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COMPUTATIONAL COMPLEXITY OF HOLANT PROBLEMS∗

JIN-YI CAI† , PINYAN LU‡ , AND MINGJI XIA§

Abstract. We propose and explore a novel alternative framework to study the complexity of
counting problems, called Holant problems. Compared to counting constraint satisfaction problems
(#CSP), it is a refinement with a more explicit role for the constraint functions. Both graph ho-
momorphism and #CSP can be viewed as special cases of Holant problems. We prove complexity
dichotomy theorems in this framework. Our dichotomy theorems apply to local constraint functions,
which are symmetric functions on Boolean input variables and evaluate to arbitrary real or complex
values. We discover surprising tractable subclasses of counting problems, which could not easily
be specified in the #CSP framework. When all unary functions are assumed to be free (Holant∗
problems), the tractable ones consist of functions that are degenerate, or of arity at most two, or
holographic transformations of Fibonacci gates. When only two special unary functions, the constant
zero and constant one functions, are assumed to be free (Holantc problems), we further identify three
special families of tractable cases. Then we prove that all other cases are #P-hard. The main tech-
nical tool we use and develop is holographic reductions. Another technical tool used in combination
with holographic reductions is polynomial interpolations.
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1. Introduction. In order to study the complexity of counting problems, sev-
eral interesting frameworks have been proposed. One is called counting constraint
satisfaction problems (#CSP) [4, 2, 18, 3]. Another well-studied framework is called
graph homomorphisms or H-coloring problems, which can be viewed as a special case
of #CSP problems [5, 6, 21, 22, 19, 20, 24, 7]. One reason such frameworks are in-
teresting is because the language is expressive enough so that they can express many
natural counting problems, while specific enough so that it is possible to prove com-
plete classification theorems on their complexity [15]. Natural counting problems that
can be expressed as graph homomorphism problems include counting the number of
vertex covers, the number of k-colorings in a graph, and many others. However, there
are some natural and important counting problems, which cannot be expressed as
a graph homomorphism problem. In [23], it is proved that counting the number of
perfect matchings in a graph cannot be expressed as a graph homomorphism function.
Additionally, sometimes a problem can be expressed in the existing framework, such
as #CSP, but only with some contrived restrictions.
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In this paper, we propose and explore an alternative framework to study the
complexity of counting problems, called Holant problems. This notion is motivated
by holographic reductions proposed by Valiant [34, 33]. Compared to #CSP, it is a
generalization with a more explicit role for the constraint functions, without assuming
implicitly that Equality functions of all arities are freely available. Both graph
homomorphism and #CSP can be viewed as special cases of Holant problems. We
give a brief description here, and a more formal definition is given in section 2. A
signature grid Ω = (G,F , π) is a tuple, where G = (V,E) is an undirected graph, F
is a set of functions, and π maps each v ∈ V (G) to a function fv ∈ F , with input
variables associated with the incident edges at v. Edges are treated as variables that
take values from a finite domain set [q]. An assignment σ gives each edge e ∈ E a
value from [q] and produces an evaluation

∏
v∈V fv(σ |E(v)), where E(v) denotes the

incident edges of v, and fv is evaluated on the restriction of σ on E(v). The counting
problem on an input instance Ω is to compute

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v)).

For example, consider the Perfect Matching problem on G. This problem corre-
sponds to attaching the Exact-One function at every vertex of G. Consider all 0-1
edge assignments σ. The product

∏
v∈V fv(σ |E(v)) evaluates to 0 or 1, and is 1 iff

σ−1(1) ⊆ E is a perfect matching. Hence in this case, HolantΩ counts the number of
perfect matchings. If we use the At-Most-One function at every vertex, then we are
counting all (not necessarily perfect) matchings. So this new framework can express
some natural counting problems that are not expressible as graph homomorphisms.

To see that Holant is a more expressive framework, we show that every #CSP
problem can be simulated by a Holant problem. Represent an instance of a #CSP
problem by a bipartite graph where the left-hand sides (LHS) are labeled by variables
and the right-hand sides (RHS) are labeled by constraints. Now the signature grid Ω
on this bipartite graph is as follows: Every variable node on the LHS is attached to an
Equality function, and every constraint node on the RHS has the given constraint
function. Then HolantΩ is exactly the answer to the #CSP problem. In effect,
the Equality function on each variable node forces the incident edges to take the
same value; this effectively reduces edge assignments to vertex assignments assigning
values to each variable on the LHS as in #CSP. It follows that #CSP problems are
precisely the special case of Holant problems on bipartite graphs where every node
on LHS is attached to an Equality function. It is easy to show that the class of
#CSP problems is equivalent to Holant problems where all Equality functions (of
arbitrary arities) are always assumed to be freely available, and implicitly so. Graph
homomorphism is a further special case where not only all Equality functions are
freely (and implicitly) available, but also the function set F in our signature grid Ω
contains exactly one binary function (other than the Equality functions). It turns
out that allowing Equality functions has a major influence on the computational
complexity of the problems. By making the presence of these Equality functions
explicit, the Holant framework of counting problems can make a finer complexity
classification, which is difficult to do in #CSP.

Our Holant problem framework is strongly influenced by the development of holo-
graphic algorithms and holographic reductions [34, 33, 9, 13]. Indeed, we will use and
develop holographic reductions in this paper as a primary technique. One advantage
of our new framework is that one can naturally consider new subclasses of counting
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problems as special cases of Holant problems other than #CSP problems. It turns out
that a special class of constraint functions, called degenerate functions, plays a basic
role in tractable cases. These are functions that can be expressed as tensor products
of unary functions (a unary function is a function of arity one, i.e., on one variable).
Degenerate functions are particularly weak. By assuming all unary functions are
freely available, we propose an interesting class of counting problems called Holant∗

problems. Our first main result is a complexity dichotomy theorem for all Holant∗

problems for arbitrary complex valued symmetric functions over Boolean variables:
Each problem in the class is either #P-hard or solvable in polynomial time. In this
dichotomy theorem, essentially all tractable cases are accomplished by holographic
algorithms with Fibonacci gates [13, 12]. And what is more interesting and surprising
is that the key technique used in the hardness proof is also holographic reductions.
Furthermore, we prove that the dichotomy theorem also holds for planar graphs.

Our second main result is a dichotomy theorem for an even more appealing class of
counting problems, called Holantc problems, where we assume only two special unary
functions Δ0 and Δ1 are available. These two unary functions simply set a particular
edge (variable) to a constant value 0 or 1, respectively. We can prove again that
every problem in this class is either #P-hard or solvable in P. However, here we can
only prove it for all real valued symmetric functions over Boolean variables, as local
constraint functions. Note that when we assume fewer functions are freely available
in the framework, it makes the specification of the family more stringent. It delin-
eates more precisely what functions and what combinations lead to #P-hardness or
to tractability, respectively. However, the fewer functions are assumed free, the more
challenging it is to prove #P-hardness. We make essential use of the dichotomy theo-
rem just proved for Holant∗ problems, as a launching station to prove our dichotomy
theorem for Holantc problems.

Holantc problems are basically generic Holant problems with the ability to fix the
assignments of some edges to constants. In many cases this is indeed very natural.
By the Pinning Lemma in [18], in any #CSP problem, Δ0 and Δ1 can be simulated
(using Equality functions), and as a result can be viewed as freely available. In
other words Equality functions are stronger than Δ0 and Δ1. Therefore Holantc

problems already subsume #CSP, and meanwhile provide a way for a more exacting
account of what makes a problem tractable or #P-hard.

The main technique for the proof of the second dichotomy theorem is polynomial
interpolation. Once we can interpolate all unary functions, we can apply the di-
chotomy theorem for Holant∗ problems. Our dichotomy theorems have already paid
dividends in the study of classifications of #CSP problems. Since #CSP can be viewed
as a special case of Holantc problems, the dichotomy theorem for Holantc problems
automatically implies a dichotomy theorem for Boolean #CSP problems with real
symmetric constraints. Motivated by this, we investigated how one might generalize
the tractable cases to asymmetric ones. Surprisingly it turns out that the symmetric
tractable cases already supplied the essential ingredients for all possible (including
asymmetric) tractable ones. This led us to a dichotomy theorem for the whole fam-
ily of complex weighted Boolean #CSP. However, the proof requires substantial new
techniques, and we report it in a separate paper [11, 14].

2. Definitions and background. Our functions take values in C by default.
In this paper, we will mostly be concerned with symmetric functions on Boolean
variables as local constraint functions; however, the framework of Holant problems is
defined for functions mapping any [q]k → F for a finite q and a field F. Results in this
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paper are for the case q = 2 and F = C, as well as F = R when specified. In order
to avoid any difficulty with respect to models of computation, we will assume the
function values are algebraic numbers. However, for convenience we will still use the
symbol C. (If we use the model of computation over C from [1], then there is no need
for any restriction.) We say a problem is tractable if it is computable in polynomial
time. Since these are functions, this means computable in the class FP (we sometimes
say simply in P, although strictly speaking the latter is a language class).

As stated, a signature grid Ω = (H,F , π) consists of a graph H = (V,E) with
each vertex labeled by a function fv ∈ F of arity deg(v), where deg(v) denotes the
degree of v, and each edge is treated as a variable. We use the symbol Fq when
variables range over [q]. The Holant problem on instance Ω is that of computing
HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)), a sum over all edge assignments σ : E → [q]. When

q = 2, a function fv can be represented as a vector of dimension 2deg(v) listing all its
values, or as a tensor in (C2)⊗ deg(v). This is called a signature. We denote by =k the
Equality signature of arity k. Δ0 (respectively, Δ1) denotes the unary signature
that takes value 1 on input 0 (respectively, 1), and 0 otherwise. A symmetric function
f on k Boolean variables can be denoted by [f0, f1, . . . , fk], where fj is the value of f
on inputs of Hamming weight j. Thus, (=k) = [1, 0, . . . , 0, 1] (with k − 1 many 0’s),
Δ0 = [1, 0], and Δ1 = [0, 1]. A Holant problem is parameterized by a set of signatures.

Definition 2.1. Given a set of signatures F , we define a counting problem
Holant(F):
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

We would like to characterize the complexity of Holant problems in terms of their
signature sets. Some special families of Holant problems have already been widely
studied. For example, if Fq contains all Equality signatures {=1,=2,=3, · · · }, then
this is exactly the weighted #CSP problem. #CSP problems are a special family of
Holant problems, in which we assume that all Equality functions are freely available.
Graph homomorphism is a further special case, where we allow only a single binary
function in Fq other than all the Equality functions.

We now define two more special families of Holant problems by assuming some
signatures are freely available. We define them for q = 2; they can easily be extended
to arbitrary [q].

Definition 2.2. Let U denote the set of all unary signatures. Given a set of
signatures F , we use Holant∗(F) to denote Holant(F ∪ U).

Definition 2.3. Given a set of signatures F , we use Holantc(F) to denote
Holant(F ∪ {Δ0,Δ1}).

Replacing a signature f ∈ F by a constant multiple cf , where c �= 0, does not
change the complexity of Holant(F). It only contributes an easily computable power
of c as a global factor to HolantΩ. So we view f and cf as the same signature. An
important property of a signature is whether it is degenerate.

Definition 2.4. A signature is degenerate iff it is a tensor product of unary
signatures.

In particular, a symmetric signature in F is degenerate iff it can be expressed
as λ[x, y]⊗n. Also a symmetric signature [x0, x1, . . . , xn] is nondegenerate iff rank
[ x0 ... xn−1
x1 ... xn

] = 2. To see this, suppose [x0, x1, . . . , xn] = λ[x, y]⊗n, and then clearly
rank[ x0 ... xn−1

x1 ... xn
] ≤ 1. Conversely, suppose this rank is at most 1. If x0 �= 0, then

there exists a c, such that xi = cxi−1, for 1 ≤ i ≤ n, and we have x0[1, c]
⊗n. If x0 = 0,

since the rank is at most 1, an easy induction shows that x1 = · · · = xn−1 = 0. Then
it is xn[0, 1]

⊗n.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTATIONAL COMPLEXITY OF HOLANT PROBLEMS 1105

To introduce the idea of holographic reductions, it is convenient to consider bi-
partite graphs. For any general graph as a signature grid, we can make it bipartite by
adding an additional vertex on each edge and giving each new vertex the Equality

function =2 on two inputs.
We use #Rq|Gq to denote all counting problems, expressed as Holant problems on

bipartite graphs H = (U, V,E), where each signature for a vertex in U (respectively,
V ) is from Rq (respectively, Gq). An input instance for the bipartite Holant problem
is a bipartite signature grid and is denoted as Ω = (H,Rq |Gq, π). Signatures in Gq are
denoted by column vectors (or contravariant tensors); signatures in Rq are denoted
by row vectors (or covariant tensors) [17, 8].

One can perform (contravariant and covariant) tensor transformations on the
signatures. We will define a simple version of holographic reductions, which are in-
vertible. Suppose #Rq |Gq and #R′

q|G′
q are two Holant problems defined for the same

family of graphs, and T ∈ GLq(C). We will use T to carry out a basis transformation.
We say that there is a holographic reduction from #Rq|Gq to #R′

q|G′
q, if the con-

travariant transformation G′ = T⊗gG and the covariant transformation R = R′T⊗r

map G ∈ Gq to G′ ∈ G′
q and R ∈ Rq to R′ ∈ R′

q, where G and R have arity g and r,
respectively. (Notice the reversal of direction when the transformations T⊗g versus
T⊗r are applied. This is the meaning of contravariance and covariance.)

