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Abstract

We provide evidence for the proposition that the com-
putational complexity of individual problems, and of whole
complexity classes, hinge on the existence of certain solv-
able polynomial systems that are unlikely to be encoun-
tered other than by systematic explorations for them. We
consider a minimalist version of Cook’s 3CNF problem,
namely that of monotone planar 3CNF formulae where each
variable occurs twice. We show that counting the num-
ber of solutions of these modulo 2 is ⊕P-complete (hence
NP-hard) but counting them modulo 7 is polynomial time
computable (sic). We also show a similar dichtomy for
a vertex cover problem. To derive completeness results
we use a new holographic technique for proving complete-
ness results in ⊕P for problems that are in P. For example,
we can show in this way that ⊕2CNF, the parity problem
for 2CNF, is ⊕P-complete. To derive efficient algorithms
we use computer algebra systems to find appropriate holo-
graphic gates. In order to explore the limits of holographic
techniques we define the notion of an elementary matchgrid
algorithm to capture a natural but restricted use of them.
We show that for the NP-complete general 3CNF problem
no such elementary matchgrid algorithm can exist. We ob-
serve, however, that it remains open for many natural #P-
complete problems whether such elementary matchgrid al-
gorithms exist, and for the general CNF problem whether
non-elementary matchgrid algorithms exist.

1 Introduction

Many mathematical questions can be usefully framed in
the following enumerative form. There is an enumeration
E of objects, a propertyX that, on the surface, members of
E are unlikely to have, and the conjecture is made that no
object in E has property X . The Goldbach conjecture, for
example, is of this form whereE is the list of even numbers
and X is the property of not being the sum of two primes.
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We believe that the question of the computational complex-
ity of specific problems, and of the complexity classes in
which they are known to be complete, can be usefully for-
mulated in this way. The existence of objects having the un-
likely property would then imply the existence of unexpect-
edly efficient, in particular, polynomial time algorithms.

In complexiy theory the holographic framework [25] of-
fers such enumerations. The objects enumerated are sets
of polynomial systems such that the solvability of any one
member would give a polynomial time algorithm for a spe-
cific problem. The enumeration is not quite as simple as
for numbers because, while basis size can be enumerated,
another dimension is the choice of formulation of the com-
binatorial problem at hand. We argue that, aside from this
issue, the situation with the P = NP question is not dissimilar
to that of other unresolved enumerative conjectures in math-
ematics. The possibility that accidental or freak objects in
the enumeration exist cannot be discounted if the objects in
the enumeration have not been studied systematically.

The technical contributions of the paper are fourfold.
We first introduce a general technique for proving com-

pleteness results and apply it to show ⊕P-completeness for
several natural problems. The ⊕P-completeness of a prob-
lem follows immediately if it is NP-complete and reduc-
tions exist from satisfiability that preserve numbers of solu-
tions. However, for problems for which existence of solu-
tions is known to be in P, proofs of ⊕P-completeness are
more problematic. The only previous result we know is
the observation in [26] that ⊕MonSat is ⊕P-complete. The
new general technique is that of holographic reduction. A
holographic reduction is one based on gadgets that do not
preserve individual solutions in a one-to-one or many-to-
one sense, but preserve some other measure such as a sum,
here a sum modulo 2. Using this method we prove the ⊕P-
completeness of several problems. One example is the par-
ity of 2CNF for which there was no previous evidence of
hardness. These reductions are efficient and simple. Be-
sides establishing ⊕P-completeness they can also serve the
further purpose of providing evidence for the difficulty of
exact counting where such evidence previously did not ex-
ist or existed only through complex constructions. For ex-



ample, we show that graph vertex cover parity (or equiva-
lently monotone 2CNF parity) is hard even for planar bi-
partite graphs where every node in one side of the partition
has degree 2 and every node in the other has degree 3. A
#P-completeness result for this case was not available be-
fore (though the recent techniques of [28] may be applica-
ble). Even for the general planar case of vertex cover (un-
restricted degree, nonbipartite) only complex constructions
were known before [21].

Second we develop some general holographic results
for matchgates over bases of size two. Since in nontrivial
computations some three-argument primitives are essential,
bases of size two will require matchgates with six exter-
nal nodes and a system of polynomial equations with many
variables. To help in their analysis we exhibit some useful
two argument functions that can be provably supported by
very broad sets of bases.

Third, we focus on a lean case of the 3CNF problem
that illuminates the boundary - at least as currently widely
perceived - of polynomial time computation. This case is
that of planar formulae in which each variable occurs at
most twice. This problem without restrictions to planarity
or to 3 literals per clause, has been investigated by Bubley
and Dyer [2], who showed that its counting problem is #P-
complete, though polynomial time approximable. Here we
show that families of weighted variants are polynomial time
countable. Using this we show in particular that #7Pl-Rtw-
Mon-3CNF, where all variable occurrences are positive and
the solutions are to be counted modulo 7, is polynomial
time computable. This contrasts sharply with the complete-
ness result that we prove using the previously described par-
ity preserving reductions, that⊕Pl-Rtw-Mon-3CNF (equiv-
alently #2Pl-Rtw-Mon-3CNF) is ⊕P-complete (and hence
NP-hard). We note that intuition might have suggested that
counting modulo 2 is easier than counting modulo 7.

