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Primes . . . and Prime Factorizations

The Prime Factorization problem is to factor an arbitrary integer N into its (unique) expression as a product of primes

N = p
e1
1 p

e2
2 · · · pekk

The dignity of science requires that every possible means be explored for the solution of a problem so elegant and so celebrated.
— C. F. Gauss

Theorem [Hadamard, de la Vallée]: There are about N
lnN primes up to integer N .

Theorem [Fouvry]: There is a positive density of primes p such that p− 1 has a largest prime factor > p2/3.

Shor’s Factoring Algorithm

In 1994, Peter Shor [1] gave a quantum polynomial-time algorithm that can factor large integers. This is the single most important
algorithm in quantum computing. If such algorithms can be realized in practice, then public-key cryptographic systems such as RSA
can be broken. Billions of dollars have been spent in this quest, and many more billions are planned.

Billions and Billions . . . — Carl Sagan

Qubits and quantum operations

Unlike classical computing where the basic elements are the bits 0 and 1, quantum information processing is built on qubits which
can be viewed as a unit length vector on the sphere (Figure from Wikipedia).

Quantum operations are rotations and reflections in these spheres. Multiple qubits reside in superpositions in a tensor product space,
called a Hilbert space.
An important quantum operation is a (controlled-)rotation Rk =

[
1 0

0 e2πi/2
k

]
, with angle 2π

2k
. This is tiny for large k.

Quantum Fourier Transform

The magic step in Shor’s algorithm is the following Quantum Fourier Transform (Figure from Wikipedia)

But, in any physical realization, one can expect some noise to be present. What happens to Shor’s algorithm when a little bit of noise
is introduced?
Consider an error model, where the operator Rk is substituted by

R̃k =
[
1 0

0 e2πi(1+ϵr)/2
k

]
,

where r ∼ N(0, 1) is an independent normally distributed noise random variable, and ϵ is a global magnitude parameter.

Main Results

Theorem 1 [2] If each controlled-Rk-gate in the quantum Fourier transform circuit is replaced by controlled-R̃k-gate, even with a
vanishingly small amount of noise ϵ(n) → 0, Shor’s algorithm does not factor n-bit integers of the form pq, where p and q are Fouvry
primes, with high probability over quantum measurements.

The level of noise where failure provably occurs is when ϵ = ϵ(n) exceeds

ϵ0 ≈ O(n−1/3).

The failure is with probability exponentially close to 1, as n → ∞.

Theorem 2 [2] With the same level of noise, Shor’s algorithm fails, with probability close to 1, to factor N = pq for uniformly
randomly chosen n-bit primes p and q, as n → ∞.

The theorems actually go further, so that failure happens even if we only introduce noisy quantum gates at level Rb, as long as

b + log2 (1/ϵ) <
1

3
log2m− c.

A Taste of the Proof

With independent random noise present starting with controlled-Rb-gates, we need to analyse the quantity
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are random variables i.i.d. ∼ N(0, 1). After some work it turns out that the crux is to analyse the following sum
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This quantity appears as a subsum in the exponent in exp{2πi[. . .]} in (1).
The main proof is to establish that, the sum (2) in the exponent in the exponential sum (1), behaves sufficiently randomly, in the
typical case among exponentially many terms.
Then we use the following lemma
Lemma [2] Let σ > 0 and ξm = e2πi/m. Let Xi ∼ N(0, 1), i.i.d. for i = 1, 2, . . . , n, and let {Sk ⊆ [n] | 1 ≤ k ≤ K} be a finite
collection of sets. Assume, all except at most δ fraction of pairwise symmetric differences Sj∆Sk have cardinality ≥ (m/σ)2t for
j ̸= k. Let Σk = φk + σ

∑
i∈Sk Xi, where φk ∈ [0, 2π). Then, the expectation
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What does this mean?

Quantum mechanics is unquestionably an accurate model of microscopic physical reality.
But, despite being very accurate, it is not infinitely accurate. I believe the SU(2) description of possible operations of a qubit to be
only approximately true. Specifically, I don’t believe arbitrarily small angle rotations permitted by SU(2) have physical meaning.
The Schrödinger equation iℏ d

dt|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ suggests that small angles are related to small time periods. But physicists have
suggested that time ultimately is also discrete. (Planck time is only about 5.39× 10−44).
It is unknown whether quantum error correction can save this. But if arbitrarily small angle rotations lack physical meaning, then it
is doubtful quantum error correction code can correct to something that does not exist.
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