Theorem 2.5 (Valiant’s Holant theorem [34]). Suppose there is a holographic
reduction from #Rq|Gq to #R′

q|G′
q mapping signature grid Ω to Ω′; then HolantΩ =

HolantΩ′ .
In particular, if T is an invertible holographic reduction from #Rq|Gq to #R′

q|G′
q,

and T−1 is a holographic reduction from #R′
q|G′

q to #Rq|Gq, then one problem is in
P iff the other one is, and similarly one problem is #P-hard iff the other one is also.

Theorem 2.6. Let Fq be a set of signatures and M be a q× q orthogonal matrix,
i.e., MM T = I, the identity matrix. For any signature grid Ω = (G,Fq, π), replacing
every signature F ∈ Fq by M⊗nF , where n is the arity of F , we can get a new
signature grid Ω′. Then HolantΩ = HolantΩ′ .

Proof. First we reformulate the signature grid Ω = (G,Fq, π). We insert a new
vertex on each edge of G with signature =2; the original edge becomes a path of
length 2. This will not change the Holant value. Then for the new bipartite signature
grid (G′, {=2}|Fq, π

′), we apply a holographic reduction with M . This will map a
signature F ∈ Fq to M⊗nF , where n is the arity of F . It is a direct consequence of
MM T = I that =2 will map to itself. Indeed, the covariant transformation maps =2

to (=2)(M
−1)⊗2 as a q2-dimensional row vector. A binary function f can be denoted

by a matrix, where the (i, j) entry is f(i, j), for i, j ∈ [q]. Then =2 is the identity
matrix I. In matrix notation, (=2)(M

−1)⊗2 is precisely (M−1)TIM−1 = I. Now we
can replace each new =2 node back to an edge to revert back to G. This gives the
signature grid Ω′ as required. By the Holant theorem, its value is the same as Ω.

This theorem is very useful as a way to normalize a given signature set Fq.
There is a technical issue with models of computation for C [1, 27]. Strictly

speaking, in the Turing model, we must only use computable numbers. We will state
our results for all C, assuming all numbers and their arithmetic operations (+, ·) in
a particular instance (signature entries) are computable in polynomial time in the
Turing sense. This is certainly the case when Fq is a finite set and function values
are all algebraic numbers.

3. Some preliminary results. A signature from Fq at a vertex is considered
a basic realizable function. Instead of a single vertex, we can use a graph fragment
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H

Fig. 3.1. An F-gate with five dangling edges.

to generalize this notion. An Fq-gate Γ is a tuple (H,Fq, π), where H = (V,E,D)
is a graph with regular edges E and some dangling edges D. (See Figure 3.1 for one
example.) Other than these dangling edges, an Fq-gate is the same as a signature
grid. The role of dangling edges is to provide input/output variables. This is similar
to that of external nodes in Valiant’s notion for matchgates [32, 34]; however, we
allow more than one dangling edge for a node. In H = (V,E,D) each node in V is
assigned a function in Fq by the mapping π (we do not consider “dangling” leaf nodes
at the end of a dangling edge among these), E is the set of regular edges, denoted as
1, 2, . . . ,m, and D is the set of dangling edges, denoted as m + 1,m + 2, . . . ,m+ n.
Then we can define a function for this F -gate Γ = (H,Fq, π),

Γ(y1, y2, . . . , yn) =
∑

x1,x2,...,xm∈[q]

H(x1, x2, . . . , xm, y1, y2, . . . , yn),

where (y1, y2, . . . , yn) ∈ [q]n denotes an assignment on the dangling edges andH(x1, x2,
. . . , xm, y1, y2, . . . , yn) denotes the value of the signature grid on an assignment of all
edges. We will also call this function the signature of the Fq-gate Γ. An Fq-gate can
be used in a signature grid as if it is just a single node with the particular signature.
We note that even for a very simple signature set Fq, the signatures for all Fq-gates
can be quite complicated and expressive. Matchgate signatures are an example [32].

Using the idea of Fq-gates, we can reduce one Holant problem to another. Let g be
the signature of some Fq-gate Γ. Then Holant(Fq∪{g}) is polynomial-time Turing re-
ducible to Holant(Fq). The reduction is simple. Given an instance of Holant(Fq∪{g}),
replacing every appearance of g by the Fq-gate Γ, we get an instance of Holant(Fq).
Since the signature of Γ is g, the Holant values for these two signature grids are
identical.

We give some propositions that are useful in the proof in the next section. We
first give one more definition.

Definition 3.1. Given a symmetric signature [x0, x1, . . . , xn] and any l, r where
0 ≤ l < r ≤ n, we call [xl, xl+1, . . . , xr] a subsignature of [x0, x1, . . . , xn] with arity
r − l.

Proposition 3.2. If [xl, xl+1, . . . , xr] is a subsignature of [x0, x1, . . . , xn] and
Holant∗([xl, xl+1, . . . , xr]) is #P-hard, then Holant∗([x0, x1, . . . , xn]) is #P-hard. This
is also true for Holantc.

Proof. We use unary signatures Δ0 = [1, 0], Δ1 = [0, 1], and [x0, x1, . . . , xn] to
simulate a subsignature [xl, xl+1, . . . , xr]. We connect l dangling edges of [x0, x1, . . . , xn]
to the unary signature [0, 1], and connect another n− r dangling edges to the unary
signature [1, 0].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTATIONAL COMPLEXITY OF HOLANT PROBLEMS 1107

Proposition 3.3. Let n ≥ 3 and let [x0, x1, . . . , xn] be a nondegenerate sym-
metric signature. Then for any m = 2, 3, . . . , n − 1, there exists a nondegenerate
subsignature of arity m, unless the signature is of the form [x0, 0, . . . , 0, xn].

Proof. Since rank[ x0 ... xn−1
x1 ... xn

] = 2, there must be nonzero entries among x0, x1, . . . ,
xn. If all entries are nonzero, then either rank[

x0 ... xn−2
x1 ... xn−1 ] = 2 or rank[ x1 ... xn−1

x2 ... xn
] =

2. Otherwise they are both of rank 1, and being nonzero, the second row is a multiple
of the first row in both matrices. Since they share at least one column, and being
nonzero, this multiplier must be the same, which says that rank[ x0 ... xn−1

x1 ... xn
] = 1, a

contradiction. Then we use induction to complete the proof.
Now suppose there are zero entries. Consider x1, . . . , xn−1. Since [x0, . . . , xn] is

not of the form [x0, 0, . . . , 0, xn], there must be some 1 ≤ i ≤ n− 1 such that xi �= 0.
Find an xi �= 0, for some 1 ≤ i ≤ n − 1, such that a neighbor xi−1 = 0 or xi+1 = 0.
Now any submatrix containing [

... xi−1 xi ...

... xi xi+1 ... ] has rank 2.
Proposition 3.4. Let F be a set of signatures and M be a 2 × 2 orthogonal

matrix. We define a new set of signatures FM as follows:

FM = {Y | Y = M⊗nX, where X is a signature in F with arity n}.
Then Holant∗(F) and Holant∗(FM ) have the same complexity; i.e., one problem is in
P (respectively, #P-hard) iff the other problem is also.

Proof. Because M is nonsingular, the set of unary signatures U is transformed to
the same set U . By Theorem 2.6, Holant∗(F) and Holant∗(FM ) have the same value
on the corresponding signature grids. This is clearly a two-way reduction between
them.

Proposition 3.5. Let [x0, x1, x2, x3] be a symmetric signature of arity three,
expressed as row vectors

[x0, x1, x2, x3] = c(α1, α2)
⊗3 + d(β1, β2)

⊗3.

Then

det

[
x0 x1

x1 x2

]
= cd det

[
α1 β1

α2 β2

]2
α1β1, det

[
x1 x2

x2 x3

]
= cd det

[
α1 β1

α2 β2

]2
α2β2,

and

det

[
x0 − x2 x1

x1 − x3 x2

]
= cd det

[
α1 β1

α2 β2

]2
(α1β1 + α2β2).

Suppose cd �= 0 and det[ α1 β1

α2 β2
] �= 0. Then [x0, x1, x2, x3] is nondegenerate. Further-

more, det[ x0−x2 x1
x1−x3 x2

] = 0 iff α1β1 + α2β2 = 0. In the latter case, the unique (up to a

scalar multiple) nonzero solution (a, b) to[
x0 − x2 x1

x1 − x3 x2

] [
a
b

]
= 0

is a = α1β1 = −α2β2 and b = α1β2 + α2β1.
Proof. A straightforward calculation.
Proposition 3.6. Let [x0, x1, x2, x3] be a symmetric signature of arity three,

expressed as

[x0, x1, x2, x3] = c(α1, α2)
⊗3 + d(β1, β2)

⊗3,
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where cd �= 0 and det[ α1 β1

α2 β2
] �= 0. Then, [x0, x1, x2, x3] is of the form [x, y,−x,−y]

iff α2
1 + α2

2 = β2
1 + β2

2 = 0.
Proof. The equations x0 + x2 = 0 and x1 + x3 = 0 are, respectively, cα1(α

2
1 +

α2
2) + dβ1(β

2
1 + β2

2) = 0 and cα2(α
2
1 + α2

2) + dβ2(β
2
1 + β2

2) = 0. Viewed as a linear
equation system on c and d, there are nonzero solutions iff its determinant is zero:

det

[
α1 β1

α2 β2

]
(α2

1 + α2
2)(β

2
1 + β2

2) = 0.

It follows that at least one of the factors α2
1+α2

2 = 0 or β2
1 +β2

2 = 0. In the first case,
by the linear equation system, since (β1, β2) is a nonzero vector, we get the second
factor β2

1+β2
2 = 0 as well. Similarly starting with β2

1+β2
2 = 0 we also get α2

1+α2
2 = 0.

Conversely, if α2 = ±iα1 and β2 = ±iβ1, then c(α1, α2)
⊗3 + d(β1, β2)

⊗3 has the
form [x, y,−x,−y].

4. A dichotomy theorem for Holant∗(F). Our first dichotomy theorem is
for Holant∗(F), where F is an arbitrary set of symmetric signatures on Boolean
variables.

Since all unary signatures can be used for free in Holant∗(F), we always assume
the arity of every signature in F is greater than one. And since any degenerate
signature can be decomposed to unary signatures, we also assume that every signature
in F is nondegenerate.

Theorem 4.1. Let F be a set of nondegenerate symmetric signatures over C.
Then Holant∗(F) is computable in polynomial time in the following three classes. In
all other cases, Holant∗(F) is #P-hard.

1. Every signature in F is of arity no more than two.
2. There exist two constants a and b (not both zero, depending only on F),

such that for all signatures [x0, x1, . . . , xn] ∈ F one of the two conditions is
satisfied: (1) for every k = 0, 1, . . . , n− 2, we have axk + bxk+1 − axk+2 = 0;
(2) n = 2 and the signature [x0, x1, x2] is of the form [2aλ, bλ,−2aλ].

3. For every signature [x0, x1, . . . , xn] ∈ F one of the two conditions is satisfied:
(1) For every k = 0, 1, . . . , n− 2, we have xk + xk+2 = 0; (2) n = 2 and the
signature [x0, x1, x2] is of the form [λ, 0, λ].

The dichotomy is still valid even if the inputs are restricted to planar graphs.
Remark. In order that Holant∗(F) be a finitely specifiable problem with param-

eter F , we may require F to be a finite set. However, our dichotomy theorem is
stronger, and applies to an infinite set F in the following sense: When F falls in one
of the tractable classes, the Holant problem is computable in polynomial time even
when F is infinite, but the input size of the signature grid includes a description (in
symmetric signature notation) of the functions at each node. On the other hand,
when F does not belong to one of the tractable classes, then there is a finite subset
F ′ ⊆ F for which Holant∗(F ′) is #P-hard.

The statement of this dichotomy theorem essentially says that the only symmetric
signature set F for which Holant∗(F) is tractable is when F is degenerate, or of arity
at most two, or most interestingly F consists of Fibonacci gates under a holographic
transformation [13, 12].

Proof outline. The first class to be computable in P is easy. One can compute
the signature of a path by matrix multiplication and the signature of a cycle by
taking trace. The other two polynomial time computable classes use holographic
algorithms and mainly follow from our previous work on Fibonacci gates [13, 12]. See
subsection 4.5.
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Now for the proof of hardness, we first prove in Lemma 4.2 that the theorem
holds if F contains a single symmetric signature of arity three. The main technique is
holographic reductions. The choice of specific reductions is informed by our previous
work on signature theory in holographic algorithms [10, 9]. This theory gives us three
categories in a certain parameterization for a signature of arity three according to
its eigenvalues. For each category, we choose one #P-hard problem to reduce from,
all using holographic reductions. In Lemma 4.3, we prove that if one signature of
arity three has the form in class 2 of Theorem 4.1, and we combine it with another
signature of arity two that is not in class 2, then the Holant∗ problem is #P-hard. The
main idea of the proof of Lemma 4.3 is to reduce it to Lemma 4.2 with holographic
reductions. In Lemma 4.4, we prove the same thing for class 3. In Lemma 4.5 we
extend it to a single signature of arbitrary arity. Finally in subsection 4.5 we extend
the above proofs to a set of signatures of arbitrary arities and finish the proof of
Theorem 4.1.

4.1. The first lemma: A single ternary signature. The following lemma is
an important first step toward the proof of Theorem 4.1. It says that Theorem 4.1
holds if F contains only one signature and it has arity three. Holographic reductions
play a decisive role in the proof. This lemma serves as the foundation for all subsequent
lemmas.