Fourth, we develop a notion of an elementary encoding
into matchgrids to capture a natural way of seeking polyno-
mial time holographic algorithms. We show that 3CNF does
not have such elementary encodings, and that the {0,1}-
Permanent is analogously restricted. . We go on to observe
that this leaves open nevetheless the possibilities that these
problems have non-elementary encodings into matchgrids,
and that other #P complete problems such as #2CNF, have
elementary encodings.

Throughout we shall define problems using the follow-
ing notation. Satisfiability of general Boolean formulae is
denoted by Sat. Conjuctive normal form is denoted by CNF,
and if there are exactly 2 or 3 literals in each clause then by
2CNF and 3CNF. The variants in which the clauses have
exactly three literals and it is required that exactly one, or
exactly two literals be satisfied in each clause, is denoted by
1-in-3CNF and 2-in-3CNF, respectively. Monotone formu-
lae will be denoted by Mon, and planar formulae [17] by

Pl. We note that counting monotone 2CNF is equivalent to
counting vertex covers. Hence for the abbreviation Mon-
2CNF we shall sometimes use VC. Bipartite graphs will be
denoted by Bip, and those in which all the nodes have de-
gree 2 on one side and degree 3 on the other by 3/2Bip. For-
mulae in which each variable occurs twice (read-twice) will
be denoted by Rtw. If both occurrences of every variable
are positive we denote that by RtwMon. If each variable
occurs once positively and once negated, we denote that by
RtwOpp. Counting modulo k the number of solutions of an
NP problem will be denoted by #kP (as in [22]) except that
for the case k = 2 we also use the alternative notation ⊕P
(from[20]). We shall use the prefices #k and ⊕ for particu-
lar problems also, to refer to the problems of counting their
solutions modulo k or modulo 2.

Thus the two problems contrasted in the introduction are
#2Pl-Rtw-Mon-3CNF and #7Pl-Rtw-Mon-3CNF, where the
former is also known as ⊕Pl-Rtw-Mon-3CNF. A second
pair is #2Pl-3/2Bip-VC, which is equivalent to #2Pl-Rtw-
Mon-3CNF, and is therefore⊕-complete, and #7Pl-3/2Bip-
VC, which we also show is polynomial time computable.

We note that read-twice formulae have been investigated
before in learning [1, 12], in the context of satisfiability [14,
10, 24, 7], and, as already mentioned, also for counting [2]
and parity [24, 26].

2 Parity-preserving holographic reductions

A simple example of a reduction that preserves parity but
not the number of solutions is the following.

Theorem 2.1 ⊕Pl-Mon-CNF is ⊕P-complete.

Proof We reduce ⊕Pl-3CNF to ⊕Pl-Mon-CNF. The count-
ing problem for the former, #Pl-3CNF, was shown to be #P-
complete by parsimonious reduction from #3CNF [17, 13],
and from this it follows that ⊕Pl-3CNF is ⊕P-complete.
It remains only to remove negated literals. Consider any
planar CNF formula F and for a variable x replace an oc-
currence of its negation by a new variable x∗. Also intro-
duce another variable x” and conjoin the formula with the
clauses (x + x∗)(x + x”)(x∗ + x”). Then (x + x∗) en-
forces that there are no solutions with both x and x∗ false.
Also, (x + x”)(x∗ + x”) enforces that when x and x∗ are
both true then there will be an even number of solutions (i.e.
with x” = 1 and x” = 0, respectively). Clearly, if x, x∗
have opposite values, reflecting the solutions of the original
equation F , then there will be just one solution for the new
variables, namely x” = 1. In order to preserve planarity,
for each variable x we shall introduce a separate variable
x∗ for each occurrence of x′ in F , and hence also a separate
variable x′′ for each such x∗. �

We shall now describe four further parity preserving con-
structions:



(A) To simulate (x + y) by a bipartite 2CNF formula
where x and y are to be represented in the same part of the
partition we replace it by (x′ + u′)(u′ + y′) where x′ de-
notes the negation of x and u is a new variable. It is easy to
verify that when x, y have the sets of values 00, 01, 10, 11
then (x′+u′)(u′+y′) has 2, 1, 1, and 1 solution(s), respec-
tively. Note that this reduction to bipartite graphs therefore
preserves the parity of the number of solutions. Monotone
formulae remain monotone, but in the negations of the orig-
inal variables.

(B) To simulate (x = y) we replace it by the chain (x +
s)(s+ t)(t + y) where s and t are new variables. It is easy
to verify that when x, y have the sets of values 00,01,10,11
this chain has 1,2,2,3 solution(s), respectively.

(C) To simulate (x = y) in a read-thrice formula by a
bipartite 2CNF formula in which nodes have degree 2 in
one partition and degree 3 in the other, we replace it by the
following formula which is bipartite and in which internal
nodes have degrees 2 and 3 respectively in the two parts:
(x + x1)(x1 + x2)(x2 + s)(x2 + t)(s + y2)(t + y2)(y2 +
y1)(y1 + y). It is easy to verify that when x, y have the
sequences of values 00,01,10,11 this chain has 7,12,12,21
solutions, respectively.

(D) To simulate a parity gate for the variables x, y, z, we
use a formula (x + x1)(y + y1)(z + z1)(x1 + y1)(y1 +
z1)(z1 + x1), with x1, y1, z1 as new variables. It is easy
to verify that this has 1, 2, 3, or 4 solutions according to
whether the number of the external variables {x, y, z} that
are true is 0, 1, 2, or 3 respectively. In other words this
computes the even parity gate.

