ are not isomorphic, so \#H is \#P-complete. A suitable gadget is $\Gamma=H_{x y}$. The following table gives $\# H_{x y}(\Gamma)$, $\# H_{x y^{\prime}}(\Gamma)$, $\# H_{x^{\prime} y}(\Gamma)$ and $\# H_{x^{\prime} y^{\prime}}(\Gamma)$. Since this matrix has rank 2 and is indecomposable, we can prove

Fig. 4. An easy H with no st path.
\#P-completeness using Γ as a gadget.

\[

\]

We may generalize Lemma 5.1 as follows:
Lemma 5.3. If there exist $x, x^{\prime} \in \mathcal{V}_{i}$ and $y, y^{\prime} \in \mathcal{V}_{j},(0 \leq i<j \leq \ell)$, such that $H_{x y} H_{x^{\prime} y^{\prime}} \not \equiv H_{x y} H_{x^{\prime} y}$, and at most one of $H_{x y}, H_{x y^{\prime}}, H_{x^{\prime} y}, H_{x^{\prime} y^{\prime}}$ is $\mathbf{0}$, then $\# H$ is \#P-complete.

Proof. If $\ell^{\prime}=j-i$, consider any G having ℓ^{\prime} layers. For $k=0,1, \ldots, \ell-\ell^{\prime}$, let H_{k} be the subgraph of H induced by $\mathcal{V}_{k} \cup \mathcal{V}_{k+1} \cup \cdots \cup \mathcal{V}_{k+\ell^{\prime}}$. Then

$$
\# H(G)=\sum_{k=0}^{\ell-\ell^{\prime}} \# H_{k}(G)
$$

so coloring with H is equivalent to coloring with the graph $H^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)=$ $\sum_{k=0}^{\ell-\ell^{\prime}} H_{k} \in \mathcal{G}_{\ell}^{\prime}$. But x, x^{\prime} are in \mathcal{V}_{0}^{\prime}, and y, y^{\prime} in $\mathcal{V}_{\ell^{\prime}}^{\prime}$. The result now follows from Lemma 5.1.

Note that the " N " of Bulatov and Dalmau [2003] is the special case of Lemma 5.3 in which $j=i+1, H_{x y}=H_{x y^{\prime}}=H_{x^{\prime} y^{\prime}}=\mathbf{1}$, and $H_{x^{\prime} y}=\mathbf{0}$. More generally, any structure with $H_{x y}, H_{x y^{\prime}}, H_{x^{\prime} y^{\prime}} \neq \mathbf{0}$ and $H_{x^{\prime} y}=\mathbf{0}$ is a special case of Lemma 5.3, so is sufficient to prove PP -completeness. Such a structure is equivalent to the existence of paths from x to y, x to y^{\prime} and x^{\prime} to y^{\prime}, when no path from x^{\prime} to y exists. We call such a structure an "N", since it generalizes Bulatov and Dalmau's [2003] construction.

Lemma 5.4. If $H \in \mathcal{C}_{\ell}$ is connected and not hard, then there exists a directed path from every source to every sink.

Proof. Clearly, by Lemma 5.3, H must be N -free. Since it is connected, there is an undirected path from any $x \in \mathcal{V}_{0}$ to any $y \in \mathcal{V}_{\ell}$. Suppose that the shortest undirected path from x to y is not a directed path. Then, some part of it induces an N in H, giving a contradiction.

Lemma 5.4 cannot be generalized by replacing "source" with "node (at any level) with indegree 0" and replacing "sink" similarly, as the graph in Figure 4 illustrates.

We will call four vertices $x, x^{\prime}, y, y^{\prime}$ in H, with $x, x^{\prime} \in \mathcal{V}_{i}$ and $y, y^{\prime} \in \mathcal{V}_{j}$ $(0 \leq i<j \leq \ell)$, a Lovász violation ${ }^{4}$ if at most one of $H_{x y}, H_{x y^{\prime}}, H_{x^{\prime} y}, H_{x^{\prime} y^{\prime}}$ is 0 and $H_{x y} H_{x^{\prime} y^{\prime}} \not \equiv H_{x y^{\prime}} H_{x^{\prime} y}$. A graph H with no Lovász violation will be called Lovász-good. We show next that this property is preserved under the layered cross product.

LEMMA 5.5. If $H, H_{1}, H_{2} \in \mathcal{C}_{\ell}$ and $H=H_{1} H_{2}$, then H is Lovász-good if and only if both H_{1} and H_{2} are Lovász-good.

PROOF. Let $H_{k}=\left(\mathcal{V}_{k}, \mathcal{E}_{k}\right)$ with levels $\mathcal{V}_{k, i}(k=1,2 ; i \in[0, \ell])$ and $H=$ $(\mathcal{V}, \mathcal{E})$ with levels $\mathcal{V}_{i}(i \in[0, \ell])$. Suppose $x_{k}, x_{k}^{\prime} \in \mathcal{V}_{k, i}, y_{k}, y_{k}^{\prime} \in \mathcal{V}_{k, j}(k=$ 1, 2; $0 \leq i<j \leq \ell$), not necessarily distinct. We will write, for example, $x_{1} x_{2} \in \overline{\mathcal{V}_{i}}$ for product vertices and $H_{x, y}^{1}$ for $\left(H_{1}\right)_{x, y}$. It follows immediately from the definition of layered cross product that a product vertex $z_{1} z_{2}$ lies on a directed path from $x_{1} x_{2}$ to $y_{1} y_{2}$ if and only if $z_{1}\left(z_{2}\right)$ lies on a directed path from x_{1} to $y_{1}\left(x_{2}\right.$ to y_{2}, respectively). Therefore, $H_{x_{1} x_{2}, y_{1} y_{2}}=H_{x_{1}, y_{1}}^{1} H_{x_{2}, y_{2}}^{2}$, for example, and hence