Lemma 4.2. Let [x0, x1, x2, x3] be a nondegenerate symmetric signature with
arity three, then Holant∗([x0, x1, x2, x3]) is #P-hard unless one of the following two
statements is true: (1) there exist two constants a, b (not both zero) such that ax0 +
bx1 − ax2 = 0 and ax1 + bx2 − ax3 = 0; (2) x0 + x2 = 0 and x1 + x3 = 0.

Proof. Assuming [x0, x1, x2, x3] does not satisfy either of the two statements, we
prove that Holant∗([x0, x1, x2, x3]) is #P-hard. Our starting point is that #[0, 1, 1]|
[1, 0, 0, 1] and #[1, 0, 1]|[1, 1, 0, 0] are both #P-complete [35]. The first problem is to
count the number of vertex covers for 3-regular graphs; while the second is to count
the number of (not necessarily perfect) matchings for 3-regular graphs. We remark
that both of them remain #P-complete even for planar graphs [16, 35].

First we give a useful parameterization. Given a nondegenerate signature [x0, x1,
x2, x3], there are three categories: For 0 ≤ k ≤ 3,

• Category 1. xk = α3−k
1 αk

2 + β3−k
1 βk

2 , where det[ α1 β1

α2 β2
] �= 0;

• Category 2. xk = ckαk−1 + dαk, where c �= 0; or
• Category 3. xk = c(3− k)α2−k + dα3−k, where c �= 0.

This parameterization can be obtained by considering the rank 1 solution to

[
x0 x1 x2

x1 x2 x3

]⎡⎣ab
c

⎤
⎦ = 0.

If a = c = 0 we have x1 = x2 = 0 and a diagonal matrix [
3
√
x0 0

0 3
√
x3

] can be used in

Category 1. If a and c are not both 0, then we may consider [x0, x1, x2, x3] satisfies a
second order linear recurrence relation (either forward or backward). Depending on
whether the characteristic equation has two distinct roots (or, respectively, a double
root), we have a case in Category 1 (or, respectively, Category 2 or 3). Category 3
can be viewed as the reversal of Category 2, so we will omit the proof for Category
3. The choices made here in this particular parameterization are informed by the
signature theory [10, 9] that we had developed in the previous work. But one can
directly check that for any nondegenerate signature [x0, x1, x2, x3], one of these three
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parameterizations is always possible. Note that, if α = 0, then we take the convention
that the expression kαk−1 = 0, 1, 0, 0 for k = 0, 1, 2, 3, respectively.

For Category 1, we have

X = [x0, x1, x2, x3] =

[
α1

α2

]⊗3

+

[
β1

β2

]⊗3

.

We restate our conditions from the lemma’s statement in this new parameterization.
The fact that X is nondegenerate implies that α1β2−α2β1 �= 0. The fact thatX is not
in the case indicated in statement (1) of Lemma 4.2 implies that α1β1+α2β2 �= 0. This
follows from Proposition 3.5. The fact that X is not in the case indicated in statement
(2) implies that α2

1 + α2
2 �= 0 or β2

1 + β2
2 �= 0. This follows from Proposition 3.6. By

symmetry, we can assume that α2
1 + α2

2 �= 0.
Under the condition α2

1 + α2
2 �= 0, we can apply an orthogonal transformation to

map the vector (α1, α2)
T to (α′

1, 0)
T, for some α′

1 �= 0. We may use the (complex or-

thogonal) matrix (1/
√
α2
1 + α2

2)[
α1 α2−α2 α1

] for this purpose. Then under this orthogonal
transformation, the signature becomes

X ′ = [x′
0, x

′
1, x

′
2, x

′
3] =

[
α′
1

0

]⊗3

+

[
β′
1

β′
2

]⊗3

.

By Proposition 3.4, this transformation does not change the complexity of the Holant
problem. So it suffices to prove #P-hardness for this signature. By a scalar multi-
plication we assume α′

1 = 1. So, reusing the notation X , we can assume the given
signature is of this form

X = [x0, x1, x2, x3] =

[
1
0

]⊗3

+

[
β1

β2

]⊗3

.

The two conditions from the statement of Lemma 4.2 become simply β1β2 �= 0.
Now under the basis transformation T = [ 1 β1

0 β2
], the Equality signature (=3) =

[1, 0, 0, 1] becomes [x0, x1, x2, x3]. This is the result of the contravariant transfor-
mation (x0, x1, x1, x2, x1, x2, x2, x3)

T = T⊗3(1, 0, 0, 0, 0, 0, 0, 1)T, namely, X = T⊗3

([ 10 ]
⊗3 + [ 01 ]

⊗3). By the same matrix, [0, 1, 1] undergoes a covariant transformation.
We have

(0, 1, 1, 1)(T−1)⊗2 =
1

β2
2

(0, β2, β2, 1− 2β1).

Again, we can ignore the scalar factor 1/β2
2 . So by the holographic reduction de-

fined by T , the complexity of the problem #[0, β2, 1 − 2β1]|[x0, x1, x2, x3] is the
same as #[0, 1, 1]|[1, 0, 0, 1], which is #P-complete (vertex cover). In order to prove
that Holant∗([x0, x1, x2, x3]) is #P-hard, we only need to show that the signature
[0, β2, 1− 2β1] can be realized by [x0, x1, x2, x3] with some unary signatures.

For a binary signature F we can write it in a matrix form
[ F (00) F (01)
F (10) F (11)

]
. We use

the gadget in Figure 4.1 to realize [0, β2, 1 − 2β1], where the two unary signatures
(t0, t1) and (s0, s1) will be determined later. Let

A =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]
, B =

[
β1

β2

] [
β1 β2

]
=

[
β2
1 β1β2

β1β2 β2
2

]
.
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(t0, t1) (t0, t1)(s 0, s 1)

Fig. 4.1. We use this gadget to realize the signature [0, β2, 1− 2β1]. All (three) nodes of degree
3 in this gadget have the signature [x0, x1, x2, x3].

In X , if one input is 0, the induced binary signature has its matrix form A+ β1B. If
one input is 1, the induced binary signature has matrix form β2B. It follows that the
signature of the above gadget, as a binary function in matrix form, is

(t0(A+ β1B) + t1β2B)(s0(A+ β1B) + s1β2B)(t0(A+ β1B) + t1β2B)

= (t0A+ (t0β1 + t1β2)B)(s0A+ (s0β1 + s1β2)B)(t0A+ (t0β1 + t1β2)B).

Now we use a new set of variables

(4.1) x = t0, y = t0β1 + t1β2, z = s0, w = s0β1 + s1β2,

and write the above matrix as (xA + yB)(zA+ wB)(xA + yB). We note that, since
β2 �= 0, for any given x, y, z, w, we can find t0, t1, s0, s1 to satisfy the relationships
(4.1). Then, to realize [0, β2, 1− 2β1], we just want to choose some x, y, z, and w such
that

(xA+ yB)(zA+ wB)(xA + yB) =

[
0 β2

β2 1− 2β1

]
.

We show that we can find some x, y, z, and w to satisfy the above condition.
Substituting A and B, and denoting β2

1 + β2
2 by γ, we have the following:

(xA+ yB)(zA+ wB)(xA + yB)

= w

[
β2
1(x+ yγ)2 yβ1β2γ(x+ yγ)

yβ1β2γ(x+ yγ) y2β2
2γ

2

]
+ z

[
(x+ yβ2

1)
2 yβ1β2(x + yβ2

1)
yβ1β2(x + yβ2

1) y2β2
1β

2
2

]
.

We may choose w = (x + yβ2
1)

2 and z = −β2
1(x + yγ)2 to make the (1, 1) entry

zero. The (1, 2) (and (2, 1)) entry is

g1 = xyβ1β
3
2(x + yβ2

1)(x+ yγ);

and the (2, 2) entry is

g2 = xy2β4
2(x(2β

2
1 + β2

2) + 2y(β4
1 + β2

1β
2
2)).

We want to choose some x and y such that [g1, g2] = [β2, 1 − 2β1]. We have β2 �= 0.
We will choose xy �= 0. As both g1 and g2 are homogeneous (of degree 4) in x and
y, we can ignore (and remove) the common factor xyβ3

2 of g1 and g2. It follows that
we only have to satisfy that g2/g1 = (1 − 2β1)/β2 and g1 �= 0, with y = 1. Setting
β2g2 = (1− 2β1)g1, we will satisfy the following:

(4.2) β1(2β1−1)x2+(2β2
1−β1+β2

2)(2β
2
1+β2

2)x+β2
1(β

2
1+β2

2)(2β
2
1−β1+2β2

2) = 0.
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What we have to prove is that at least one of the roots x to the equation in (4.2)
is not a root of g1 = g1(x, 1) = 0. The roots of g1 = 0 are x = 0, x = −β2

1 , and
x = −γ. First we can verify that x = −β2

1 is not a root of (4.2). This is because when
x = −β2

1 , the expression in (4.2) can be simplified to β2
1β

4
2 �= 0. Second when x = −γ

the expression in (4.2) can be simplified to −β4
2γ, and if x = −γ is a root, this would

force γ = 0. So, assuming the expression in (4.2) as a polynomial in x is indeed of
degree 2, then the only case we need to worry about is that x = 0 is a double root of
(4.2). Indeed, suppose (4.2) is of degree 2, and x = 0 is not a double root, then we
may let ξ �= 0 be a root of (4.2). This implies ξ �= −β2

1 , because −β2
1 is not a root of

(4.2); ξ cannot be −γ either, for otherwise −γ would be a root of (4.2), which we had
proved would force γ = 0, and thus ξ = −γ = 0, a contradiction. Thus ξ is a root of
(4.2) but not a root of g1, as is needed.

Now let us consider the exceptional cases: either x = 0 is a double root of (4.2)
or (4.2) has degree less than 2. If x = 0 is a double root of (4.2), we have

(2β2
1 − β1 + β2

2)(2β
2
1 + β2

2) = β2
1(β

2
1 + β2

2)(2β
2
1 − β1 + 2β2

2) = 0.

To satisfy this, since β1β2 �= 0, there are only four exceptional cases (A1 to A4):
β1 = 1, β2 = ±i or β1 = − 1

2 , β2 = ± i√
2
. On the other hand, if the polynomial in

(4.2) has degree less than 2, by β1 �= 0, we get β1 = 1
2 . In this case, the polynomial

becomes

(1/2 + β2
2)x+ (1/4 + β2

2)/2 = 0.

This gives us four additional exceptional cases (B1 to B4): β1 = 1
2 , β2 = ± i

2 , in which

case the polynomial is linear with root x = 0; or β1 = 1
2 , β2 = ± i√

2
, in which case the

polynomial degenerates to a (nonzero) constant. In all other cases, there is a root of
(4.2) which is not a root of g1(x, 1), which completes the #P-hardness proof.

For the cases A1 and A2, we use a new starting problem #[1, 1, 0]|[1, 0, 0, 1], which
is the reversal of the previous problem, and therefore it is also #P-complete. Then
all previous parts of the proof are still valid, except that the signature of arity two we
would like to realize is

(1, 1, 1, 0)(T−1)⊗2 =

(
1,

1− β1

β2
,
1− β1

β2
,
β2
1 − 2β1

β2
2

)
.

Substituting β1 = 1, β2 = ±i, the signature is [1, 0, 1], which is trivially realizable by
one edge. So we have proved that it is #P-hard in the cases A1 and A2. Now consider
the cases A3 and A4: β1 = − 1

2 , β2 = ± i√
2
. We will give a different parameterization.

For the case A3, we apply an orthogonal transformation M = [ −i −√
2√

2 −i
] and a scalar

multiplier (2i)3 on the signature and it becomes [ 10 ]
⊗3 + [ 2

2
√
2i ]

⊗3. This is not one

of the exceptional cases, and we have proved that it is #P-hard. For the case A4,

we apply another orthogonal transformation M ′ = [ i −√
2√

2 i
] and a scalar multiplier

(−2i)3 on the signature, and it becomes [ 10 ]
⊗3 + [ 2

−2
√
2i ]

⊗3.
The cases B3 and B4 can be shown by the same method as in A4 and A3, using

M ′ and M , respectively. The only remaining cases are B1 and B2. Here we will
use another gadget similar to the one in Figure 4.1 except we remove the middle
edge (including the node labeled (s0, s1) and the middle node of degree 3). For B1,
β1 = 1

2 , β2 = i
2 , the signature of this gadget is

(t0(A+ β1B) + t1β2B)2 = (xA+ yB)2,
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where A and B are as before, and with the specific values of β1, β2, B = 1
4 [

1 i
i −1 ]. By

setting x = i and y = −2i, we have (xA+ yB)2 = [ 0 i/2
i/2 0 ], which is the matrix form

of the target signature [0, β2, 1 − 2β1] = [0, i
2 , 0]. This finishes case B1. The case B2

can be proved the same way with x = 1 and y = −2.
Now we prove for Category 2. In this case xk = ckαk−1+dαk, the condition that it

does not satisfy statement (1) in Lemma 4.2 implies that α �= ±i. Indeed, xk satisfies
the recurrence xk+2 = 2αxk+1 − α2xk, for k = 0, 1. (Note that the characteristic
polynomial λ2−2αλ+α2 has a double root α.) If α = ±i, xk would satisfy statement
(1) in Lemma 4.2 with (a, b) = (1, 2α). Since α �= ±i, we can choose some orthogonal
matrix to transform the signature to the form [x, y, 0, 0] where y �= 0. In fact, if we

let T =
[ 1 d−1

3

α c+ d−1
3 α

]
(which has detT = c �= 0), then the signature [x0, x1, x2, x3] can

be expressed as

(x0, x1, x1, x2, x1, x2, x2, x3)
T = T⊗3(1, 1, 1, 0, 1, 0, 0, 0)T.