Theorem 2.2 ⊕Pl-3/2Bip-Mon-2CNF and⊕Pl-3/2Bip-VC
are ⊕P-complete.

Proof In [13] it is shown that there is a parsimonious reduc-
tion from 3CNF to planar Pl-Mon-1-in-3CNF. Clearly, by
negating all the variables we can instead look at the same
problem, but where we insist that exactly two variables in
each clause are true instead of one, namely Pl-Mon-2-in-
3CNF.

Simulate each such gate (x + y + z) by a formula (x +
y)(y + z)(x+ z)(x+ t)(y + t)(z + t). This has 0, 0, 1, or
2 solutions according to whether the number of the external
variables {x, y, z} that are true is 0, 1, 2, or 3 respectively.

Now the reduction can be made to a bipartite graph by
replacing every clause (x+ y) in the construction so far by
the bipartite (x′ + u′)(u′ + y′) where u is a new variable,
as in (A) above. Clearly the new formula will be bipartite,
and it will be monotone in the negations of the original vari-
ables. Also all nodes in one part of the node partition will
have degree two.

Lastly, we can make the reduction to a 2/3-graph by re-
placing each node of degree k > 3, (which necessarily all
lie in the other part of the partition) by a cyclic structure of

7k nodes. Of these, k nodes, say z1, z2, · · · , zk, represent
the original node and each of these has one external link.
Otherwise they are linked in a cycle, successive pairs being
joined by the equality structure (C) above. Construction (C)
ensures that this structure enforces equality for the values of
the externally linked variables z1, z2, · · · , zk that represent
one original variable, and that the final graph is 3/2Bip. �

Theorem 2.3 #2Pl-Rtw-Mon-3CNF is ⊕P-complete.

Proof This follows directly from ⊕Pl-3/2Bip-Mon-2CNF
being ⊕P-complete. In an instance F of ⊕Pl-3/2Bip-Mon-
2CNF we regard each degree three node as a 3CNF gate
with all variables negated, and each degree two node as the
location of those (unnegated) variables. Then among so-
lutions to F each time the variables neighboring a degree
three node x all have value 1, then two solutions of x are
possible, while if some neighbor of x has value 0, then x
must have value 1 and only one solution is possible. Hence,
the degree three node effectively computes a disjunction on
the negations of its three neighboring variables. �

3 Holographic Algorithms For Size Two
Bases

We first summarize the planar matching formulation of
holographic algorithms [25, 27]. We then spell out the de-
tails for the case of 2-output generators and 3-input recog-
nizers for bases of size 2, thus generalizing the correspond-
ing results for bases of size 1 [27]. Finally we give charac-
terizations for some natural 2-output generators for equality
and signed inequality gates.

A generator G over a 2-basis with 2 symbolic outputs is
an undirected graph with weights from a field F that has
four distinguished output nodes {1, 2, 3, 4} and governing
equations:

uijkl =
∑

qrs(brs)ijkl (1)

Here uijkl is defined for (i, j, k, l) ∈ {0, 1}4 and equals
the value of the perfect matching polynomial (PerfMatch)
for graph G, when the output nodes corresponding to the
parameters i, j, k, l that have value one are deleted. (Note
that if G has an even number of nodes then uijkl = 0
whenever an odd number of i, j, k, l are zero, and vice
versa.) The elements qrs for (r, s) ∈ {0, 1}2 represent the
combinatorial function that is being generated, which can
be written as q00n⊗n+q01n⊗p + q10p⊗n+q11p⊗p.
This in turn means that negative symbols are emitted in
both directions with weight q00, etc. (For example, for
a generator of two equal bits the signature of the gate is
q = (q00, q01, q10, q11) = (1, 0, 0, 1).) Now the basis b is



specified as {brs | (r, s) ∈ {0, 1}2} where brs denotes the
weighted 16-vector ((brs)ijkl |(i, j, k, l) ∈ {0, 1}4) that de-
scribes n⊗n, n⊗p, p⊗n, or p⊗p, in each of the four
cases that (r, s) = (0, 0), (0, 1), (1, 0) or (1, 1). Further,
we shall represent the 2-basis as n = (n00, n01, n10, n11)
and p = (p00, p01, p10, p11).

A recognizer R over a 2-basis with 3 symbolic inputs is
an undirected graph with weights from a field F that has six
distinguished input nodes, and governing equations:

qijk =
∑

urstuvw(bijk)rstuvw (2)

Here urstuvw is defined for (r, s, t, u, v, w) ∈ {0, 1}6
and equals the perfect matching (PerfMatch) polynomial for
that graph when the input nodes corresponding to the pa-
rameters r, s, t, u, v, w that have value one are deleted. Now
bijk for each (i, j, k) ∈ {0, 1}3 will denote the weighted
64-vector ((bijk)rstuvw |(r, s, t, u, v, w) ∈ {0, 1}6) that de-
scribes n⊗n⊗n, n⊗n⊗p, n⊗p⊗n, n ⊗p⊗p,
p⊗n⊗ n, p⊗n⊗p, p⊗p⊗n, or p⊗p⊗p ac-
cording to whether (i, j, k) = (0, 0, 0), (0, 0, 1), (0, 1,
0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).
As before, the 2-basis is n = (n00, n01, n10, n11) and
p = (p00, p01, p10, p11). The elements qijk for (i, j, k) ∈
{0, 1}3 represent the combinatorial function that is being
recognized. For example, for the 3CNF gate we need signa-
ture q = (q000, q001, q010, q011, q100, q101, q110, q111) = (0,
1, 1, 1, 1, 1, 1, 1). When the signature depends only on
the number of 1’s in the subscripts of q then it is a symmet-
ric signature and is abbreviated using square parentheses as
[q000, q001, q011, q111], which for 3CNF is therefore [0, 1, 1,
1].