$$
\begin{align*}
H_{x_{1} x_{2}, y_{1} y_{2}} H_{x_{1}^{\prime} x_{2}^{\prime}, y_{1}^{\prime} y_{2}^{\prime}} & =H_{x_{1}, y_{1}}^{1} H_{x_{2}, y_{2}}^{2} H_{x_{1}^{\prime}, y_{1}^{\prime}}^{1} H_{x_{x^{\prime}, y_{2}^{\prime}}^{2}}^{2} \tag{5}\\
\text { and } \quad H_{x_{1} x_{2}, y_{1}^{\prime} y_{2}^{\prime}} H_{x_{1}^{\prime} x_{2}^{\prime}, y_{1} y_{2}} & =H_{x_{1}, y_{1}^{\prime}}^{1} H_{x_{2}, y_{2}^{\prime}}^{2} H_{x_{1}^{\prime}, y_{1}}^{1} H_{x_{2}^{\prime}, y_{2}}^{2} \tag{6}
\end{align*}
$$

Now, if $H_{x_{1}, y_{1}}^{1} H_{x_{1}^{\prime}, y_{1}^{\prime}}^{1} \equiv H_{x_{1}, y_{1}^{\prime}}^{1} H_{x_{1}^{\prime}, y_{1}}^{1}$ and $H_{x_{2}, y_{2}}^{2} H_{x_{2}^{\prime}, y_{2}^{\prime}}^{2} \equiv H_{x_{2}, y_{2}^{\prime}}^{2} H_{x_{2}^{\prime}, y_{2}}^{2}$, then (5) and (6) imply $H_{x_{1} x_{2}, y_{1} y_{2}} H_{x_{1}^{\prime} x_{2}^{\prime}, y_{1}^{\prime} y_{2}^{\prime}} \equiv H_{x_{1} x_{2}, y_{1}^{\prime} y_{2}^{\prime}} H_{x_{1}^{\prime} x_{2}^{\prime}, y_{1} y_{2}}$. Thus, if H_{1} and H_{2} are Lovászgood, so is H.

Conversely, suppose without loss of generality that H_{1} is not Lovász-good, and that

$$
H_{x_{1}, y_{1}}^{1} H_{x_{1}^{\prime}, y_{1}^{\prime}}^{1} \not \equiv H_{x_{1}, y_{1}^{\prime}}^{1} H_{x_{1}^{\prime}, y_{1}}^{1}
$$

Taking $x_{2}^{\prime}=x_{2}, y_{2}^{\prime}=y_{2}$ for any vertices $x_{2} \in \mathcal{V}_{2, i}, y_{2} \in \mathcal{V}_{2, j}$ such that $H_{x_{2}, y_{2}}^{2} \neq \mathbf{0}$, from (5) and (6) we have
and

$$
H_{x_{1} x_{2}, y_{1} y_{2}} H_{x_{1}^{\prime} x_{2}, y_{1}^{\prime} y_{2}}=H_{x_{1}, y_{1}}^{1} H_{x_{1}^{\prime}, y_{1}^{\prime}}^{1}\left(H_{x_{2}, y_{2}}^{2}\right)^{2}
$$

$$
H_{x_{1} x_{2}, y_{1}^{\prime} y_{2}} H_{x_{1}^{\prime} x_{2}, y_{1} y_{2}}=H_{x_{1}, y_{1}^{\prime}}^{1} H_{x_{1}^{\prime}, y_{1}}^{1}\left(H_{x_{2}, y_{2}}^{2}\right)^{2}
$$

First, suppose that none of $H_{x_{1}, y_{1}}^{1}, H_{x_{1}^{\prime}, y_{1}^{\prime}}^{1}, H_{x_{1}, y_{1}^{\prime}}^{1}, H_{x_{1}^{\prime}, y_{1}}^{1}$ is $\mathbf{0}$. Let Z_{1} be the full component of $H_{x_{1}, y_{1}}^{1} H_{x_{1}^{\prime}, y_{1}^{\prime}}^{1}$ in accordance with Lemma 2.1. Similarly, let Z_{2} be the full component of $H_{x_{1}, y_{1}^{\prime}}^{1} H_{x_{1}^{\prime}, y_{1}}^{1}$. Let $Z=\left(H_{x_{2}, y_{2}}^{2}\right)^{2}$. To show that H is not Lovászgood, we wish to show $Z_{1} Z \not \equiv Z_{2} Z$. By Lemma 3.7, this follows from $Z_{1} \neq Z_{2}$.

Finally, suppose that exactly one of $H_{x_{1}, y_{1}}^{1}, H_{x_{1}^{\prime}, y_{1}^{\prime}}^{1}, H_{x_{1}, y_{1}^{\prime}}^{1}, H_{x_{1}^{\prime}, y_{1}}^{1}$ is $\mathbf{0}$. Then exactly one of $H_{x_{1} x_{2}, y_{1} y_{2}} H_{x_{1}^{\prime} x_{2}, y_{1}^{\prime} y_{2}}$ and $H_{x_{1} x_{2}, y_{1} y_{2}} H_{x_{1}^{\prime} x_{2}, y_{1}^{\prime} y_{2}}$ is $\mathbf{0}$, so they are not equivalent under \equiv and H is not Lovász-good.

The requirement of H being Lovász-good is essentially a "rank 1 " condition in the algebra \mathcal{A} of Section 2.3, and therefore resembles the conditions of Bulatov and Grohe [2005] and Dyer and Greenhill [2000]. However, since \mathcal{A} lacks unique factorization, difficulties arise which are not present in the analyses of Bulatov and

[^3]

Fig. 5. A Lovász-good H.
Grohe [2005] and Dyer and Greenhill [2000]. But a more important difference is that, whereas the conditions of Bulatov and Grohe [2005] and Dyer and Greenhill [2000] permit only trivial easy graphs, Lovász-good graphs can have complex structure. See Figure 5 for a small example.

6. Main Theorem

We can now state the dichotomy theorem for counting homomorphisms to directed acyclic graphs.