(We chose these transformations based on an underlying signature theory of holo-
graphic algorithms [9], not “out of blue.” But for brevity of exposition we state
these transformations as is without discussing the background. They can be di-
rectly verified, albeit a bit tedious.) Let T = QR be its QR-factorization, i.e.,
where Q is orthogonal and R is upper triangular. In fact, for T = [ 1 ∗

α ∗ ], we can
choose our Q as the (complex) orthogonal matrix Q = QT = 1√

1+α2
[ 1 α
α −1 ]. Then

QT = R = [ u w
0 v ] is upper triangular, where u =

√
1 + α2. Because detQ = −1 and

detR = − detT = −c �= 0, we have uv �= 0. This Q is our choice of the orthogonal
transformation. It follows that

Q⊗3(x0, x1, x1, x2, x1, x2, x2, x3)
T

= (QT )⊗3(1, 1, 1, 0, 1, 0, 0, 0)T

= R⊗3(1, 1, 1, 0, 1, 0, 0, 0)T

= R⊗3

{[
1
0

]⊗3

+

[
1
0

]
⊗
[
1
0

]
⊗
[
0
1

]
+

[
1
0

]
⊗
[
0
1

]
⊗
[
1
0

]
+

[
0
1

]
⊗
[
1
0

]
⊗
[
1
0

]}

=

[
u
0

]⊗3

+

[
u
0

]
⊗
[
u
0

]
⊗
[
w
v

]
+

[
u
0

]
⊗
[
w
v

]
⊗
[
u
0

]
+

[
w
v

]
⊗
[
u
0

]
⊗
[
u
0

]
.

In the notation for symmetric signatures, this signature is [u3+3u2w, u2v, 0, 0]. Note
that the entry u2v �= 0.

By a scalar multiplication, we can make the entry u2v equal to 1, so we only have
to deal with a signature of the form [v, 1, 0, 0] for an arbitrary given v.

For this signature, we can apply a holographic transformation defined by the ma-
trix T ′ = [ 1 (v−1)/3

0 1
] with inverse T ′−1 = [ 1 −(v−1)/3

0 1
]. To prove #P-hardness, we will

reduce from the matching problem #[1, 0, 1] | [1, 1, 0, 0]. (Note that this is counting all,
not necessarily perfect, matchings on 3-regular graphs, which remains #P-complete
even for planar graphs [16]; counting perfect matchings on planar graphs is in P.)
Under a contravariant transformation (v, 1, 1, 0, 1, 0, 0, 0)T = T ′⊗3(1, 1, 1, 0, 1, 0, 0, 0)T,
the signature [1, 1, 0, 0] becomes [v, 1, 0, 0]. Under the covariant transformation by the
same matrix, [1, 0, 1] becomes

(1, 0, 0, 1)(T ′−1)⊗2 = ((1, 0)⊗2+(0, 1)⊗2)(T ′−1)⊗2 =

(
1,

1− v

3
,
1− v

3
, 1 +

(1− v)2

9

)
;
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i.e., the signature [1, 0, 1] becomes a new symmetric signature [1, 1−v
3 , 1+ (1−v)2

9 ]. We
complete this proof by using the same gadget as in Figure 4.1 to realize this signature,
using unary signatures and [v, 1, 0, 0].

We will rename the values x = t0, y = t1, z = s0, and w = s1 in Figure 4.1.
The signature of this gadget in matrix form is (xA+ yB)(zA+wB)(xA+ yB), where
A = [ v 1

1 0 ] and B = [ 1 0
0 0 ]. After some calculations we found that this signature in

matrix form is[
w(xv + y)2 + z(x2(v3 + 2v) + 2xy(v2 + 1) + y2v) wx(xv + y) + z(x2(v2 + 1) + xyv)

w(x2v + xy) + z(x2(v2 + 1) + xyv) wx2 + zx2v

]
.

Our goal is to choose x, y, z and w such that it is equal to
[ 1 (1−v)/3

(1−v)/3 1+((1−v)2)/9

]
.

We can write this as a system of three linear equations in z and w, whose coefficient
matrix depends on x and y. Then we can complete the proof, if we can choose x and
y such that the following matrix has determinant 0, yet the first two columns have
rank 2. ⎡

⎣x2v2 + 2xyv + y2 x2(v3 + 2v) + 2xy(v2 + 1) + y2v 1
x2v + xy x2(v2 + 1) + xyv 1−v

3

x2 x2v 1 + (1−v)2

9

⎤
⎦ .

After some elementary row operations it becomes⎡
⎣y2 2xy + y2v f3
xy x2 + xyv f2
x2 x2v f1

⎤
⎦ ,

where f1, f2, f3 are polynomials in v. Explicitly, let f1 = (10 − 2v + v2)/9 and
f2 = (3 − 13v + 2v2 − v3)/9. Subtracting from the second column the first column
multiplied by v, we get ⎡

⎣y2 2xy f3
xy x2 f2
x2 0 f1

⎤
⎦ .

We will set x = 1; this guarantees that the first two columns have rank 2, and gives
the matrix ⎡

⎣y2 2y f3
y 1 f2
1 0 f1

⎤
⎦ .

Now the determinant is easily calculated (subtract the first row by the second row
multiplied by y, and the second from the third multiplied by y). The determinant is
−(f1y

2 − 2f2y + f3). As long as f1 and f2 are not simultaneously 0, we can always
choose a y to make this determinant 0.

However, it is easy to show that f1 and f2 have no common zero in v, as 3(f2 +
vf1) = 1 − v and v = 1 is not a zero of either f1 or f2. This completes the proof of
Lemma 4.2.

4.2. A pair of signatures: Case (1). Lemma 4.2 shows what happens when
there is a single nondegenerate symmetric signature of arity three. It explicitly lists
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two exceptional cases for being not#P-hard. The next lemma addresses what happens
when we have more than one signature, where one signature of arity three happens
to be in the exceptional case (1) of Lemma 4.2, but some other signature does not fit.

Lemma 4.3. Let [x0, x1, x2, x3] and [y0, y1, y2] be nondegenerate symmetric sig-
natures with arity three and two, respectively. Suppose there exist two constants
a, b (not both zero), such that ax0 + bx1 − ax2 = 0 and ax1 + bx2 − ax3 = 0,
but ay0 + by1 − ay2 �= 0 and [y0, y1, y2] is not of the form [2aλ, bλ,−2aλ]. Then
Holant∗({[x0, x1, x2, x3], [y0, y1, y2]}) is #P-hard. In fact, it is #P-hard when re-
stricted to bipartite graphs, where [x0, x1, x2, x3] is on one side and [y0, y1, y2] is on
another.

We remark that, since [x0, x1, x2, x3] is nondegenerate, the constant pair (a, b) is
unique up to a scalar factor.

Proof. Our proof plan is as follows: We will show that the counting problem
Holant∗({[x0, x1, x2, x3], [y0, y1, y2]}) is still #P-hard when restricted to instances
where the input graph is bipartite, where other than degree one nodes, all nodes on
one side are of degree three and are given the signature [x0, x1, x2, x3], and all nodes
on the other side are of degree two and are given the signature [y0, y1, y2]. (There can
be any number of degree one nodes, on either side of the bipartite graph, assigned any
unary signatures.) We may denote this problem Holant∗([x0, x1, x2, x3] | [y0, y1, y2]).
We show it is #P-hard by a holographic reduction, where [y0, y1, y2] is (contravari-
antly) transformed to [1, 0, 1] and [x0, x1, x2, x3] is (covariantly) transformed to some
[u0, u1, u2, u3]. Note that [1, 0, 1] can be replaced by an edge, and the unary sig-
natures are transformed to unary signatures. Thus the complexity of the prob-
lem Holant∗([x0, x1, x2, x3] | [y0, y1, y2]) is the same as Holant∗([u0, u1, u2, u3]). We
then apply Lemma 4.2 to [u0, u1, u2, u3]. Note that [u0, u1, u2, u3] is nondegener-
ate, since otherwise [u0, u1, u2, u3] is a tensor product of unary signatures, and then
[x0, x1, x2, x3] would also be a tensor product of unary signatures, and thus degenerate.

We want an invertible matrix T = [ α1 β1

α2 β2
] such that (T−1)⊗2[y0, y1, y2]

T =

[1, 0, 1]T, but [u0, u1, u2, u3] = [x0, x1, x2, x3]T
⊗3 is not of either of the two excep-

tional forms in Lemma 4.2. T⊗2[1, 0, 1]T = [y0, y1, y2]
T can be written as

T⊗2(1, 0, 0, 1)T = T⊗2

([
1
0

]⊗2

+

[
0
1

]⊗2
)

=

(
T

[
1
0

])⊗2

+

(
T

[
0
1

])⊗2

= (y0, y1, y1, y2)
T.

This is equivalent to [ y0 y1
y1 y2 ] = TT T, in matrix notation. Such a factorization for a

symmetric matrix is always possible for complex matrices. Since [y0, y1, y2] is non-
degenerate, we have a full rank matrix T = [ α1 β1

α2 β2
] such that (y0, y1, y1, y2)

T =

T⊗2(1, 0, 0, 1)T.
Let [u0, u1, u2, u3] = [x0, x1, x2, x3]T

⊗3. We want to show that it does not fall
into either of the two exceptional cases of Lemma 4.2.

There are two cases. First we assume for a contradiction that [u0, u1, u2, u3] is of
the form [x, y,−x,−y]. Then {uk} satisfies the recurrence uk+2+uk = 0, for k = 0, 1,
with characteristic polynomial λ2 + 1. Therefore there are scalars c and d, such that

[u0, u1, u2, u3] = c(1, i)⊗3 + d(1,−i)⊗3.

Let Δ = det(T ) �= 0, we have T−1 = Δ−1[ β2 −β1

−α2 α1
]. Then it follows that

[x0, x1, x2, x3] = [u0, u1, u2, u3](T
−1)⊗3

= cΔ−3(β2 − α2i,−β1 + α1i)
⊗3 + dΔ−3(β2 + α2i,−β1 − α1i)

⊗3.
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Since [x0, x1, x2, x3] is nondegenerate, cd �= 0. By the assumption on [x0, x1, x2, x3]
and Proposition 3.5, we have

0 = (β2 − α2i)(β2 + α2i) + (−β1 + α1i)(−β1 − α1i) = α2
1 + α2

2 + β2
1 + β2

2 .

And after a scaling, we also have a = α2
2 + β2

2 = −α2
1 − β2

1 and b = −2(α1α2 + β1β2).
Now

(y0, y1, y1, y2)
T = T⊗2(1, 0, 0, 1)T = (α2

1 + β2
1 , α1α2 + β1β2, α1α2 + β1β2, α

2
2 + β2

2)
T.

Then [y0, y1, y2] = [−a,−b/2, a] is of the form [2aλ, bλ,−2aλ], a contradiction.
This completes our first step. Our second step is to take care of the other excep-

tional case (exception (1) in Lemma 4.2).
This exceptional case is that there exist two constants a′, b′ (not both zero), such

that a′u0 + b′u1 − a′u2 = 0 and a′u1 + b′u2 − a′u3 = 0. We split this exceptional
case into two cases depending on whether a = 0 or a �= 0, given in the statement of
Lemma 4.3.

If a = 0, then b �= 0 and x1 = x2 = 0. As [x0, 0, 0, x3] is nondegenerate, x0x3 �= 0.
We can write

[x0, 0, 0, x3] = x0

(
1 0

)⊗3
+ x3

(
0 1

)⊗3
,

and

[u0, u1, u2, u3] = [x0, 0, 0, x3]T
⊗3 = x0(

(
1 0

)
T )⊗3 + x3(

(
0 1

)
T )⊗3.

The existence of a′, b′ (not both zero), such that a′u0+b′u1−a′u2 = 0 and a′u1+
b′u2− a′u3 = 0, implies that the matrix [ u2−u0 u1

u3−u1 u2
] is degenerate. By Proposition 3.5

we have the inner product of (1, 0)T = (α1, β1) and (0, 1)T = (α2, β2) is zero, i.e.,

α1α2 + β1β2 = 0.

But noticing that y1 = α1α2 + β1β2 and a = 0, we have ay0 + by1 − ay2 = 0, a
contradiction.

Finally we consider the case a �= 0. By a scaling we can assume a = 1. Then
x2 = bx1 + x0, x3 = bx2 + x1 = b2x1 + bx0 + x1. Assume temporarily that b �= ±2i,
then the recurrence has two distinct eigenvalues, and therefore Proposition 3.5 applies.
After some calculation we can obtain an expression for the determinant
(4.3)

det

[
u0 − u2 u1

u1 − u3 u2

]
= det

[
α1 β1

α2 β2

]2
(α2

1+β2
1+b(α1α2+β1β2)−α2

2−β2
2)(bx0x1−x2

1+x2
0).

However, for a fixed T , the above polynomial identity is valid for any b �= ±2i, when
we define a recurrence xk+2 = bxk+1 + xk, k = 0, 1, and then define [u0, u1, u2, u3] =
[x0, x1, x2, x3]T

⊗3. Hence, it is also valid for b = ±2i, and so we dispense with the
temporary assumption that b �= ±2i.

The condition that there exist two constants a′, b′ (not both zero), such that
a′u0 + b′u1 − a′u2 = 0 and a′u1 + b′u2 − a′u3 = 0 is equivalent to det[ u0−u2 u1

u1−u3 u2
] = 0.