For an instance I of a given computational problem
we construct a matchgrid H(I) from generator and recog-
nizer matchgates whose signatures capture the combinato-
rial constraints that characterize the solutions of I , and join
these up by single edges joining outputs of generators to in-
puts of recognizers. By definition, the Holant of H(I) will
then equal the sum of all the solutions of I . The Holant The-
orem [25, 27] states that the Holant of H(I) equals the Perf-
Match polynomial evaluated for H(I). The PerfMatch poly-
nomial, in turn, will equal the square root of the determinant
of the skew symmetric matrix obtained from the adjacency
matrix of H(I) by setting signs according to the procedure
of Fisher-Kasteleyn-Temperley [16]. Also the determinant
of planar positive definite matrices can be computed in time
O(nω/2) [18] where ω is the exponent of matrix multiplica-
tion, and hence the determinant of a planar matrix A can be
so computed by computing det(AAT ). From this it follows
that the core holographic algorithm will always take time
O(nω/2) < O(n1.19) [9]. (Of course, in applications, the
inputs to it may be larger than for the original problem, for
example, if a planarizing transformation is invoked. Also,

the core procedure may be called many times if some inter-
polation operation is employed.)

We shall now observe that for certain natural signa-
tures some general statements can be made about gener-
ators governed by equation system (1) above: uijkl =∑
qrs(brs)ijkl . The output nodes will be labelled 1, 2, 3, 4

in anticlockwise order in the planar embedding. The equa-
tion system can be expanded as follows.

u0000 = q00n00n00 + q01n00p00 + q10p00n00 + q11p00p00,
u0001 = q00n00n01 + q01n00p01 + q10p00n01 + q11p00p01,
u0010 = q00n00n10 + q01n00p10 + q10p00n10 + q11p00p10,
u0011 = q00n00n11 + q01n00p11 + q10p00n11 + q11p00p11,
u0100 = q00n01n00 + q01n01p00 + q10p01n00 + q11p01p00,
u0101 = q00n01n01 + q01n01p01 + q10p01n01 + q11p01p01,
u0110 = q00n01n10 + q01n01p10 + q10p01n10 + q11p01p10,

u0111 = q00n01n11 + q01n01p11 + q10p01n11 + q11p01p11,
u1000 = q00n10n00 + q01n10p00 + q10p10n00 + q11p10p00,
u1001 = q00n10n01 + q01n10p01 + q10p10n01 + q11p10p01,
u1010 = q00n10n10 + q01n10p10 + q10p10n10 + q11p10p10,
u1011 = q00n10n11 + q01n10p11 + q10p10n11 + q11p10p11,
u1100 = q00n11n00 + q01n11p00 + q10p11n00 + q11p11p00,
u1101 = q00n11n01 + q01n11p01 + q10p11n01 + q11p11p01,
u1110 = q00n11n10 + q01n11p10 + q10p11n10 + q11p11p10,
u1111 = q00n11n11 + q01n11p11 + q10p11n11 + q11p11p11,

Theorem 3.1 For any F there is a generator for q = (0, 1,
-1, 0) over any 2-basis n = ( n00, n01, n10, n11 ) and p =
( p00, p01, p10, p11 ) provided n00p11 = n11p00, n01p10 =
n10p01, and n01p11 6= n11p01

Proof Proposition 6.3(ii) in [27] states that for four external
nodes there exist planar matchgates for all u such that
(a) u1111 = u0000 = u1100 = u0011 = u1001 = u0110 =
u0101 = u1010 = 0,
(b) u1000u0111−u1011u0100+u1101u0010−u1110u0001 = 0,
and
(c) u0111 6= 0.

The reader can easily verify that the eight equations
required for (a) are all satisfied. Equation (b) be-
comes (n10p00 − p10n00)(n01p11 − p01n11) − (n10p11 −
p10n11)(n01p00 − p01n00) + (n11p01 − p11n01)(n00p10 −
p00n10)− (n11p10−p11n10)(n00p01−p00n01) = 0, which
is also satisfied, as is (c). �

Theorem 3.2 For any F there is a generator for q = [1,
0, 1] over any 2-basis n = (n00, n01, n10, n11) and p =
(p00, p01, p10, p11) provided n00p11 = n11p00, n01p10 =
n10p01, n11n11 + p11p11 6= 0, and n10n11 + p10p11 =
n01n11 +p01p11 = n00n10 +p00p10 = n00n01 +p00p01 =
0.



Proof Proposition 6.3(ii) in [27] states that for four external
nodes there exist planar matchgates for all u such that
(a) u0111 = u1000 = u0100 = u1011 = u0001 = u1110 =
u1101 = u0010 = 0,
(b) u0000u1111 − u0011u1100 + u0101u1010 − u0110u1001 =
0, and
(c) u1111 6= 0.