Theorem 6.1. Let H be a directed acyclic graph. Then \#H is in P if H is layered and Lovász-good. Otherwise \#H is \#P-complete.

The proof of Theorem 6.1 will use the following lemma, which we prove later.
Lemma 6.2. Suppose $H \in \mathcal{C}_{\ell}$ is connected, with a single source and sink, and is Lovász-good. There is a polynomial-time algorithm for the following problem. Given a connected $G \in \mathcal{C}_{\ell}$ with a single source and sink, compute $\# H(G)$.

Proof of Theorem 6.1. We have already shown in Lemma 4.4 that any nonlayered H is hard. We have also shown in Lemma 5.3 that H is hard if it is not Lovász-good. Suppose $H \in \mathcal{G}_{\ell}$ is Lovász-good. We will show how to compute \#H(G).

First, we may assume that G is connected since, as noted in Section 2.3, if $G=G_{1}+G_{2}$ then $\# H(G)=\# H\left(G_{1}\right) \# H\left(G_{2}\right)$. We can also assume that H is connected since, for connected G, $\#\left(H_{1}+H_{2}\right)(G)=\# H_{1}(G)+\# H_{2}(G)$, but H_{1} and H_{2} are Lovász-good if $\mathrm{H}_{1}+\mathrm{H}_{2}$ is.

So we can now assume that $H \in \mathcal{C}_{\ell}$ is connected and G is connected. If G has more than $\ell+1$ non-empty levels then $\# H(G)=0$. If G has fewer than ℓ non-empty levels then decompose H into component subgraphs H_{1}, H_{2}, \ldots as in the proof of Lemma 5.3, and proceed with each component separately. So we can assume without loss of generality that both H and G are connected and in \mathcal{C}_{ℓ}.

Now, we just add a new level at the top of H with a single vertex, adjacent to all sources of H and a new level at the bottom of H with a single vertex, adjacent to all sinks of H. We do the same to G. Then, we use Lemma 6.2.

Before proving Lemma 6.2, we need some definitions. Suppose H is a connected graph in \mathcal{C}_{ℓ}. For a subset S of sources of H, let $H_{S}^{[0, j]}$ be the subgraph of $H^{[0, j]}$ induced by those vertices from which there is an (undirected) path to S in $H^{[0, j]}$. We say that H is top- j disjoint if, for every pair of distinct sources $s, s^{\prime}, H_{\{s\}}^{[0, j]}$ and $H_{\left\{s^{\prime}\right\}}^{[0, j]}$ are disjoint. We say that H is bottom- j disjoint if the reversed graph H^{R} from Remark 4.3 is top- j disjoint. Finally, We say that H is fully disjoint if it is top- $(\ell-1)$ disjoint and bottom- $(\ell-1)$ disjoint.

We will say that (Q, U, D) is a good factorization of H if Q, U and D are connected Lovász-good graphs in \mathcal{C}_{ℓ} such that
$-Q H \equiv U D$,
$-Q$ has a single source and sink,
$-U$ has a single sink, and
$-D$ has a single source.
Remark 6.3. The presence of the "preconditioner" Q in the definition of a good factorization is due to the absence of unique factorization in the algebra \mathcal{A}. Our algorithm for computing homomorphisms to a Lovász-good H works by factorization. However, it is possible to have a nontrivial Lovász-good H which is prime. A simple example can be constructed from the graphs $H_{1}, H_{2}, H_{1}^{\prime}, H_{2}^{\prime}$ of Example 2.2, by identifying the sources in H_{1}, H_{1}^{\prime} and in H_{2}, H_{2}^{\prime}, and the sinks in H_{1}, H_{2}^{\prime} and in H_{1}^{\prime}, H_{2}. The resulting 2-source, 2-sink graph has no nontrivial factorization.

We use the following operations on a Lovász-good connected digraph $H \in \mathcal{C}_{\ell}$.
Local Multiplication: Suppose that U is a connected Lovász-good single-sink graph in \mathcal{C}_{j} on levels $0, \ldots, j$ for $j \leq \ell$. Let C be a Lovász-good connected component in $H^{[0, j]}$ with no empty levels. Then, $\operatorname{Mul}(H, C, U)$ is the graph constructed from H by replacing C with the full component of $U C$. (Note that there is only one full component, by Lemmas 5.4 and 2.1.)

Local Division: \quad Suppose $S \subseteq \mathcal{V}_{0}$, and that (Q, U, D) is a good factorization of $H_{S}^{[0, j]}$. Then, $\operatorname{Div}(H, Q, U, D)$ is the graph constructed from H by replacing $H_{S}^{[0, j]}$ with D.

We can now state our main structural lemma.
LEMMA 6.4. If $H \in \mathcal{C}_{\ell}$ is connected and Lovász-good, then it has a good factorization (Q, U, D).

We prove Lemma 6.4 in Section 7. In the course of the proof, we give an algorithm for constructing (Q, U, D). We now describe how we use Lemma 6.4 (and the algorithm) to prove Lemma 6.2.

PROOF OF LEMMA 6.2. The proof is by induction on ℓ. The base case is $\ell=2$, corresponding to a connected graph H with a single source s in level 0 and a single $\operatorname{sink} t$ in level 2. There is at least one level-1 vertex that is connected to both the source and the sink. Every other level-1 vertex is connected to either the source or the sink (or both). Suppose there are n_{0} level- 1 vertices connected to s, n_{2} vertices connected to t, and n_{1} connected to both s and t. Counting homomorphisms from G to this graph is easy. There are no homomorphisms unless G is a connected graph with 2-layers. If so, all sources of G have to go to s and all sinks of G have to go to t. For any other vertex v of G, we get an (independent) multiplier of n_{0}, n_{1}, or

FIG. 6. A good factorization of H.
n_{2} depending on the connectivity of v to the sources and sinks of G. Therefore, calculating $\# H(G)$ is easy in this case.