We know that det[ α1 β1

α2 β2
] �= 0; the second factor α2

1 + β2
1 + b(α1α2 + β1β2)− α2

2 − β2
2

in (4.3) is exactly y0 + by1 − y2 which is nonzero. So we have bx0x1 − x2
1 + x2

0 = 0.
Since bx0x1+x2

0−x2
1 = x0x2−x2

1 = det[ x0 x1
x1 x2 ], and the third column in [ x0 x1 x2

x1 x2 x3 ] is
linearly dependent on the first two columns, this says that [x0, x1, x2, x3] is degenerate,
a contradiction.
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4.3. A pair of signatures: Case (2). Lemma 4.4 does the same thing as
Lemma 4.3 for the second exceptional case of Lemma 4.2 for a pair of signatures.

Lemma 4.4. Let [x, y,−x,−y] be a symmetric signature with arity three and
[y0, y1, y2] be a symmetric signature with arity two. Suppose they are both nonde-
generate. If y0 + y2 �= 0 and [y0, y1, y2] is not of the form [λ, 0, λ], then Holant∗

({[x, y,−x,−y], [y0, y1, y2]}) is #P-hard. In fact, it is #P-hard when restricted to
bipartite graphs where [x, y,−x,−y] is on one side and [y0, y1, y2] is on another.

Proof. The overall plan of the proof of this Lemma is the same as for Lemma 4.3.
We can choose a basis transformation T = [ α1 β1

α2 β2
] such that (y0, y1, y1, y2)

T =

T⊗2(1, 0, 0, 1)T. Then under the same T , [x, y,−x,−y] is transformed to [u0, u1, u2, u3]
= [x, y,−x,−y]T⊗3. Since [x, y,−x,−y] as a linear recurrence has the characteristic
equation λ2 + 1, we have

[x, y,−x,−y] = c(1, i)⊗3 + d(1,−i)⊗3,

and hence

[u0, u1, u2, u3] = [x, y,−x,−y]T⊗3 = c(α1+α2i, β1+β2i)
⊗3+d(α1−α2i, β1−β2i)

⊗3.

Since we assumed that [x, y,−x,−y] is nondegenerate, we have cd �= 0.
By this holographic reduction, we only need to prove that Holant∗({[u0, u1, u2, u3]})

is #P-hard. Since [u0, u1, u2, u3] is nondegenerate, by Lemma 4.2, we have to consider
two cases.

If [u0, u1, u2, u3] is of the form [x′, y′,−x′,−y′], then by Proposition 3.6

0 = (α1 + α2i)
2 + (β1 + β2i)

2 = (α1 − α2i)
2 + (β1 − β2i)

2.

This gives α1α2 + β1β2 = 0 and α2
1 + β2

1 = α2
2 + β2

2 . Then by (y0, y1, y1, y2)
T =

T⊗2(1, 0, 0, 1)T, we know that [y0, y1, y2] is of the form [λ, 0, λ], a contradiction.
Now we consider the second exceptional case from Lemma 4.2: There exist two

constants a, b (not both zero) such that au0+ bu1− au2 = 0 and au1+ bu2− au3 = 0.
By Proposition 3.5 we have

0 = (α1 + α2i)(α1 − α2i) + (β1 + β2i)(β1 + β2i) = α2
1 + α2

2 + β2
1 + β2

2 .

This gives y0 + y2 = α2
1 + β2

1 + α2
2 + β2

2 = 0, a contradiction.

4.4. A single signature of arity n. The following lemma extends the result
to a signature with an arbitrary arity.

Lemma 4.5. Let [x0, x1, x2, . . . , xn] be a nondegenerate symmetric signature with
arity n > 3; then Holant∗([x0, x1, x2, . . . , xn]) is #P-hard unless one of the following
two statements is true: (1) there exist two constants a, b (not both zero), such that for
all k = 0, 1, . . . , n− 2, we have axk + bxk+1 − axk+2 = 0 (the pair (a, b) is unique up
to a scalar factor); (2) for all k = 0, 1, . . . , n− 2, we have xk + xk+2 = 0.

Proof. We assume that Holant∗([x0, x1, x2, . . . , xn]) is not #P-hard. Then we
prove that it must satisfy either statement (1) or (2) in Lemma 4.5.

Case A: We first consider the case where for every k = 0, 1, . . . , n − 2, the
subsignature [xk, xk+1, xk+2] is nondegenerate. Then by Lemma 4.2, there are the
following two exceptional cases (1) and (2) to be considered for [x0, x1, x2, x3].

(1) There is a nonzero pair (a, b) such that ax0 + bx1 − ax2 = 0 and ax1 + bx2 −
ax3 = 0. Such a nonzero pair (a, b) must be unique up to a scalar factor, since
otherwise [x0, x1, x2, x3] is all 0. Then Holant∗({[x0, x1, x2, x3], [xk, xk+1, xk+2]}) ≤p

T
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Holant∗([x0, x1, x2, . . . , xn]) is not #P-hard, and by Lemma 4.3, for every k = 0, 1, . . . ,
n− 2, axk + bxk+1 − axk+2 = 0 or [xk, xk+1xk+2] is of the form [2aλ, bλ,−2aλ].

First we claim a �= 0. Suppose otherwise a = 0, then b �= 0, and x1 = x2 = 0, from
the linear equations. But then surely x3 �= 0, since [x0, x1, x2, x3] is nondegenerate.
Consider when k = 2. If ax2 + bx3 − ax4 = 0, then we have a contradiction. Hence
[x2, x3, x4] is of the form [2aλ, bλ,−2aλ]. But then x2 = x4 = 0. It follows that
[x1, x2, x3, x4] = [0, 0, x3, 0]. Applying Lemma 4.2 to this signature, it follows that
Holant∗([x1, x2, x3, x4]) is #P-hard, contrary to assumption.

So we can assume a = 1. Now we show that the form [2λ, bλ,−2λ] cannot appear
among all [xk, xk+1, xk+2]. This will conclude that statement (1) of Lemma 4.5 holds.

Suppose the form [2λ, bλ,−2λ] does occur. Such a λ certainly is nonzero; other-
wise it is degenerate.

If it occurs as [xk, xk+1, xk+2] for some k, then b �= ±2i, since [2,±2i,−2] is
degenerate. If it occurs as [xk, xk+1, xk+2] for k = 0 or 1, then together with
ax0 + bx1 − ax2 = 0 and ax1 + bx2 − ax3 = 0, we have b = ±2i. A contra-
diction. Thus, if this form λ[2, b,−2] appears as some [xk, xk+1, xk+2], and con-
sider the minimal k where it appears, then k ≥ 2, and there is a subsignature
[xk−2, xk−1, xk, xk+1, xk+2] = λ[x, y, 2, b,−2] with arity 4, where ax + by − 2a = 0
and ay + 2b− ab = 0. So the subsignature is λ[b2 + 2,−b, 2, b,−2], of which there is
a subsignature λ[−b, 2, b,−2]. Applying Lemma 4.4 to the nondegenerate signature
pair [−b, 2, b,−2] and [b2 +2,−b, 2], we have b2 +2 = −2 or b2 +2 = 2. The first case
would imply that [2, b,−2] is degenerate. So we have b2 + 2 = 2 and thus b = 0. In
this case, the subsignature is [2, 0, 2, 0,−2]. Using a unary signature [1, 1], we can get
[2, 2, 2,−2]. By Lemma 4.2, this is #P-hard, again contrary to assumption.

(2) If [x0, x1, x2, x3] is of the form [x, y,−x,−y], then by Lemma 4.4, for every
k = 0, 1, . . . , n−2, we have xk+xk+2 = 0 or [xk, xk+1, xk+2] is of the form [λ, 0, λ]. We
prove that [λ, 0, λ] cannot appear. This will conclude that statement (2) of Lemma 4.5
holds.

Suppose the form [λ, 0, λ] does appear among [xk, xk+1, xk+2]. It is easy to see
that if it occurred at k = 0 or 1, then [x0, x1, x2, x3] = [x, y,−x,−y] is degenerate.
Then look at the first k ≥ 2 where it occurred, and to its left we have x� + x�+2 = 0,
for 0 ≤ 	 < k. It follows that there must be a subsignature (after a scaling) of the
form [1, 0,−1, 0,−1]. Now we can use a similar trick with a unary signature [1, 1] and
get [1,−1,−1,−1], which is #P-hard by Lemma 4.2.

This completes the proof of Case A.
Case B: There exists some 0 ≤ k ≤ n− 2, such that the subsignature [xk, xk+1,

xk+2] is degenerate.
If the signature is of the form [x0, 0, 0, . . . , 0, xn], we can choose (a, b) = (0, 1),

and statement (1) of Lemma 4.5 holds. In the following we assume the signature is
not of this form.

By Proposition 3.3, there exists an s, 0 ≤ s ≤ n − 3, such that a subsignature
σ3 = [xs, xs+1, xs+2, xs+3] has arity three and is nondegenerate. We want to find a
nondegenerate subsignature of arity three that contains a degenerate subsignature of
arity two. Starting from a degenerate subsignature τ2 = [xk, xk+1, xk+2] of arity two,
if s ≤ k ≤ s+1, then τ2 is already a subsignature of σ3. Otherwise, k < s or k > s+1.
Suppose k < s. Consider the subsignature [xk+1, xk+2, xk+3]. If it is degenerate, we
can substitute it for τ2 and continue. If it is nondegenerate, then we can substitute
σ3 by [xk, xk+1, xk+2, xk+3], and it will also be nondegenerate. This is similar for
k > s+ 1.
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Thus we can find a degenerate subsignature of arity two that is a subsigna-
ture of a nondegenerate subsignature σ3 of arity three. This σ3 must be of the
form [s2, sr, r2, x] or [y, s2, sr, r2]. By symmetry, we only consider [s2, sr, r2, x]. By
Lemma 4.2, we have two cases.

For the first case, det
[
r2−s2 sr
x−sr r2

]
= (r2−s2)r2− (x−sr)sr = 0. This implies that

srx = r4. If sr �= 0, srx = r4 implies that [s2, sr, r2, x] is degenerate, a contradiction.
If sr = 0, then r = 0 by srx = r4. Since [s2, sr, r2, x] = [s2, 0, 0, x] is nondegenerate,
we must have s2 �= 0 and x �= 0. Because n > 3, there must be entries to its left or to
its right, say, [s2, 0, 0, x, z]. Consider the pair [s2, 0, 0, x] and [0, x, z]. By Lemma 4.3,
the (up to a scalar multiple) unique pair for [s2, 0, 0, x] is (a, b) = (0, 1). If z �= 0,
then Lemma 4.3 would imply #P-hardness. If z = 0, then we have a subsignature
[0, 0, x, 0]. This is also #P-hard by Lemma 4.2.

Finally for the other case, s2+r2 = 0 and sr+x = 0. Then the signature must be
[s2, s2i,−s2,−s2i] or [s2,−s2i,−s2, s2i]. Both are degenerate, a contradiction.

4.5. Proof of Theorem 4.1. Finally we extend these lemmas to a set of signa-
tures and finish the proof of Theorem 4.1.

Before we give the proof of Theorem 4.1, we make some definitions and obser-
vations. We say a signature [x0, x1, . . . , xn], where n ≥ 2, is of type I, if there exist
two constants a and b (not both zero), such that for every k = 0, 1, . . . , n − 2, we
have axk + bxk+1 − axk+2 = 0. If we want to specify the parameters a and b, we say
it is of type I(a, b). We say it is of type II, if for every k = 0, 1, . . . , n − 2, we have
xk+xk+2 = 0. We say a signature [x0, x1, x2] of arity two is of type I∗, more precisely
type I∗(a, b), if it is of the form λ[2a, b,−2a]. Finally we say a signature [x0, x1, x2] of
arity two is of type II∗, if it is of the form λ[1, 0, 1].

For any nondegenerate signature of arity at least three, if it is of type I(a, b), then
this (a, b) is uniquely determined up to a nonzero constant multiple. We consider such
(a, b)’s are the same; when we say two different pairs (a, b) and (a′, b′), we mean they
are not constant multiples of each other (distinct points on the projective line PC1). In
particular a nondegenerate signature of arity at least three cannot be of type I(a, b)
and I(a′, b′) for two different pairs (a, b) and (a′, b′). Similarly, any nondegenerate
signature of arity at least three cannot be of both type I and type II. These can be
directly verified. Also we can verify that any nondegenerate signature of arity two
cannot be of both type I(a, b) and type I∗(a, b), cannot be of both type II and type
II∗, and cannot be of both type I∗ and type II∗.

Now we rephrase the statements of Lemma 4.2 to Lemma 4.5 as follows, where ev-
ery signature mentioned is nondegenerate. Lemma 4.2 states that, if Holant∗([x0, x1,
x2, x3]) is not #P-hard, then [x0, x1, x2, x3] is either of type I or of type II. Lemma 4.5
proves the same result as Lemma 4.2 for Holant∗([x0, x1, x2, . . . , xn]) with arity n > 3.
Lemma 4.3 states that, if [x0, x1, x2, x3] is of type I(a, b) and Holant∗([x0, x1, x2, x3],
[y0, y1, y2]) is not #P-hard, then [y0, y1, y2] is either of type I(a, b) or of type I∗(a, b).
Lemma 4.4 states that, if [x0, x1, x2, x3] is of type II and Holant∗([x0, x1, x2, x3], [y0, y1,
y2]) is not #P-hard, then [y0, y1, y2] is either of type II or of type II∗.