The reader can verify that all the eight equations
of (a) are satisfied. Also, (b) becomes (n00n00 +
p00p00)(n11n11 + p11p11)− (n00n11 + p00p11)(n11n00 +
p11p00)+(n01n01 +p01p01)(n10n10 +p10p10)−(n01n10 +
p01p10)(n10n01 +p10p01) = 0, which is also satisfied, as is
(c). �

We note that these results generalize the following ob-
servations for the size one bases.

Theorem 3.3 For any F there is a generator for q = (0 ,1 ,
-1, 0) over any 1-basis n = (n0, n1), p = (p0, p1).

Theorem 3.4 For any F there is a generator for q= [1, 0, 1]
over any 1-basis n = (n0, n1), p = (p0, p1) such that n0n1 +
p0p1 = 0.

For generators with two outputs equation system (1) is

u00 = q00n0n0 + q01n0p0 + q10p0n0 + q11p0p0

u01 = q00n0n1 + q01n0p1 + q10p0n1 + q11p0p1

u10 = q00n1n0 + q01n1p0 + q10p1n0 + q11p1p0

u11 = q00n1n1 + q01n1p1 + q10p1n1 + q11p1p1

Proposition 6.1 in [27] asserts that any standard signature is
possible if either (a) u00 = u11 = 0, or (b) u01 = u10 = 0.
Theorem 3.3 follows immediately from case(a), and Theo-
rem 3.4 from case (b).

4 Some Accidental Algorithms

It is easy to see that Pl-Rtw-Mon-3CNF corresponds to
a generator for [1, 0, 1] and a recognizer for [0, 1, 1, 1],
while Pl-3/2Bip-VC (and hence Pl-3/2Bip-Mon-2CNF) cor-
responds to a generator for [1, 0, 1] and a recognizer for [2,
1, 1, 1]. For the former the generators correspond to vari-
ables, and the recognizers to clauses. For the latter gen-
erators correspond to degree two clauses, and the recog-
nizers to degree three clauses. Matchgates and bases for
these symmetric signatures were discovered over F7 using
the computer algebra system Singular [11] applied to the
formulation of 2-bases given in the previous section.

Theorem 4.1 (i) For F7, n = (1, 1, 2, 1) and p = (2, 3,
6, 2) is such a common basis for generating [1, 0, 1] and
recognizing [0, 1, 1, 1]. (ii) For F7, n = (1, 1, 4, 1) and p
= (3, 2, 1, 3) is a common basis for generating [1, 0, 1] and
recognizing [2, 1, 1, 1].

Proof First we observe that the two bases given satisfy the
requirements of [1, 0, 1] generators given in Theorem 3.2.
Hence it si sufficient to prove the existence of the recogniz-
ers. We need recognizers with six input nodes, and will take
the three symbolic inputs as coming into (1, 2), (3, 4) and
(5, 6), respectively in clockwise order. The set of equations
(2) above specifies the governing equations. There are fur-
ther equations that constrain the u variables to be realizable
as a PerfMatch polynomial. A standard form for these is
given in [27] for up to four external nodes, and for arbitrary
numbers of external nodes in [3, 4]. In general the equations
for six external nodes will have 32 nonzero u variables and
many internal variables. These are difficult to handle for
humans and sometimes for computers. In the current in-
stance, we use a recognizer with just three nonzero internal
variables. The edge weights are x16 between nodes 1 and 6,
x45 between nodes 4 and 5, and x78, between two internal
nodes numbered 7 and 8, the latter adding only a multi-
plicative factor to the recognized values. Noting that these
edges need not cross in a planar embedding and hence no
crossover constructions are necessary, the standard signa-
ture of the matchgate will be characterized by the following

u011000 = x16x45x78,
u011110 = x16x78,
u111001 = x45x78,
u111111 = x78,

with the sixty remaining u components all being zero. Then
the signature of the gate with respect to the basis basis n =
(n00, n01, n10, n11) and p = (p00, p01, p10, p11) is given
by equation system (2), which simplifies by virtue of the
sparsity to:

q000 = u011000n01n10n00 + u011110n01n11n10

+u111001n11n10n01 + u111111n11n11n11,
q001 = u011000n01n10p00 + u011110n01n11p10

+u111001n11n10p01 + u111111n11n11p11,
q010 = u011000n01p10n00 + u011110n01p11n10

+u111001n11p10n01 + u111111n11p11n11,
q011 = u011000n01p10p00 + u011110n01p11p10

+u111001n11p10p01 + u111111n11p11p11,
q100 = u011000p01n10n00 + u011110p01n11n10

+u111001p11n10n01 + u111111p11n11n11,
q101 = u011000p01n10p00 + u011110p01n11p10

+u111001p11n10p01 + u111111p11n11p11,
q110 = u011000p01p10n00 + u011110p01p11n10

+u111001p11p10n01 + u111111p11p11n11,
q111 = u011000p01p10p00 + u011110p01p11p10

+u111001p11p10p01 + u111111p11p11p11.

The two claims regarding F7 can be verified directly by
substitution. The first claim regarding a recognizer for [0, 1,
1, 1] can be verified by choosing x16 = x45 = 1 and x78 =



2, so that u011000 = u011110 = u111001 = u111111 = 2, and
substituting n = (1, 1, 2, 1) and p = (2, 3, 6, 2) in the above
8 equations for q. The second claim for F7 can be verified
with x16 = x45 = 1 and x78 = -2. �

Corollary 4.1 There is a polynomial time algorithm for
#7Pl-Rtw-Mon-3CNF.