For the inductive step, suppose $\ell>2$. Let H^{\prime} denote the part of H excluding levels 0 and ℓ and let G^{\prime} denote the part of G excluding levels 0 and ℓ. Using reasoning similar to that in the proof of Theorem 6.1, we can assume that G^{\prime} is connected and then that H^{\prime} is connected. Since H is Lovász-good, so is H^{\prime}. Now by Lemma 6.4 there is a good factorization ($Q^{\prime}, U^{\prime}, D^{\prime}$) of H^{\prime}.

Let $S \subseteq \mathcal{V}_{1}$ be the nodes in level 1 of H that are adjacent to the source and $T \subseteq \mathcal{V}_{\ell-1}$ be the nodes in level $\ell-1$ of H that are adjacent to the sink. Note that \mathcal{V}_{1} is the top level of U^{\prime} and $\mathcal{V}_{\ell-1}$ is the bottom level of D^{\prime}.

Construct Q from Q^{\prime} by adding a new top and bottom level with a new source and sink. Connect the new source and sink to the old ones. Construct D from D^{\prime} by adding a new top and bottom level with a new source and sink. Connect the new source to the old one and the new sink to T. Finally, construct U from U^{\prime} by adding a new top and bottom level with a new source and sink. Connect the new source to S and the new sink to the old one. See Figure 6. Note that (Q, U, D) is a good factorization of H. To see that $Q H \equiv U D$, consider the component of $Q^{\prime} H^{\prime}$ that includes sources and sinks. (There is just one of these. Since H^{\prime} is Lovász-good, it has a directed path from every source to every sink by Lemma 5.4. So does Q^{\prime}. Then use Lemma 2.1.) This is isomorphic to the corresponding component in $D^{\prime} U^{\prime}$ since ($Q^{\prime}, U^{\prime}, D^{\prime}$) is a good factorization of H^{\prime}. The isomorphism maps S in H^{\prime} to a corresponding S in U^{\prime} and now note that the new top level is appropriate in $Q H$ and $D U$. Similarly, the new bottom level is appropriate.

Now let us consider how to compute $\# Q(G)$. In any homomorphism from G to Q, every node in level 1 of G gets mapped to the singleton in level 1 of Q. Thus, we can collapse all level 1 nodes of G into a single vertex without changing the problem. At this point, the top level of G and Q are not doing anything, so they can be removed, and we have a subproblem with fewer levels. So $\# Q(G)$ can be computed recursively. The same is true for $\# D(G)$. For $\# U(G)$, we cannot remove the top level of G and U, since that would leave a subproblem with multiple sources, but we can remove the bottom level, obtaining a single-source single-sink sub-problem with fewer levels. Thus, $\# Q(G), \# D(G)$, and $\# U(G)$ can all be computed by recursive calls with fewer levels.

Since $G \in \mathcal{C}_{\ell}, \# Q H(G)=\# Q(G) \# H(G)$. Also, since components without sources and sinks cannot be used to color G (which has the full ℓ layers), this is equal to $\# D(G) \# U(G)$. Thus, we can output $\# H(G)=\# D(G) \# U(G) / \# Q(G)$.

To see that the algorithm runs in polynomial time, note that the graphs D, U and Q constructed in recursive calls depend only on H, and not on G. The total number of recursive calls is at most 4^{ℓ}, which is a constant independent of G.

That concludes the proof of Lemma 6.2, so it only remains to prove Lemma 6.4. The proof will be by induction, and we will need the following technical lemmas in the induction.

LEMMA 6.5. Suppose that H is Lovász-good and top- $(j-1)$ disjoint, $S \subseteq \mathcal{V}_{0}$ and $H_{S}^{[0, j]}$ is connected. If (Q, U, D) is a good factorization of $H_{S}^{[0, j]}$, then $\operatorname{Div}(H$, $Q, U, D)$ is Lovász-good.

Proof. Suppose to the contrary that $\tilde{H}=\operatorname{Div}(H, Q, U, D)$ contains a Lovász violation $x, x^{\prime}, y, y^{\prime}$, with x, x^{\prime} in level i, and y, y^{\prime} in level k. Since D is Lovász-good, we may assume without loss that x is in D, with $i<j$, and that $k>j$. Thus, y, y^{\prime} are not in D. Let $\widetilde{Q}, \widetilde{U}$ be $Q^{[i, j]}, U^{[i, j]}$, both extended downwards by a single path to level k. There are two cases.

If x^{\prime} is in D, Lemma 5.5 gives us a Lovász violation in $\tilde{H} \tilde{U}^{[i, k]}$. (By the proof of Lemma 5.5, this involves nodes at level i and k.) This gives us a Lovász violation in $H^{[i, k]} \widetilde{Q}^{[i, k]}$ since these graphs are isomorphic except for components that do not extend down to y and y^{\prime}. Finally, by Lemma 5.5, we find a Lovász violation in $H^{[i, k]}$, and hence in H, which gives a contradiction.

If x^{\prime} is not in D, then let H^{*} be $\operatorname{Mul}(\tilde{H}, D, U)$. Let w be some vertex on level i of \widetilde{U} which has a directed path to the $\operatorname{sink} z$ of \widetilde{U}. Now, by construction

$$
H_{x w, y}^{*} H_{x^{\prime}, y^{\prime}}^{*} \equiv \tilde{H}_{x y} \tilde{H}_{x^{\prime} y^{\prime}}\left(\tilde{U}_{w z}\right)
$$

and

$$
H_{x w, y^{\prime}}^{*} H_{x^{\prime}, y}^{*} \equiv \widetilde{H}_{x y^{\prime}} \tilde{H}_{x^{\prime} y}\left(\widetilde{U}_{w z}\right)
$$

Because these graphs all have single sources and sinks (at levels i and k), we can apply Lemma 3.7 to cancel and find a Lovász violation $x w, y, x^{\prime}, y^{\prime}$ in H^{*}.