Now we prove Theorem 4.1. The tractability part of the theorem mainly follows
from our previous work on Fibonacci gates [13, 12]. However, we will give an alter-
native proof. The main result here is the hardness proof, which applies Lemma 4.2
to Lemma 4.5.

Proof. Since we consider Holant∗ problems, every degenerate signature can be
decomposed into a tensor product of unary signatures, and will be absorbed in the
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Holant∗ notation. Thus we will assume every explicitly given signature in F is non-
degenerate and has arity at least 2.

We first consider tractability. Class 1 is when every signature in F has arity at
most two. Then the graph of the signature grid Ω is a disjoint union of paths and
cycles (isolated points contribute a constant; we may assume there are no isolated
points). By matrix multiplication, we can compute the value for a path. The value
for a cycle is the trace of that path. The value HolantΩ is the product over connected
components.

Next we consider class 2. We have type I(a, b) or I∗(a, b). If a = 0, all func-
tions in F have the form [x0, 0, . . . , 0, xn] or [0, x, 0]. Then Holant∗(F) is obviously
computable in polynomial time, by extending uniquely any initial value at an edge
within a connected component. Now suppose a �= 0. We first assume the charac-
teristic equation a + bλ − aλ2 = 0 has two distinct eigenvalues λ1 �= λ2. Note that

λ1λ2 = −1. In this case all functions in F have the form F = u[ 1λ1
]⊗n + v[ 1λ2

]⊗n or

G = [2a, b,−2a]. We use the nonsingular matrixM = [1 λ1

1 λ2
] to perform a holographic

reduction on #({=2}∪U)|(F∪U), which is the bipartite form of problem Holant∗(F).

Under this basis, F is turned into M⊗nF = u[1 + λ2
1

0 ]⊗n + v[
0

1 + λ2
2
]⊗n, G is turned into

M⊗2G = [0, (4a2+b2)/a, 0], and (=2) = [1, 0, 1] is turned into [1, 0, 1](M−1)
⊗2

, which
is a nonzero scalar multiple of [1+λ2

2, 0, 1+λ2
1]. In the meanwhile all unary functions

are transformed into unary functions. Connecting any unary function to a function
of the type M⊗nF maintains that type (with arity n − 1). Connecting any unary

function to any function of arity two, including M⊗2G or [1, 0, 1](M−1)
⊗2

creates
another unary function. Hence it follows that this reduction reduces Holant∗(F) to
an obviously tractable problem.

Continuing for class 2, if the eigenvalues λ1 = λ2, then b = ±2ai. Then a �= 0 and
we can normalize to a = 1, b = ±2i, λ1 = λ2 = b/2. The signature G = [2, b,−2] =
[2,±2i,−2] is degenerate. Therefore we only need to consider signatures F ∈ F of
type I(1, b), together with unary signatures. Connecting any unary signature to any
F of type I(1, b) creates another signature of type I(1, b) (of lower arity).

Suppose b = 2i (the case with −2i is similar). A signature X = [x0, . . . , xn] ∈ F
of type I(1, 2i) satisfies xk = skik−1+ tik, 0 ≤ k ≤ n, where s and t are two constants.
Let c = t− sni

2 and d = si
2 . Consider the signature

X ′ = c

[
1
0

]⊗n

+d

[[
1
0

]⊗(n−1)

⊗
[
0
1

]
+

[
1
0

]⊗(n−2)

⊗
[
0
1

]
⊗
[
1
0

]
+ · · ·+

[
0
1

]
⊗
[
1
0

]⊗(n−1)
]
.

We claim that

Z⊗nX ′ = X, where Z =

[
1 1
i −i

]
.

To wit, the weight k entry of Z⊗nX ′ is cik + d[k(−i)ik−1 + (n − k)ik] = ik[c +
d(n − 2k)] = skik−1 + tik. Under the holographic transformation by Z, (=2) is
transformed to ZTI2Z = 2[ 0 1

1 0 ], which is 2 times the binary Disequality (�=2)
function in matrix form. The bipartite problem #{�=2} | {X ′}, where each X ′ may
have different parameters c and d, is tractable by the following argument. In any
nonzero evaluation, on account of (�=2), an assignment must assign exactly half the
edges 0 and the other half 1. For any X ′ with arity more than two, to be nonzero it
must have strictly more incident edges 0. Hence the computation reduces to that of
class 1, with arities at most 2.
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For class 3, we will prove that the Holant is zero unless the input graph is bipartite,
and there is a holographic algorithm for bipartite graphs. If there is a function [1, 0, 1]
applied to two variables x and y, we just merge them into one variable and remove this
function. Connecting a unary function to a function of type II still gives a function
of type II. Hence, we may assume all functions on vertices of an input graph are
of type II, i.e., have the form [u, v,−u,−v, . . . ]. If the input graph G(V,E) is not
bipartite, there is a cycle v1, e1, v2, . . . , vk, ek, v1 of odd length. We partition all 0-
1 assignments for E into two parts, with a 1-1 correspondence between them. An
assignment σ is mapped to σ′, which assigns the same values on E−{e1, . . . , ek}, but
opposite values on {e1, . . . , ek}. Under σ and σ′, all functions on V − {v1, . . . , vk}
evaluate to the same value, and if σ(ej−1) �= σ(ej) (where the index j is counted mod
k), the function at vj evaluates to the same value under σ and σ′, and if σ(ej−1) =
σ(ej), the function at vj evaluates to the opposite values under σ and σ′. Consider
σ(e1), σ(e2), . . . , σ(ek), σ(e1), there must be an even number of times where the value
changes in this sequence. Since k is odd, there are an odd number of vj ’s, where the
functions at vj give opposite values under σ and σ′. Hence, in the summation, the
contributions of σ and σ′ are canceled.

If the input graph is bipartite, the problem is #(F ∪ U)|(F ∪ U). Then #(F ∪
U)|(F ∪ U) is turned into #(F ′ ∪ U)|(F ′ ∪ U), where every signature in F ′ has the

form [x1, 0, . . . , 0, xn], by the holographic reduction with matrix M = [1 i
1 −i]. This is

clearly tractable.
Now we prove that if Holant∗(F) is not #P-hard, then F must fall in one of the

three classes.
As stated earlier, all signatures in F are assumed to be nondegenerate. If no

signature has arity ≥ 3, then we are done with class 1. Suppose there are some
signatures of arity ≥ 3. Each such signature is of type I or II by Lemma 4.2 and
Lemma 4.5. If there is exactly one signature of arity ≥ 3, then if it is of type I,
Lemma 4.3 finishes the proof and we are in class 2; if it is of type II, Lemma 4.4
finishes the proof and we are in class 3. So we are finished.

In the following we assume there are more than one signatures in F of arity
≥ 3. Of course, each such signature declares a type I or II. As remarked before, any
signature in F , being nondegenerate of arity ≥ 3, declares a unique type I or II, not
both; and in case of type I, it is of type I(a, b), for a unique (a, b) ∈ PC1. We would
like to prove that these declarations are all “consistent”; i.e., there is only one type
for all nondegenerate signatures of arity at least three.

• Case 1. Suppose there is a nondegenerate type I(0, 1) signature σ3 of arity ≥ 3.
By connecting with the unary [1, 1] we may assume it is of arity three. Then for any
other nondegenerate signature σ′ of arity ≥ 3 and of a different type, if one exists, by
Proposition 3.3, there exists a nondegenerate subsignature [x, y, z] of arity two. By
being not #P-hard, we apply Lemma 4.3 to the pair σ3 and [x, y, z] and conclude that
there are two cases: [x, y, z] = [x, 0, z], or [0, y, 0]. Being nondegenerate, xz �= 0, or
y �= 0, respectively. Within σ′ there is a subsignature containing it. In the first case,
it has the form [w, x, 0, z] (or [x, 0, z, w]), then [w, x, 0] (or [0, z, w]) is nondegenerate,
and applying Lemma 4.3 once again, we get w = 0. In the second case, it has the
form [u, 0, y, 0] (or [0, y, 0, u]). If u = 0, Holant∗([0, 0, y, 0]) (or Holant∗([0, y, 0, 0])) is
#P-hard by Lemma 4.2. Hence in all cases we get a signature of the form [u, 0, v, 0]
(or its reversal [0, v, 0, u]) where uv �= 0. By symmetry consider [u, 0, v, 0] (the case
[0, v, 0, u] is similar). We connect a unary [s, t] to it, and get [su, tv, sv]. As long as
st �= 0 and s2/t2 �= v/u, this is nondegenerate and Lemma 4.3 on the pair σ3 and
[su, tv, sv] leads to #P-hardness.
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• Case 2. Now we assume Case 1 does not apply, but there exists a nondegenerate
type I(a, b) signature σ3 of arity ≥ 3, where a �= 0 and b �= ±2ai. By Proposition 3.3,
we may assume σ3 has arity three. We may normalize it to a = 1, and b �= ±2i.

Then the characteristic equation λ2− bλ−1 has two distinct eigenvalues λ1 �= λ2.
It follows that λ1λ2 = −1, and thus λ1, λ2 �= ±i. Define

T =

⎡
⎣ 1√

1+λ2
1

1√
1+λ2

2

λ1√
1+λ2

1

λ2√
1+λ2

2

⎤
⎦ ,

then T is orthogonal. It is easy to verify that σ3 = T⊗3f for some f = [x0, 0, 0, x3]
T,

a nondegenerate signature of type I(0, 1). Performing a holographic transformation
by T on all signatures in F , we have reduced Case 2 to Case 1.

• Case 3. We assume Cases 1 and 2 do not apply, but there exists a nondegenerate
type I(1, b) signature σ3 of arity ≥ 3, where b = ±2i. By Proposition 3.3, we may
assume σ3 has arity three. We still suppose there exists a nondegenerate signature σ′

of arity ≥ 3 and of a different type, for otherwise we are done. By Proposition 3.3,
there exists a nondegenerate subsignature [x, y, z] of σ′. σ′ could be of type I(1, b′) or
II, where b′ = ±2i (but b′ �= b, and hence b′ = b).

If it is of type I(1, b′), note that for b = ±2i, the binary signature [2, b,−2] is
degenerate, and so, by applying Lemma 4.3 to σ3 and [x, y, z], we get x+ by − z = 0
as well as x + b′y − z = 0. This implies that y = 0 and x = z �= 0. But within σ′

there is a subsignature [w, x, 0, x] or [x, 0, x, w]. As x �= 0, [w, x, 0] and [0, x, w] are
nondegenerate. Applying Lemma 4.3 once again we get a contradiction. If σ′ is of
type II, then we still get x+ by− z = 0 as well as z = −x. Since b = ±2i, this implies
that [x, y, z] is degenerate, also a contradiction.

• Case 4. There are no nondegenerate signatures of type I and arity ≥ 3. Then
all of them must be of type II. This concludes the proof.

5. A dichotomy theorem for Holantc(F).
Theorem 5.1. Let F be a set of real symmetric signatures, and let F1,F2, and

F3 be three families of signatures defined as

F1 = {λ([1, 0]⊗k + ir[0, 1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F2 = {λ([1, 1]⊗k + ir[1,−1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F3 = {λ([1, i]⊗k + ir[1, −i]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3}.

Then Holantc(F) is computable in polynomial time if (1) Holant∗(F) is computable
in polynomial time or (2) F ⊆ F1 ∪ F2 ∪ F3. Otherwise, Holantc(F) is #P-hard.

Tractability and proof outline for hardness. By definition, every instance of
Holantc(F) is also an instance of Holant∗(F). So it is obvious that if Holant∗(F)
is computable in polynomial time, then so is Holantc(F). The polynomial time al-
gorithm for any complex-valued function set F ⊆ F1 ∪ F2 ∪ F3 is nontrivial. The
tractability crucially depends on algebraic cancellations. The crux of the matter is a
polynomial time algorithm to evaluate

∑
x1,x2,...,xn=0,1

iL1(X)+L2(X)+···+Lm(X),
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where each Lk(X) is a 0-1 indicator function of an affine linear function mod 2.
Thus the exponent on i can be viewed as a mod 4 sum of mod 2 sums. It turns
out that this tractability leads to a more general polynomial time algorithm that
includes asymmetric signatures as well. In [11, 14], we extend these families to a
unified algorithm, which eventually leads to a dichotomy theorem for complex-valued
Boolean #CSP.

The tractability for Holantc(F1 ∪ F2 ∪ F3) works for complex-valued signatures.
In this paper we give a proof for the case of real-valued signatures, which suffices for
Theorem 5.1.

We explicitly list all the signatures in F1 ∪ F2 ∪ F3, up to an arbitrary constant
multiple from C.

1. [1, 0, 0, . . . , 0,±1]; (F1, r = 0, 2)
2. [1, 0, 0, . . . , 0,±i]; (F1, r = 1, 3)
3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)
4. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)
5. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)
6. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)
7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)
8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)
9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)
Among these, we single out the real-valued signatures, up to an arbitrary constant

multiple from R.
1. [1, 0, 0, . . . , 0,±1]; (F1)
2. [1, 0, 1, 0, . . . , 0 or 1]; (F2)
3. [0, 1, 0, 1, . . . , 0 or 1]; (F2)
4. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3)
5. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3)
6. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3)
7. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3)

For any occurrence of a constraint function of the form [1, 0, 0, . . . , 0, 1] of arity k,
we can simply identify the k variables and eliminate this constraint function. Similarly
for [1, 0, 0, . . . , 0,−1] on x1, . . . xk, we will identify all x1, . . . xk, and replace it by
[1,−1] = (−1)x1 . For [1, 0, 1, 0, . . . , 0 or 1] on x1, . . . xk, k > 1, we substitute xk =
x1 + · · · + xk−1 (a mod 2 sum), and for [0, 1, 0, 1, . . . , 0 or 1] we substitute xk =
x1 + · · ·+ xk−1 + 1. For k = 1, we have [1, 0] and [0, 1], respectively, and the variable
is simply set to the constant 0 and 1, respectively.