Corollary 4.2 There is a polynomial time algorithm for
#7Pl-3/2Bip-Mon-2CNF and #7Pl-3/2Bip-VC.

The above formulation of matchgates for bases of size 2
has therefore proved successful in yielding surprising poly-
nomial time algorithms using a mechanical equation solver.
Larger bases, or gates with larger arities can also be at-
tempted, but these may give systems of equations that are
much more challenging to solve mechanically.

However, Cai and Lu [6] have observed very recently
that the specific signatures derived in the last result can be
obtained also for size one bases using Proposition 6.2 in
[27]. In particular, that proposition asserts that there ex-
ist three output matchgates with u100 = u010 = u001 =
u111 = 0 and any combination of values for the compo-
nents u000, u011, u101 and u110. Hence equation system (2)
for recognizers becomes

q000 = u000n0n0n0 + u011n0n1n1 + u101n1n0n1

+u110n1n1n0,
q001 = u000n0p0p0 + u011n0n1p1 + u101n1n0p1

+u110n1n1p0,
q010 = u000n0p0n0 + u011n0p1n1 + u101n1p0n1

+u110n1p1n0,
q011 = u000n0p0p0 + u011n0p1p1 + u101n1p0p1

+u110n1p1p0,
q100 = u000p0n0n0 + u011p0n1n1 + u101p1n0n1

+u110p1n1n0,
q101 = u000p0n0p0 + u011p0n1p1 + u101p1n0p1

+u110p1n1p0,
q110 = u000p0p0n0 + u011p0p1n1 + u101p1p0n1

+u110p1p1p0,
q111 = u000p0p0p0 + u011p0p1p1 + u101p1p0p1

+u110p1p1p0,

Then n = (1, 6) and p = (2, 4) is a common basis for generat-
ing [1, 0, 1] and recognizing [0, 1, 1, 1] since then the con-
dition of Theorem 3.4 is satisfied, as is the above equation
system (2) with u000 = 2 and u011 = u101 = u110 = 4.
For the same reason n = (1, 6) p = (3, 5) is a common
basis for generating [1, 0, 1] and recognizing [2, 1, 1, 1],
the above system (2) being satisfied with u000 = 5 and
u011 = u101 = u110 = 6.

Theorem 4.2 ForC there are common bases of size one for
(i) generating [1, 0, 1] and recognizing [0, 1, 1, - 4

3 ] and for

(ii) generating [1, 0, α] and recognizing [0, 1, 1, 1] where
α is a root of x2 + 3x+ 3 = 0.

Proof Part (i) follows with basis n = (3,1), p = (-1,3) from
equation system (2) with u000 = −1/60 andu011 = u101 =
u110 = 1/20, and condition n0n1 + p0p1 = 0 of Theorem
3.4. Part (ii) follows in the same way by observing that for
generating [1, 0, α] the condition in Theorem 3.4 becomes
n0n1 + αp0p1 = 0. Then basis n = (1,1), p = (-α/3, α + 2)
with u000 = 3

√
3i/4 and u011 = u101 = u110 = −√3i/4

works. �
We note that Theorems 3.1 and 3.3 correspond to read-

twice formulae in which variables occur in opposite pairs
(x, x′). Clearly they have fewer constraints than Theorems
3.2 and 3.4. The question arises as to whether interesting
polynomial time algorithms can be derived using the for-
mer pair. When combined with a recognizer for [0, 1, 1, 1]
the problem solved is⊕Pl-Rtw-Opp-3CNF, which is degen-
erate. However, it is not clear whether in combination with
recognizers for [r0r1, r2, r3] for other r0, r1, r2, r3 ∈ C in-
teresting problems can be solved.

When applying the term accidental to an algorithm we
intend to point out that the algorithm arises from satisfying
an apparently onerous set of constraints. We do no imply
that the existence of some efficient algorithm for that prob-
lem is necessarily unlikely. It can be argued that all poly-
nomial time algorithms are accidental in this sense, and one
may point to efficient linear algebra algorithms for the de-
terminant as paradigrmatic examples. Indeed, one might
also argue that the completeness results in this paper are no
less accidental, and further that all completeness results in
complexity theory are accidental in the same sense.

5 Scope and Limits of Holographic Algo-
rithms

Holographic reductions may be applied in a variety of
ways. In this section we shall restrict our discussion to their
use in matchgrids as described in [25, 27] and in earlier sec-
tions of this paper. We shall refer to algorithms obtained by
polynomial time reductions to matchgrids as matchgrid al-
gorithms.

The principal question, clearly, is whether matchgrid al-
gorithms exist for problems complete in NP, #P, or #kP for
some k. One advantage of the holographic framework is
that it is a natural algebraic framework in which one ex-
pects to be able to resolve mathematical questions. We
would argue that there is little intuitive guidance available
as to the ultimate answer to the question posed other than
through analysis. Holographic algorithms have been stud-
ied only for a short time and the failure to find complex-
ity class collapsing algorithms to date is not a persuasive
argument for a negative answer. We also note that even



for the strongest positive result that might be proved this
way, namely P#P=NC2, the search over some decades for
promising approaches to proving the contrary appears to
have yielded no plausible candidates.

In this section we first define the notion of an elemen-
tary encoding of 3CNF into matchgrids. We shall show that
3CNF does not have such an elementary encoding. We then
go on to observe that we currently know of no impediments
to either (i) the encodability into matchgrids of these same
problems by more general reductions, or to (ii) the existence
of elementary matchgrid algorithms for some #P-complete
problems.