Then, do a local multiplication multiplying the component of x^{\prime} by Q and again, in the same way, we find a Lovász violation $x w, y, x^{\prime} w^{\prime}, y^{\prime}$ in the resulting graph, $H^{* *}$.

Now, since $D U \equiv Q H_{S}^{[0, j]}$ and since $x w$ does have a path down to level j of $H^{* *}$, the component containing $x w$ in $H^{* *[0, j]}$ is isomorphic to the corresponding component in $Q H^{[0, j]}$. Thus, the same Lovász violation exists in $\widetilde{Q} H$, where now we extend the tail of Q all the way down to level ℓ of H.

Now, to get a Lovász violation in H itself, we use the reasoning from the proof of Theorem 5.5. Say the Lovász violation is $x_{Q} x_{H}, y_{Q} y_{H}, x_{Q}^{\prime} x_{H}^{\prime}, y_{Q}^{\prime} y_{H}^{\prime}$. Then,

$$
(\tilde{Q} H)_{x_{Q} x_{H} y_{Q} y_{H}}^{[i, k]}(\tilde{Q} H)_{x_{Q}^{\prime} x_{H}^{\prime} y_{Q}^{\prime} y_{H}^{\prime}}^{[i, k]} \equiv Q_{x_{Q} y_{Q}} H_{x_{H} y_{H}} Q_{x_{Q}^{\prime} y_{Q}^{\prime}} H_{x_{H}^{\prime} y_{H}^{\prime}},
$$

and

$$
(\tilde{Q} H)_{x_{Q} x_{H} y_{Q}^{\prime} y_{H}^{\prime}}^{[i, k]}(\tilde{Q} H)_{x_{Q}^{\prime} x_{H}^{\prime}, y_{Q} y_{H}}^{[i, k]} \equiv Q_{x_{Q} y_{Q}^{\prime}} H_{x_{H} y_{H}^{\prime}} Q_{x_{Q}^{\prime} y_{Q}} H_{x_{H}^{\prime} y_{H}}
$$

The first of these is equivalent to $Q_{x_{Q} y_{Q}^{\prime}} H_{x_{H} y_{H}} Q_{x_{Q}^{\prime} y_{Q}} H_{x_{H}^{\prime} y_{H}^{\prime}}$ since Q is Lovász-good. Now if we had

$$
H_{x_{H} y_{H}} H_{x_{H}^{\prime} y_{H}^{\prime}} \equiv H_{x_{H} y_{H}^{\prime}} H_{x_{H}^{\prime} y_{H}},
$$

we could multiply both sides by $Q_{x_{Q} y_{Q}^{\prime}} Q_{x_{Q}^{\prime} y_{Q}}$ to get

$$
(\widetilde{Q} H)_{x_{Q} x_{H} y_{Q} y_{H}}^{[i, k]}(\widetilde{Q} H)_{\left.x_{Q}^{\prime} x_{H} y_{Q} y_{H}^{\prime}, k\right]}^{\left[i y_{H}^{\prime}\right.} \equiv(\widetilde{Q} H)_{x_{Q} x_{H} y_{Q}^{\prime} y_{H}^{\prime}}^{[i, k]}(\widetilde{Q} H)_{x_{Q}^{\prime} x_{H}^{\prime}, y_{Q} y_{H}}^{[i,},
$$

which is a contradiction since this was a Lovász violation.
Lemma 6.6. Suppose that H and U are Lovász-good. Then, $\operatorname{Mul}(H, C, U)$ is Lovász-good.

Proof. Suppose $M=\operatorname{Mul}(H, C, U)$ is not Lovász-good. By Lemma 5.5, the full component of $U C$ is Lovász-good, so there is a Lovász violation in levels i and k of M with $i \leq j$ and $k>j$. Also, one of the relevant vertices in level i is in the component from $U C$ in the local multiplication.
First, suppose that both of the relevant vertices in level i are in this component. Then there is a Lovász violation (the same one) in $\widehat{U} H$, where \widehat{U} extends U with a path. Now restricting attention to levels i, \ldots, k, Lemma 5.5 shows that there is a Lovász violation in H or \widehat{U} (hence U), which is a contradiction.

Second, suppose that only one of the relevant vertices in level i is in the component from $C U$ in the local multiplication. Denote this vertex by $x_{C} x_{U}$, where x_{C} and x_{U} are the relevant vertices from C and U, respectively. Then the Lovász violation can be written

$$
M_{x_{U} x_{C}, y}^{[i, k]} M_{x^{\prime}, y^{\prime}}^{[i, k]} \not \equiv M_{x_{U} x_{C}, y^{\prime}}^{[i, k]} M_{x^{\prime}, y}^{[i, k]},
$$

and expanding the product, letting \widehat{U} denote the extension of U downwards with a path to node s on level k, this is

$$
\widehat{U}_{x_{u}, s}^{[i, k]} H_{x_{C}, y}^{[i, k]} H_{x^{\prime}, y^{\prime}}^{[i, k]} \not \equiv \widehat{U}_{x_{U}, s}^{[i, k]} H_{x_{C}, y^{\prime}}^{[i, k]} H_{x^{\prime}, y}^{[i, k]} .
$$

But this gives us a Lovász violation in H, which is a contradiction.

7. Proof of Lemma 6.4

A top-dangler R is a component in $H^{[1, \ell-1]}$ that is incident to a source but not to a sink. We say that the depth of R is j if level j of R is non-empty and levels $j+1, \ldots, \ell-1$ are empty. Similarly, a bottom-dangler R is a component in $H^{[1, \ell-1]}$ that is incident to a sink but not to a source. We say that the height of R is j if level $\ell-j$ of R is non-empty and levels $1, \ldots, \ell-j-1$ are empty. Note that a bottom-dangler in H is a top-dangler in H^{R}.
The proof of Lemma 6.4 will be by induction. The base case will be $\ell=1$, where it is easy to see that a connected Lovász-good H must be a complete bipartite graph. The ordering for the induction will be lexicographic on the following criteria (in order):
(1) the number of levels,
(2) the number of sources,
(3) the number of top-danglers,
(4) the number of sinks,
(5) the number of bottom-danglers.