A more interesting case is [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)] on x1, . . . xk.

We claim this is the same function as (−1)
∑

1≤i<j≤k xixj . On any input of Ham-
ming weight t, the exponent is

(
t
2

)
, which by Lucas theorem gives the following val-

ues: 0, 0, 1, 1, 0, 0, 1, 1, . . . mod 2. Similarly [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)] is

(−1)
∑

1≤i≤k xi+
∑

1≤i<j≤k xixj .
Finally, [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)] is the product of

[1, 0, 1, 0, . . . , 0 or 1] and [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)],

and [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)] is the product of

[0, 1, 0, 1, . . . , 0 or 1] and [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)].
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The above analysis shows that the tractability of Holantc(F1 ∪ F2 ∪ F3) follows
from a polynomial time algorithm to evaluate the sum

∑
x1,x2,...,xn=0,1

(−1)Q(x1,x2,...,xn),

where Q(x1, x2, . . . , xn) is a polynomial over Z2 of degree at most 2. This algorithm
is known [28].

The main result of Theorem 5.1 is hardness. We want to prove that aside from
these tractable cases, all remaining problems are #P-hard. Here the main technique
is polynomial interpolation. We prove the second dichotomy theorem (Theorem 5.1)
by a reduction to the first (Theorem 4.1). We will show how to interpolate all unary
signatures. The interpolation method used here is briefly described in subsection 5.1.
Once we can interpolate all unary signatures by Lemma 5.3, we can make use of
the dichotomy theorem for Holant∗(F). The whole proof is organized as a sequence
of lemmas (Lemma 5.5 to Lemma 5.9). In each lemma, we prove the theorem for
a broader family of F , and the remaining unproved ones are the beginning of the
next lemma. Finally we prove the theorem for all possible signature sets F . In some
cases, the attempt to interpolate all unary signatures does not work. In these cases,
we employ another starting point of #P-hardness, which is the problem of count-
ing Perfect Matchings on 3-regular graphs [16]. The reduction from Perfect

Matching is also by polynomial interpolation, which is done in Lemma 5.4. How-
ever, note that counting Perfect Matchings is computable in polynomial time for
planar graphs [25, 26, 29]; therefore our dichotomy theorem for Holantc problems here
does not apply to planar graphs as our dichotomy theorem for Holant∗ problems does.

5.1. Polynomial interpolation. In this subsection, we discuss the interpola-
tion method we use for the dichotomy theorem for Holantc. Polynomial interpolation
is a powerful tool in the study of counting problems initiated by Valiant [31] and
further developed by Vadhan [30], Dyer and Greenhill [21], and many others. The
method we use here is essentially the same as Vadhan [30].

Suppose for some set of signatures F , we want to show that for all unary signatures
f = [x, y], we have Holant(F ∪ {[x, y]}) ≤p

T Holant(F); i.e., Holant(F ∪ {[x, y]}) is
polynomial time Turing reducible to Holant(F). Let Ω = (G,F ∪ {[x, y]}, π). We
want to compute HolantΩ in polynomial time using an oracle for Holant(F).

Let Vf be the subset of vertices in G assigned f in Ω. Suppose |Vf | = n. We can
classify all 0-1 assignments σ in the Holant sum according to how many vertices in Vf

whose incident edge is assigned a 0 or a 1. Then the Holant value can be expressed
as

(5.1) HolantΩ =
∑

0≤i≤n

cix
iyn−i,

where ci is the sum over all edge assignments σ, of products of evaluations at all
v ∈ V (G)−Vf , where σ is such that exactly i vertices in Vf have their incident edges
assigned 0 (and n− i have their incident edges assigned 1). If we can evaluate these
ci, we can evaluate HolantΩ.

Now suppose {Gs} is a sequence of F -gates, and each Gs has one dangling edge.
Denote the signature of Gs by fs = [xs, ys], for s = 0, 1, . . . . If we replace each
occurrence of f by fs in Ω, we get a new signature grid Ωs, which is an instance of
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g A A

Fig. 5.1. Recursive construction.

Holant(F), with

(5.2) HolantΩs =
∑

0≤i≤n

cix
i
sy

n−i
s .

One can evaluate HolantΩs by oracle access to Holant(F). Note that the same set
of values ci occurs in (5.1) and (5.2). We can treat ci in (5.2) as a set of unknowns
in a linear system. The idea of interpolation is to find a suitable sequence {fs} such
that the evaluation of HolantΩs gives a linear system (5.2) of full rank, from which
we can solve all ci. In this case, we say that the sequence {Gs} interpolates all unary
signatures.

In this paper, the sequence {Gs} will be constructed recursively using suitable
gadgetry. There are two gadgets in a recursive construction: one gadget has arity
one, giving the initial signature g = [x0, y0]; the other gadget has arity two, giving
the recursive iteration. It is more convenient to use a 2 × 2 matrix A to denote the
signature of this binary gadget. So we can recursively connect them as in Figure 5.1
and get {Gs}.

The signatures of {Gs} have the following relation:

(5.3)

[
xs

ys

]
=

[
a11 a12
a21 a22

] [
xs−1

ys−1

]
,

where A = [ a11 a12
a21 a22

] and g = [ x0
y0 ].

We call this gadget pair (A, g) a recursive construction. Vadhan’s Lemma 6.1 in
[30] gives the following lemma.

Lemma 5.2. Let α, β be the two eigenvalues of A. If the following three conditions
are satisfied:

1. det(A) �= 0;
2. g is not a column eigenvector of A (nor the zero vector);
3. α/β is not a root of unity,

then the recursive construction (A, g) can interpolate all unary signatures.
This interpolation method also works in a similar way for signatures with a larger

arity but only two dimensions of freedom. For example, it works for all signatures of
the form [0, x, 0, y]. This version is used in the proof of Lemma 5.4.

5.2. Hardness proof of Theorem 5.1. In the dichotomy theorem for Holant∗

(F), we assume the arity of every signature in F is greater than one and all signatures
in F are nondegenerate. In Holantc(F), not all unary signatures are freely available,
so we cannot assume that. In some cases, the presence of some unary signatures or
degenerate signatures does change the complexity of the problem. However, we can
still do some normalization here to make the proof clearer. Since any degenerate
signature [x, y]⊗k can be replaced by the corresponding unary signature [x, y] without
changing the complexity of the problem, we always assume that every signature in
F , whose arity is greater than one, is nondegenerate. Since [1, 0] and [0, 1] are freely
available, we can construct any subsignature of the original signatures as well as any
signature realizable by some F -gate.
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Lemma 5.3. If we can construct a gadget with a (real) signature [a, b, c], where
b2 �= ac, b �= 0, and a+ c �= 0, then we can interpolate all unary functions.

Proof. We use the interpolation method as described in subsection 5.1. We
consider the recursive construction

(
[ a b
b c ], [

1
0 ]
)
(alternatively

(
[ a b
b c ], [

0
1 ]
)
), show that

the construction succeeds in interpolating all unary functions. We use A to denote
[ a b
b c ]. Since b

2 �= ac, A is nondegenerate, the first condition of Lemma 5.2 is satisfied.
If [1, 0]T is a column eigenvector of A then b = 0, a contradiction. So the second
condition of Lemma 5.2 is satisfied. Since A is a real symmetric matrix, both its
eigenvalues are real. If the ratio of two real numbers is a root of unity, they must
be the same or opposite to each other. If the two eigenvalues are the same, we will
have b = 0 and a = c, a contradiction. If the two eigenvalues are opposite to each
other, then the trace a + c = 0, also a contradiction. Therefore, the third condition
of Lemma 5.2 is also satisfied. This completes the proof.

If we can construct a gadget with a binary symmetric signature [a, b, c], which
satisfies all the conditions in Lemma 5.3, then we are done. In most cases, we prove
Theorem 5.1 by interpolating all unary signatures. However, in some cases, we are
not able to do that. For example, if every signature F has the parity condition (i.e.,
it is zero on all odd weight entries, or zero on all even weight entries), then all unary
signatures we can realize from F have the form [a, 0] or [0, a]. So we cannot interpolate
all unary signatures. For these cases, our starting point is the following lemma.

Lemma 5.4. If a ∈ R and a �= ±1, then Holantc([0, 1, 0, a]) is #P-hard. By
symmetry, Holantc([a, 0, 1, 0]) is also #P-hard.

Proof. We start with Holant([0, 1, 0, 0]), which is #P-hard. This is the problem
of counting perfect matchings in 3-regular graphs [16]. So the problem is #P-hard if
a = 0.

Now assume that a �∈ {−1, 0, 1}. We will use the signature [0, 1, 0, a] to interpolate
all the signatures of the form [0, 1, 0, x]; in particular, we can interpolate [0, 1, 0, 0] and
finish the hardness reduction.

The recursive construction is depicted by Figure 5.2. By a simple parity argument,
and an induction on i, every F -gate Ni has a signature of the form [0, xi, 0, yi]. More
precisely, let σ be an assignment to the three dangling edges of Ni. We show that
if the Hamming weight wt(σ) is even, then the value of Ni is zero. Each internal
edge in Ni, excluding those internal to Ni−1, appears twice as input to functions at
vertices, and hence wt(σ) is congruent mod 2 to the sum of Hamming weights of
assignments at all seven vertices of degree 3 in Ni (Figure 5.2), where we consider
Ni−1 as a single vertex of degree 3. To have a nonzero evaluation, each of the seven
vertices requires an input of odd Hamming weights. This shows that the signature of
Ni has the form [0, xi, 0, yi]. After some calculation, we can get that they satisfy the
following recursive relation:[

xi+1

yi+1

]
=

[
3(a2 + 1) (a3 + a)
3(a3 + a) a6 + 1

] [
xi

yi

]
.

In this case, the signatures we want to interpolate are of arity three. But since all of
them are of the form [0, xi, 0, yi], we can use the interpolation method in subsection

5.1. Let A = [
3(a2+1) (a3+a)

3(a3+a) a6+1
], and then (A, [1, a]T) forms a recursive construction.

Note that here [1, a] really denotes the initial gadget consisting of a single vertex with
signature [0, 1, 0, a]. Since det(A) = 3(a4 − 1)2 �= 0, the first condition holds. Its
characteristic equation is X2 − (a6 + 3a2 + 4)X + 3(a4 − 1)2 = 0. For this quadratic
equation, its discriminant Δ = (a6 − 3a2 − 2)2 + 12(a + a3)2 > 0. So A has two
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Fig. 5.2. The recursive construction. The signature of every vertex in the gadget is [0, 1, 0, a].

distinct real eigenvalues. The sum of the two eigenvalues is a6 +3a2 +4 > 0. So they
are not opposite to each other. Therefore, the ratio of these two eigenvalues is not
a root of unity and the third condition holds. Consider the second condition, if the
initial vector [1, a]T is a column eigenvector of A, we have A[ 1a ] = λ[ 1a ], where λ is an
eigenvalue of A. From this, we can conclude that a(a2 − 1)(a4 − 1) = 0, which does
not hold given a �∈ {−1, 0, 1}. To sum up, this recursive relation satisfies all three
conditions of Lemma 5.2 and can be used to interpolate all signatures of the form
[0, 1, 0, x]. This completes the proof.

We define some families of real symmetric signatures, which will be used in our
proof.

G1 = {[a, 0, . . . , 0, b] | ab �= 0, arity k ≥ 1}.
G2 = {[x0, x1, . . . , xk] | k ≥ 1 ∀i even, xi = 0, or ∀i odd, xi = 0}.
G3 = {[x0, x1, . . . , xk] | k ≥ 1 ∀i, xi + xi+2 = 0}.

We note that G1, G2, and G3 are supersets of (the real parts of) F1, F2, and F3,
respectively (the only exception is that the all zero function is in F1, but not in G1).

The following several lemmas serve as the main technical argument for the proof of
Theorem 5.1. It is a carefully calibrated sequence that is designed to chip away at the
difficulty. In an intuitive sense, signature sets within G1∪G2∪G3 are sufficiently “close”
to being tractable for Holantc, so that to exactly “carve” out their #P-hardness while
keeping F1 ∪ F2 ∪ F3 in the tractable side (as we must) is a delicate task. All these
lemmas have the form “If F �⊆ A, then Theorem 5.1 holds.” After proving one lemma,
in all subsequent lemmas, we only need to consider the case that F ⊆ A.

Lemma 5.5. If F �⊆ G1 ∪ G2 ∪ G3, then Theorem 5.1 holds.
Proof. Since F �⊆ G1∪G2∪G3, there exists an f ∈ F and f �∈ G1∪G2∪G3. Since all

unary signatures are in G3, the arity of f is greater than one and f is nondegenerate.
There are two cases according to whether f has a zero entry or not.