We say that a reduction f to matchgrids is a k(m)-oracle
reduction if for instances of sizem it generates k(m) match-
grids in polynomial time and from their Holants it computes
solutions to the original problem also in polynomial time.
The reductions in the previous section were 1-oracle re-
ductions. Note that multi-oracle matchgrid reductions have
been described [27], [4].

Suppose that f is a polynomial time reduction from a
class of 3CNF formulae to matchgrids over field F . Let R
be a 3CNF formula with m clauses in that class, and let X
be a set of n clauses X1, · · · , Xn of R. For 1 ≤ i ≤ n let
Ui be the pair of clauses {(xi + xi + xi), (x

′
i + x′i + x′i)}.

These will be used to enforce particular input values. (N.B.
We are insisting here on exactly three literals per clause only
for consistency of notation.) Let f(R,X) be the set of 2n

adjacency matrices for the set of matchgrid images under f
of all the formulae that can be obtained from R by replac-
ing each clause Xi by a member of Ui. For a two argument
functionL(n,m) we say that f is L(n,m)-local if for each
R andX the following holds: the set of matrices in f(R,X)
are all of the same size and have identical entries in all po-
sitions except for a set Y (R,X) of at most L(n,m) posi-
tions. It is local if it is L(n,m)-local for some L. We say
that such a transformation is strictly local if it is L(n,m)-
local for some function L(n,m) that is upper bounded by a
polynomial L∗(n) that is independent of m.

For a local reduction f , a 3CNF formula R and a set X
of n of its clauses define Z(R,X) to be the indices of the
rows and columns that contain some Y (R,X) position, and
let T (R,X) be the remaining indices. Then f is a boundary
reduction if for each R and X there is a set of planar em-
beddings of the members of f(R,X), one embedding for
each combination of replacements of the set X of clauses,
such that (i) the Z(R,X) nodes have constant bounded de-
gree, (ii) the embedded subgraph induced by the vertices
T (R,X) is identical for all members of f(R,X), (iii) for
all members of f(R,X) the nodes Z(R,X) are all mapped
in the infinite outer face of the embedding of the graph in-
duced by T (R,X), and (iv) in each member of f(R,X) the
Y (R,X) edges (all incident to vertices in Z(R,X)) can be
partitioned into |X | sets, each such set Si corresponding to

a clause Xi in X , such that the weights of Si are functions
of the choice of replacement clause forXi and are indepen-
dent of the choices of replacement clauses for Xj for any
j 6= i.

We shall say that a matchgrid algorithm for a class of
3CNF formulae is an elementary matchgrid algorithm if it
consists of a reduction to matchgrids that has the four prop-
erties of being (i) 1-oracle, (ii) strictly local, (iii) boundary,
and (iv) over a field F of |F | < poly(m) elements, where
m is the size of the formula.

We note that the simplest attempt at a holographic al-
gorithm for 3CNF would consist of fixed size gates for the
variables, for the Boolean gates, for fanout gates, and for
cross-overs of the connections. If this were possible then
the inputs could be simulated on the periphery and require-
ments (i)-(iii) of elementarity would be realized. This pos-
sibility we shall exclude, at least if requirement (iv) of a
polynomial bound on the number of elements of |F | is also
met.

Our negative results are based on the following theorem,
which asserts for matchgrids the fundamental equivalent re-
sult proved for matchcircuits by Cai and Choudhary (Corol-
lary 4.1 in [3].)

Theorem 5.1 For any matchgrid with r external nodes
there is another matchgrid with the same standard signature
that has O(r4) edges of which O(r2) have weight different
from 1.

Proof The equivalence of matchgrids and matchcircuits fol-
lows from Lemmas 3.1 and 3.2 in [4]. The result is then
immediate from Corollary 4.1 in [3]. �

Theorem 5.2 There is no elementary matchgrid algorithm
for 3CNF.

Proof Consider a Boolean circuit C with n inputs and m ≥
n−1 gates, and consider an input vector x for it of n binary
values. This can be mapped by standard methods to a 3CNF
Boolean formula R(x) of O(m) clauses such that R(x) is
satisfiable in 1 or 0 ways according to whether C evaluates
to 1 or 0 on input vector x. Further, for each circuit C there
will be 2n formulae R(x) so generated, one for each x ∈
{0, 1}n, such that these circuits are identical except for n
clauses each of the form (xi+xi+xi) or (x′i+x′i+x′i) that
enforce the actual value of the variable xi in input vector x.
We shall designate these n clauses that encode the inputs
to C as the set X . Hence, any strictly local transformation
from formulae to matchgrids will map these 2n formulae,
which differ only in the n clauses X , to matchgrids that
are identical to each other in every entry except for a fixed
set of L∗(n) entries, where L∗(n) is upper bounded by a
polynomial in n independent of m.

Suppose now that there existed an elementary matchgrid
algorithm that maps formulae R(x) to matchgrids whose



Holant determines whether R(x) is satisfiable, and hence
whether C(x) equals 0 or 1. Then for any circuit C the
classR(x) of formulae derived from it would map to match-
grids with identical matrices except for a fixed set of at
most L∗(n) entries. We regard the nodes in T (R,X) as
a matchgrid H , and regard those of the nodes on the outer
face of the assumed embedding of H that have connections
to Z(R,X) nodes as the external nodes of H . There are
O(L∗(n)) such nodes if the Z(R,X) nodes have constant
bounded degree. We can then deduce from Theorem 5.1
that the standard signatures of the matchgrids in f(R,X)
are unchanged if in each the submatchgridH is replaced by
a matchgrid H∗ that has only O((L∗(n))2) internal edges
with weights not equal to 1.