Thus, for example, if H^{\prime} has fewer levels than H then H^{\prime} precedes H in the induction. If H^{\prime} and H have the same number of levels, the same number of sources
and the same number of top-danglers but H^{\prime} has fewer sinks then H^{\prime} precedes H in the induction.

The inductive step will be broken into five cases. The cases are exhaustive but not mutually exclusive—given an H we will apply the first applicable case.

Case 1. H is top- $(j-1)$ disjoint and has a top-dangler with depth at most $j-1$.
Case 2. For $j<\ell, H$ is top- $(j-1)$ disjoint, but not top- j disjoint, and has no top-dangler with depth at most $j-1$.
Case 3. H is top- $(\ell-1)$ disjoint and has no top-dangler and is bottom- $(j-1)$ disjoint and has a bottom-dangler with height at most $(j-1)$.
Case 4. For $j<\ell, H$ is top- $(\ell-1)$ disjoint and has no top-dangler and is bottom-$(j-1)$ disjoint, but not bottom- j disjoint, and has no bottom-dangler with height at most $(j-1)$.
Case 5. H is fully disjoint and has no top-danglers or bottom-danglers.
7.1. CASE 1. H is top- $(j-1)$ disjoint and has a top-dangler with depth at most $j-1$. Let R be a top-dangler with depth j^{\prime} where $j^{\prime}<j$ (meaning that it is a component in $H^{[1, \ldots, \ell-1]}$ that is incident to a source but not to a sink, and that levels $j^{\prime}+1, \ldots, \ell-1$ are empty and level j^{\prime} is non-empty). Note that since H is top- $(j-1)$ disjoint, R must be adjacent to a single source v in H. This follows from the definition of top- $(j-1)$ disjoint, and from the fact that R has depth at most $j-1$.

Construct H^{\prime} from H by removing R. Note that H^{\prime} is connected. By construction (from H), H^{\prime} is Lovász-good, and has no empty levels. It precedes H in the induction order since it has the same number of levels, the same number of sources and one fewer top-dangler. By induction, it has a good factorization $\left(Q^{\prime}, U^{\prime}, D^{\prime}\right)$ so $Q^{\prime} H^{\prime} \equiv U^{\prime} D^{\prime}$.

Construct \widehat{D} as follows. On layers $1, \ldots, j^{\prime}, \widehat{D}$ is identical to D^{\prime}. On layers $j^{\prime}+2, \ldots, \ell, \widehat{D}$ is a path. Every node in level j^{\prime} is connected to the singleton vertex in level $j^{\prime}+1$. Then clearly $\widehat{D} Q^{\prime} H^{\prime} \equiv \widehat{U} D^{\prime}$ where \widehat{U} is the single full component of $\widehat{D} U^{\prime}$. (There is just one of these. Since \widehat{D} is Lovász-good, it has a directed path from every source to every sink by Lemma 5.4. So does U^{\prime}. Then use Lemma 2.1.) Note that \widehat{U} has a single sink.

Let R^{\prime} be the graph obtained from R by adding the source v. Let $R^{\prime \prime}$ be $Q^{\left[0, j^{\prime}\right]} R^{\prime}$. Form $U^{\prime \prime}$ from $R^{\prime \prime}$ and \widehat{U} by identifying v with the appropriate source of \widehat{U}. (Note that \widehat{U} has the same sources as H). Then $\widehat{D} Q^{\prime} H \equiv U^{\prime \prime} D^{\prime}$, since $\widehat{D} Q^{\prime} H$ is formed from $\widehat{D} Q^{\prime} H^{\prime}$ by "adding in" R^{\prime} (which gets multiplied by \widehat{D} and Q^{\prime}) and, on the right-hand side, $U^{\prime \prime} D^{\prime}$ is formed from $\widehat{U} D^{\prime}$ by "adding in" $Q^{\prime} R^{\prime}$ (which gets multiplied by \widehat{D}).

Thus, we have a good factorization $\left(Q, U, D^{\prime}\right)$ of H by taking Q to be the full component of $\widehat{D} Q^{\prime}$ and U to be the full component of $U^{\prime \prime}$. To see that it is a good factorization, use Lemma 5.5 to show that Q and U are Lovász-good.
7.2. CASE 2. For $j<\ell, H$ is top- $(j-1)$ disjoint, but not top- j disjoint, and has no top-dangler with depth at most $j-1$. Partition the sources of H into equivalence classes S_{1}, \ldots, S_{k} so that the graphs $H_{S_{i}}^{[0, j]}$ are connected and pairwise disjoint. See Figure 7. Since H is not top- j disjoint, some equivalence class, say S_{1}, contains more than one source.

Fig. 8. H^{\prime}.
Let \widehat{H} denote $H_{S_{1}}^{[0, j]}$. \widehat{H} is shorter than H, so it comes before H in the induction order. It is connected by construction of the equivalence classes, and it is Lovászgood by virtue of being a subgraph of H. By induction we can construct a good factorization $(\widehat{Q}, \widehat{U}, \widehat{D})$ of \widehat{H}. Let $H^{\prime}=\operatorname{Div}(H, \widehat{Q}, \widehat{U}, \widehat{D})$. See Figure 8 .
H^{\prime} comes before H in the induction order because it has the same number of levels, but fewer sources. To see that H^{\prime} is connected, note that H is connected. Since $\left(\widehat{Q}, \widehat{U}, \widehat{D}\right.$) is a good factorization, we know \widehat{D} is connected, so H^{\prime} is connected. By Lemma 6.5, H^{\prime} is Lovász-good. By induction, we can construct a good factorization ($Q^{\prime}, U^{\prime}, D^{\prime}$) of H^{\prime}.