(1) f has some zero entries. If there exists a subsignature of f having the form
[0, a, b] or [a, b, 0], where ab �= 0, then we are done by Lemma 5.3. Otherwise, we can
conclude that there are no two successive nonzero entries. So the signature f takes
this form [0i0x10

i1x20
i2 · · ·xk0

ik ]. Here for all 1 ≤ j ≤ k, 0 �= xj ∈ R; k ≥ 2, since
f �∈ G2; i0, ik ≥ 0, and for all 1 ≤ j ≤ k − 1, ij ≥ 1. If for all 1 ≤ j ≤ k − 1, ij is
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Fig. 5.3. The signature of every degree 4 vertex in the gadget is [1, 0, 1, 0,−1]. And the signature
of the degree 1 vertex in the gadget is [1, 0].

odd, then f ∈ G2, a contradiction. Therefore there exists a subsignature of the form
[x, 0, . . . , 0, y], where xy �= 0 and there is an even number of 0’s between x and y. If
this is the entire signature f itself, then f ∈ G1, a contradiction. So there is at least
one 0 before x or after y in f . By symmetry, we assume there is a 0 before x, so
we have a subsignature [0, x, 0, . . . , 0, y], whose arity is even and greater than three.
We call its dangling edges 1, 2, . . . , 2k. Then for every i = 1, 2, . . . , k − 1, we merge
dangling edges 2i+1 and 2i+2 together to form a regular edge. After that, we have an
F -gate with arity two, and its signature is [0, x, y]. Then we are done by Lemma 5.3.

(2) f has no zero entries. We only need to prove that we can construct a function
[a′, b′, c′] satisfying the three conditions in Lemma 5.3. Suppose all subsignatures of
f with arity two do not satisfy all three conditions. For each subsignature [a′, b′, c′],
either a′ + c′ = 0, or b′2 = a′c′. If all of them satisfy a′ + c′ = 0, then f ∈ G3, and
we get a contradiction. If all of them satisfy b′2 = a′c′, then f is degenerate. This is
also a contradiction, since the arity of f is > 1, and all signatures in F of arity > 1
are nondegenerate. Without loss of generality, we can assume there is a subsignature
[a, b, c, d] of f (or its reversal), such that a+ c = 0, b+d �= 0, and c2 = bd. Combining
two copies of [a, b, c, d] by connecting two pairs of dangling edges, we can get a binary
function [a′, b′, c′] = [a2 + 2b2 + c2, ab+ 2bc+ cd, b2 + 2c2 + d2]. Then a′ = 2(b2 + c2),
b′ = c(b+d) �= 0, c′ = (b+d)2. And so a′+c′ > 0, and a′c′−b′2 = (b+d)2(2b2+c2) > 0.
We are done by Lemma 5.3.

Lemma 5.6. If F �⊆ G1 ∪ F2 ∪ G3, then Theorem 5.1 holds.
Proof. If F �⊆ G1 ∪ G2 ∪ G3, then by Lemma 5.5, we are done. Otherwise, there

exists a signature f ∈ F ⊆ G1 ∪ G2 ∪ G3 and f �∈ G1 ∪ F2 ∪ G3. Then it must be the
case that f ∈ G2. We claim that f has arity greater than two. Since U ⊂ G3, the
arity of f is at least two. Being from F and of arity at least two, f is nondegenerate.
If f has arity two, since f ∈ G2, it has form [∗, 0, ∗] or [0, ∗, 0]. Being nondegenerate,
the former belongs to G1. The latter belongs to G3. Hence f has arity at least
three. Since f �∈ G1, there is some nonzero entry in the middle of the signature f ;
after normalization, we can assume there is a subsignature of the form [0, 1, 0, x] (or
[x, 0, 1, 0]). If x �= ±1, then by Lemma 5.4, the problem is #P-hard and we are done.
Otherwise, for every such pattern, we have x = ±1. Since f �∈ F2, then there is some
subsignature [0, 1, 0,−1] and because f �∈ G3, there is some subsignature ±[0, 1, 0, 1].
Therefore, there is a subsignature [1, 0, 1, 0,−1] of f , up to a nonzero multiple. Then
we can construct an F -gate as in Figure 5.3, whose signature is [8, 0, 4, 0]. So by
Lemma 5.4, we know that the problem is #P-hard and we are done. This completes
the proof.
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Fig. 5.4. The function on degree 2 nodes is [1, a,−1], and the function on degree 3 nodes is
[1, 0, 0, b′].

Lemma 5.7. If F �⊆ G1 ∪ G3, then Theorem 5.1 holds.
Proof. If F �⊆ G1 ∪ F2 ∪ G3, then by Lemma 5.6, we are done. Otherwise, there

exists a signature f ∈ F ⊆ G1 ∪ F2 ∪ G3 and f �∈ G1 ∪ G3. Then it must be the case
that f ∈ F2. Note that every signature with arity at most two in F2 is also contained
in G1 ∪ G3, so f is of arity greater than two. Then f has a subsignature [1, 0, 1, 0] or
[0, 1, 0, 1]. By symmetry, we assume it is [1, 0, 1, 0]. If F ⊆ F1∪F2∪F3, then Theorem
5.1 trivially holds and there is nothing to prove. If not, there exists a signature
g ∈ F −F1∪F2 ∪F3. By F ⊆ G1 ∪F2 ∪G3, either g ∈ G1 −F1∪F2 ∪F3 (⊆ G1 −F1)
or g ∈ G3 −F1 ∪ F2 ∪ F3 (⊆ G3 −F3).

For the first case, g ∈ G1 − F1, then after eliminating a scalar factor, g is of the
form [1, 0, 0, . . . , b], where b �∈ {−1, 0, 1}. If the arity of g is odd, we can realize [1, b]
by connecting every two dangling edges into one edge and leave one dangling edge.
Then connecting this unary signature to one dangling edge of [1, 0, 1, 0], we can realize
a binary signature [1, b, 1]. Then by Lemma 5.3, Theorem 5.1 holds. If the arity of g is
even, we can realize [1, 0, b] (leaving two dangling edges). By connecting one dangling
edge of each of 3 copies of [1, 0, b] to each of 3 dangling edges of [1, 0, 1, 0], we can have
a new ternary symmetric signature [1, 0, b2, 0], which is equivalent to [1/b2, 0, 1, 0]. By
Lemma 5.4, we know the problem is #P-hard.

For the second case g ∈ G3−F3, then g has a subsignature of the form [1, b], where
b �∈ {−1, 0, 1}. By the same argument as above, Theorem 5.1 holds. This completes
the proof.

Lemma 5.8. If F �⊆ G1 ∪ F3, then Theorem 5.1 holds.
Proof. If F �⊆ G1 ∪ G3, then by Lemma 5.7, we are done. Otherwise, there exists

a signature f ∈ F ⊆ G1 ∪ G3 and f �∈ G1 ∪ F3. Then it must be the case that f ∈ G3.
Since every unary signature is in G1 ∪F3, the arity of f is at least two. It can be seen
that f has a subsignature of the form [1, a,−1], where a �∈ {−1, 0, 1}.

If F ⊆ {[1, 0, 1]} ∪ G3, then Holant∗(F) is polynomial time computable by Theo-
rem 4.1, and as a result Theorem 5.1 holds and we are done.

If not, there exists a signature g ∈ F ⊆ G1 ∪ G3 and g �∈ {[1, 0, 1]} ∪ G3. Then it
must be the case that g ∈ G1. The arity of g is greater than one, since g �∈ G3.

If the arity of g is two, then g is of the form [1, 0, b], where b �∈ {−1, 0, 1}.
Connecting two copies of [1, 0, b] to both sides of one binary signature [1, a,−1], we
can get a new binary signature [1, ab,−b2]. It satisfies all the conditions of Lemma 5.3,
and we are done. If the arity of g is greater than two, then we can always realize a
signature [1, 0, 0, b′], where b′ �= 0. (We can connect the unary signature [1, a] to
all dangling edges of g except three.) Then we can use an F -gate as in Figure 5.4.
Its signature is [1, a2b′, b′2], and by Lemma 5.3, we are done. This completes the
proof.

By the above lemmas, the only case we have to handle is that F ⊆ G1 ∪F3. This
is done by the following lemma, which completes the proof of Theorem 5.1.
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Lemma 5.9. If F ⊆ G1 ∪ F3, then Theorem 5.1 holds.
Proof. If F ⊆ F1∪F3, Holant

c(F) is computable in polynomial time. Similarly, if
F ⊆ U∪F3∪{[1, 0, 1]}, then by Theorem 4.1, Holantc(F) is computable in polynomial
time. Hence in these two cases, Theorem 5.1 holds. Now suppose F �⊆ F1 ∪ F3 and
F �⊆ U ∪ F3 ∪ {[1, 0, 1]}.

There exists f ∈ F − F1 ∪ F3. Since F ⊆ G1 ∪ F3, such an f belongs to G1.
Now there are two cases. The first case is that we have such an f �∈ U , i.e.,

f ∈ F ∩ G1 − (F1 ∪ F3 ∪ U). The arity of f is greater than one. By connecting its
dangling edges together except two or three depending on the parity of the arity of
f , we can assume f has the form [1, 0, a] or [1, 0, 0, a], where a �∈ {−1, 0, 1}.

The second case is that every f ∈ F ∩ G1 − (F1 ∪ F3) is also in U . By F �⊆
U ∪F3 ∪ {[1, 0, 1]}, there exists an f1 ∈ F − (U ∪F3 ∪ {[1, 0, 1]}). Since F ⊆ G1 ∪F3,
and f1 �∈ F3, we get f1 ∈ G1. If f1 �∈ F1, we could use this f1 as the f above, namely,
f1 ∈ F ∩G1−(F1∪F3∪U). This contradicts the condition of this case. Thus f1 ∈ F1.
Also we have some f2 ∈ F − (F1 ∪ F3). We have f2 ∈ G1, since F ⊆ G1 ∪ F3. So
f2 ∈ F ∩ G1 − (F1 ∪ F3). Since we are in this second case, certainly f2 ∈ U .

To recap, we have f1, f2 ∈ F ∩ G1 such that f1 ∈ F1 but f1 �∈ U ∪ F3 ∪ {[1, 0, 1]},
and f2 ∈ U but f2 �∈ F1. The arity of f1 is at least two. We claim it is greater than
two. Otherwise, f1 being from F1 and not [1, 0, 1], it would be f1 = [1, 0,−1] ∈ F3, a
contradiction. So f1 has the form [1, 0, 0, . . . ,±1] of arity at least three. f2 is of the
form [1, a′], where a′ �∈ {−1, 0, 1}; this follows from f2 ∈ U ∩ G1 −F1. By connecting
all the dangling edges of f1 except two with f2, we can construct an F -gate with a
signature of the form [1, 0, a], where a �∈ {−1, 0, 1}. This is one of the above two forms
after the first case. To sum up, in both cases, we have some f of the form [1, 0, a] or
[1, 0, 0, a], where a �∈ {−1, 0, 1}.

If F ⊆ G1 ∪ {[0, 1, 0]} ∪ U , then by Theorem 4.1, Holantc(F) is computable
in polynomial time and Theorem 5.1 holds. Otherwise, there exists a g ∈ F ⊆
G1 ∪ F3, and g �∈ G1 ∪ {[0, 1, 0]} ∪ U . Being not in U , g has arity at least two.
Being not in G1, g must be in F3. Then g has one of the following subsignatures:
[1, 1,−1], [1,−1,−1], [1, 0,−1, 0], [0, 1, 0,−1]; this follows from a careful examination
of the forms of F3. By symmetry (taking the reversal of both f and g), we only need
to consider two cases for f = [1, 0, a] or [1, 0, 0, a], where a �∈ {−1, 0, 1}, and two cases
for g = [1, 1,−1] or [1, 0,−1, 0].

According to f and g, we have four cases. If f = [1, 0, a] and g = [1, 1,−1], then
connecting them together into a chain fgf , we can realize [1, a,−a2]. By Lemma 5.3,
we are done. If f = [1, 0, a] and g = [1, 0,−1, 0], for each dangling edge of g, we
extend it by one copy of f . Then we can realize [1, 0,−a2, 0]. So by Lemma 5.4,
we are done. If f = [1, 0, 0, a] and g = [1, 1,−1], we can connect a unary signature
[1, 1] (a subsignature of g) to one dangling edge of f and realize a binary signature
f ′ = [1, 0, a]. This reduces it to the first case, which has been proved. If f = [1, 0, 0, a]
and g = [1, 0,−1, 0], we can realize a unary signature [1, a] from f by connecting two
of its dangling edges together, and then connect this unary signature to one dangling
edge of g to realize [1,−a,−1]. Note that [1,−a,−1] �∈ G1 ∪ F3, and by Lemma 5.8,
we are done.

6. Conclusions. We have introduced an alternative framework, called the Holant
problems, in the study of the complexity of counting problems. We have proved some
dichotomy theorems for both the Holant∗ setting as well as the Holantc setting. Some
deeper mathematical structure becomes visible when we treat Equality functions
as an ordinary function subject to holographic reductions. This is a feature that is



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTATIONAL COMPLEXITY OF HOLANT PROBLEMS 1131

hard to discuss in the traditional #CSP formulation of the complexity of counting
problems, where all Equality functions are assumed to be present for free. A major
open area for future investigations in #CSP problems is when the constraint functions
can take negative values, and thus cancellations occur in the counting problems they
define. The Holant framework seems a natural fit when we need to address potential
cancellations in the computation of counting problems. Holographic reductions are a
main tool in this investigation.

The results on Holant problems in this paper are only a beginning. There are
many open problems for future investigations. The results on Holant∗ and Holantc

are restrictions of Holant problems. Naturally one should investigate the unrestricted
Holant problems. The local constraint functions in this paper are all symmetric
functions. One can investigate asymmetric functions. The domain size in this paper
is Boolean. To extend to larger domains would be very challenging; but such a
generalization would be a vast extension on all #CSP problems, with cancellations.
Currently this is still largely unexplored.
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