We next give an upper bound on the number of distinct
sets f(R,X) of matchgrids (and hence inequivalent circuits
C) that can be obtained in this way by varyingR. From the
previous paragraph the number of distinct choices of H∗ is
|F | to the power O((L∗(n))2). It remains to analyze the
contribution of the edges external to H as constrained by
part (iv) of the definition of a boundary reduction. Sup-
pose that the first clause of X influences |S1| of the edges
in Y (R,X). Then the number of choices of weights for
these edges is |F | to the power |S1|. This upper bounds
the number of different encodings of a clause that can go
in that position. If we want to encode just the two choices,
the clauses (xi + xi + xi) or (x′i + x′i + x′i), then the num-
ber of choices is |F | to the power 2|S1|. Hence over all n
members ofX the possible choices will be |F | to the power
2L∗(n). There will be a further O(L∗(n)) edges in the ex-
terior of H∗ since the degrees of those nodes outside of H∗
have constant bounded degree. Hence the number of dis-
tinct sets f(R,X) that can be encoded is at most |F | to the
power O((L∗(n))2) + O(L∗(n)). We therefore conclude
that if an elementary reduction exists then the numberN of
inequivalent circuits that can be encoded is upper bounded
by |F | to the power O((L∗(n))2).

Finally suppose, that we encode all circuitsC of n inputs
of size up to 2n. Then each one of double exponentially
many Boolean functions of n arguments will have such an
encoding. But this is a contradiction, since |F | is single
exponential in n, and hence N is also since it is |F | to the
power O((L∗(n))2. Therefore the hypothesized elementary
matchgrid algorithm cannot exist. �

Corollary 5.1 There is no elementary matchgrid algorithm
for Pl-3CNF.

Proof Lichtenstein [17] showed that 3CNF can be simu-
lated by Pl-3CNF by means of crossover gadgets, and his
reduction preserves numbers of solutions [13]. Hence Pl-
3CNF can be used to encode circuit evaluation exactly as
3CNF can. The result then follows exactly as in the above
Theorem. �

It is natural to ask whether elementary matchgrid algo-
rithms exist for complete problems in which circuit eval-
uation is encoded less directly. Some natural candidates
are those #P-complete problems the reductions to which
are more algebraic. Of course, we have defined elemen-
tary algorithms only for 3CNF, but corresponding defini-
tions can be developed for other problems also. Here we
shall observe that at least the most naive approaches can be
excluded for the permanent.

Consider {0, 1}-Permk the problem of finding perma-
nents of matrices with {0, 1} entries modulo a fixed integer
k, or equivalently counting perfect matchings in bipartite
graphs modulo k. Now the reduction of circuit evaluation
via 3CNF and Pl-3CNF to this for k not a power of 2, using
[22] for the last step, gives a graph in which the input vari-
ables are represented on the outer face. Also, the formula
obtained from an instance of the circuit evaluation problem
will always have zero or one solution. Any straightforward
mapping of this graph in which the nodes and edges are
replaced by constant size matchgates over a field of poly-
nomial number of elements would produce an elementary
matchgrid algorithm for 3CNF. That would contradict The-
orem 5.2.

There are multitudes of #P-complete problems that are
proved complete via reductions that involve multiple oracle
calls and polynomial interpolation on the results [23, 15, 21,
28]. For any one of these problems one can ask in the man-
ner of the previous paragraph whether specific classes of
matchgrid algorithms are impossible. It seems that the cir-
cuit evaluation problem is more deeply hidden within these
problems than in 3CNF or the Permanent.

Open Problem 1 For #2CNF (or another problem proved
#P-complete by interpolation) can a natural class of match-
grid algorithms be excluded?

In the opposite direction one can ask:

Open Problem 2 Is there a #P-complete problem for which
an elementary matchgrid algorithm exists?

For #P-complete problems in general, and #3CNF itself,
there remains the possibility of non-elementary matchgid
algorithms, ones in which one or more of the four properties
specified in the definition of elementarity are relaxed. Thus,
it is an open problem whether giving up strict locality, or
having many oracle calls, or having the input variables of C
map to the interior, or working in fields with exponentially
many elements in terms of the input size, would, singly or
in combination, allow for matchgrid algorithms.

Open Problem 3 Is there a matchgrid algorithm for #3CNF.

The nature of our lower bound argument can be under-
stood in the following way. In traditional views of computa-
tion circuit evaluation is trivial and exponential summation



or nondeterminism is apparently problematic. In the holo-
graphic view the situation is the exact converse, exponential
summation or nondeterminism is trivial and circuit evalua-
tion is problematic (though the components of it Boolean
gates, constants, crossovers and fanout can be easily real-
ized separately.) It is therefore not surprising that the circuit
evaluation task would appear prominently in lower bound
arguments. Note that it is implicit in Theorem 5.2 that cir-
cuit evaluation itself does not have “elementary” matchgrid
algorithms. It remains open whether the evaluation of cir-
cuits or of simple P-complete cellular automaton rules (e. g.
[19]) can be done by non-elementary matchgrid algorithms.
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