Let s be the (single) source of \widehat{D}. By construction, the sources of U^{\prime} are $\{s\} \cup$ $S_{2} \cup \cdots \cup S_{k}$. See Figure 9 .

Let C_{1}, \ldots, C_{z} be the connected components of $U^{[0, j]}$. Let C_{1} be the component containing s. Since the $H_{S_{i}}^{[0, j]}$ are connected and pairwise disjoint, and Q^{\prime} is connected and has a single source, there is a single connected component of $\left(Q^{\prime} H^{\prime}\right)^{[0, j]}$ containing all of S_{i} (and no other sources) so (see Figure 9) there is a single connected component of $U^{\prime[0, j]}$ containing all of S_{i} (and no other sources). For convenience, call this C_{i}.

If $z>k$, then components C_{k+1}, \ldots, C_{z} do not contain any sources. (They are due to danglers in U^{\prime}, which in this case are nodes that are not descendents of a source.)

Now consider $U_{1}=\operatorname{Mul}\left(U^{\prime}, C_{1}, \widehat{U}\right) . U_{1}$ is the graph constructed from U^{\prime} by replacing C_{1} with the full component of $C_{1} \widehat{U}$. For $i \in\{2, \ldots, z\}$, let $U_{i}=$ $\operatorname{Mul}\left(U_{i-1}, C_{i}, \widehat{Q}\right) . U_{z}$ is the graph constructed from U^{\prime} by replacing C_{1} with the full component of $C_{1} \widehat{U}$ and replacing every other C_{i} with the full component of $C_{i} \widehat{Q}$.

Fig. 9. $Q^{\prime} H^{\prime} \equiv D^{\prime} U^{\prime}$.
Let \widetilde{Q} extend \widehat{Q} down to level ℓ with a single path. We claim that

$$
\begin{equation*}
Q^{\prime} \widetilde{Q} H \equiv U_{z} D^{\prime} . \tag{7}
\end{equation*}
$$

To establish Eq. (7), note that on levels $[j, \ldots, \ell]$ the left-hand side is

$$
\left(Q^{\prime} \widetilde{Q} H\right)^{[j, \ell]} \equiv\left(Q^{\prime} H^{\prime}\right)^{[j, \ell]} .
$$

Any components of $Q^{\prime} H^{\prime}$ that differ from $U^{\prime} D^{\prime}$ do not include level ℓ, so these do not have any effect on the equivalence relation defined between levels j and ℓ (deleting short components). So

$$
\left(Q^{\prime} H^{\prime}\right)^{[j, \ell]} \equiv\left(U^{\prime} D^{\prime}\right)^{[j, \ell]} \equiv\left(U_{z} D^{\prime}\right)^{[j, \ell]}
$$

which is the right-hand side. So focus on levels $0, \ldots, j$.
From the left-hand side, look at the component $\left(Q^{\prime} \widetilde{Q} H\right)_{S_{1}}^{[0, j]}$. Note that it is connected. It is

$$
\left(Q^{\prime[0, j]} \widehat{Q} \widehat{H}\right)_{S_{1}}^{[0, j]} \equiv\left(Q^{\prime[0, j]} \widehat{U} \widehat{D}\right)_{S_{1}}^{[0, j]} \equiv\left(\left(D^{[0, j]} U^{\prime[0, j]}\right)_{\{s\}} \widehat{U}\right)_{S_{1}}^{[0, j]} \equiv\left(D^{\prime} U_{z}\right)_{S_{1}}^{[0, j]}
$$

which is the right-hand side.
Then, look at the component S_{2}.

$$
\left(Q^{\prime} \widetilde{Q} H\right)_{S_{2}}^{[0, j]} \equiv\left(Q^{\prime[0, j]} \widehat{Q} H^{[0, j]}\right)_{S_{2}} \equiv\left(\left(D^{\prime[0, j]} U^{\prime 0, j]}\right)_{S_{2}} \widehat{Q}\right)_{S_{2}}^{[0, j]} \equiv\left(D^{\prime} U_{z}\right)_{S_{2}}^{[0, j]}
$$

The other components containing sources (which are the only components that we care about) are similar.

Having established (7), we observe that $\left(Q, U, D^{\prime}\right)$ is a good factorization of H where Q is the full component of $Q^{\prime} \widetilde{Q}$ and U is the full component of U_{z}. Use Lemma 5.5 to show Q is Lovász-good and Lemma 6.6 to show that U_{z} is.
7.3. CASE 3. H is top $-(\ell-1)$ disjoint and has no top-dangler and is bottom-$(j-1)$ disjoint and has a bottom-dangler with height at most $(j-1)$. We apply an analysis similar to Section 7.1 to the reversed graph from Remark 4.3. Let H^{R} be an instance in Case 3. Thus, H is top- $(j-1)$ disjoint and has a top-dangler with depth at most $j-1$. Also, H is bottom- $(\ell-1)$ disjoint and has no bottom dangler. Apply the transformation in Section 7.1 to H. This produces an inductive instance H^{\prime}. As we noted in Section 7.1, H^{\prime} precedes H in the induction order since it has the same number of levels, the same number of sources and one fewer top-dangler. Crucially, H^{\prime} has the same number of sinks as H and the same number of bottom-danglers as H. (We have not added any.) Thus, $H^{\prime R}$ precedes H^{R} in the
\mathcal{V}_{0}

Fig. 10. Fully disjoint case.
inductive order. It has one fewer bottom-dangler and everything else is the same. Then, the good factoring (Q, U, D) of H that we produce gives us a good factoring $\left(Q^{R}, D^{R}, U^{R}\right)$ of H^{R}.
7.4. Case 4. For $j<\ell, H$ is top- $(\ell-1)$ disjoint and has no top-dangler and is bottom-($j-1$) disjoint, but not bottom- j disjoint, and has no bottom-dangler with height at most $(j-1)$. We apply an analysis similar to Section 7.2 to the reversed graph from Remark 4.3. Let H^{R} be an instance in Case 4. The reversed graph H is bottom- $(\ell-1)$-disjoint with no bottom-dangler. For some $j<\ell$, it is top-($j-1)$-disjoint, but not top- j disjoint and has no top-dangler with depth at most $j-1$. Apply the analysis in Case 3. This produces an inductive instance H^{\prime} with fewer sources. H^{\prime} has the same number of levels as H. Furthermore, H^{\prime} has the same number of sinks as H and the same number of bottom-danglers. Thus, $H^{\prime R}$ has fewer sinks than H^{R}, but the same number of levels, sources, and top-danglers. So it precedes H^{R} in the induction order. Then, the good factoring (Q, U, D) of H that we produce gives us a good factoring $\left(Q^{R}, D^{R}, U^{R}\right)$ of H^{R}.
7.5. CASE 5. H is fully disjoint and has no top-danglers or bottom-danglers. In the fully disjoint case, the subgraphs $H_{s t}\left(s \in \mathcal{V}_{0}, t \in \mathcal{V}_{\ell}\right)$ satisfy

$$
H_{s t} \cap H_{s^{\prime} t^{\prime}}=\left\{\begin{align*}
\{s\}, & \text { if } s=s^{\prime}, t \neq t^{\prime} ; \tag{8}\\
\{t\}, & \text { if } s \neq s^{\prime}, t=t^{\prime} ; \\
\emptyset, & \text { if } s \neq s^{\prime}, t \neq t^{\prime} .
\end{align*}\right.
$$

Also $H_{s t} \neq \mathbf{0}$, and $H_{s t} H_{s^{\prime} t^{\prime}} \equiv H_{s t^{\prime}} H_{s^{\prime} t}$ since H is Lovász-good. We assume without loss that $\left|\mathcal{V}_{0}\right|>1$ and $\left|\mathcal{V}_{\ell}\right|>1$, since otherwise $(\mathbf{1}, H, \mathbf{1})$ or $(\mathbf{1}, \mathbf{1}, H)$ is a good factorization. See Figure 10.

Choose any $s^{*} \in \mathcal{V}_{0}, t^{*} \in \mathcal{V}_{\ell}$, and let $Q=H_{s^{*} t^{*}}$. Note that Q is connected with a single source and sink, and is Lovász-good because H is Lovász-good. Let D be the subgraph $\bigcup_{t \in \mathcal{V}_{\ell}} H_{s^{*} t}$ of H, and let U be the subgraph $\bigcup_{s \in \mathcal{V}_{0}} H_{s t^{*}}$ of H. These are both connected and Lovász-good since H is. Clearly D has a single source and U has a single sink. Also $Q H \equiv D U$ follows from (8) and from the fact that there are no top-danglers or bottom-danglers and

$$
\begin{equation*}
(D U)_{s^{*} s, t t^{*}}=D_{s^{*} t} U_{s t^{*}} \equiv H_{s^{*} t} H_{s_{t^{*}}}=H_{s^{*} t^{*}} H_{s t}=Q H_{s t} \quad\left(s \in \mathcal{V}_{0} ; t \in \mathcal{V}_{\ell}\right), \tag{9}
\end{equation*}
$$

where we have used the fact that H is Lovász-good. Thus, (Q, U, D) is a good factorization of H.

REFERENCES

Bulatov, A., and Dalmau, V. 2003. Towards a dichotomy theorem for the counting constraint satisfaction problem. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 562-571.
Bulatov, A., AND Grohe, M. 2005. The complexity of partition functions. Theoret. Comput. Sci.348, 2, 148-186.
Creignou, N., and Hermann, M. 1996. Complexity of generalized satisfiability counting problems. Inf. Comput. 125, 1, 1-12.
Dyer, M., and Greenhill, C. 2000. The complexity of counting graph homomorphisms. Random Struct. Algorithms 17, 3-4, 260-289.
Even, S., AND Litman, A. 1997. Layered cross product-A technique to construct interconnection networks. Networks 29, 4, 219-223.
FEDER, T., AND VARDI, M. 1998. The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28, 1, 57-104.
Hell, P., AND NeŠETŘil, J. 1990. On the complexity of h-coloring. J. Combinat. Theory Ser. B 48, 1, 92-110.
Hell, P., AND NEŠETŘil, J. 2004. Graphs and Homomorphisms. Oxford University Press, Oxford, UK. Imrich, W., ANd Klavžar, S. 2000. Product Graphs: Structure and Recognition. Wiley, New York.
LADNER, R. 1975. On the structure of polynomial time reducibility. J. ACM 22, 1, 155-171.
LoVÁSZ, L. 1967. Operations with structures. Acta Math. Acad. Sci. Hungary 18, 321-328.
SCHAEFER, T. 1978. The complexity of satisfiability problems. In Proceedings of the 10 th Annual ACM Symposium on Theory of Computing. ACM, New York, 216-226.
VALIANT, L. 1979. The complexity of enumeration and reliability problems. SIAM J. Comput. 8, 3, 410-421.
van Lint, J., AND WILsON, R. 2001. A Course in Combinatorics, 2 nd ed. Cambridge University Press, Cambridge, UK.

RECEIVED OCTOBER 2006; ACCEPTED OCTOBER 2007

[^0]: ${ }^{1}$ The graph with a singleton isolated vertex is taken to be a (degenerate) complete bipartite graph with no loops.

[^1]: ${ }^{2}$ This is called a balanced digraph in Feder and Vardi [1998] and Hell and Nešetřil [2004]. However, "balanced" has other meanings in the study of digraphs.

[^2]: ${ }^{3}$ This means that $H+H_{1}=H+H_{2}$ implies $H_{1}=H_{2}$. Similarly for \times.

[^3]: ${ }^{4}$ The name derives from the isomorphism theorem (Theorem 3.1) of Lovász [1967].

