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Abstract

We give exact bounds to the minimum volume of a parallelepiped whose spanning vectors
are perturbations of the n unit vectors by vectors of length at most ε. This extends Micciancio’s
recent sharp bounds to all possible values of ε. We also completely determine all possible
perturbations with length at most ε that achieve this minimum volume.

1 Problem Statement

This problem was originally studied in the context of the connection of worst-case/average-case
complexity for lattice problems.

Suppose Q is the unit cube, spanned by the n unit vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . ,
en = (0, 0, . . . , 1),

Q = {
n∑

i=1

aiei | 0 ≤ ai ≤ 1, 1 ≤ i ≤ n}. (1)

Suppose now we allow a perturbation xi to be applied to each ei, and consider the parallelepiped
spanned by u1 = e1 + x1, u2 = e2 + x2, . . . , un = en + xn,

P = {
n∑

i=1

aiui | 0 ≤ ai ≤ 1, 1 ≤ i ≤ n}, (2)

subject to the condition that all perturbation vectors xi are of 2-norm at most ε: ||xi|| ≤ ε. We
ask what is the minimum volume

fn(ε) = min{vol(P )}, (3)

where the minimum is taken over all ||xi|| ≤ ε. As the volume function is continuous, and the
minimization is over a compact set, clearly the minimum exists.
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2 Preliminaries

This problem came up in the work on the connection of worst-case/average-case complexity for
lattice problems. It was implicit in [1]. In [3] a lower bound fn(ε) ≥ 1 − εn was proved. This was
sufficient for their purpose, when ε was small, ε = o(n). The exact nature of the function fn(ε) was
explicitly asked to be determined in [2].

The volume of a parallelepiped spanned by u1, u2, . . . , un is given by the absolute value of the
determinant of I + X. Thus

fn(ε) = min{|det((I + X)|}, (4)

where the n×n matrix X has column vectors xi, 1 ≤ i ≤ n, and I is the n×n unit matrix. Clearly
fn is monotonically non-increasing by definition, and starts off with fn(0) = 1.

We first show that

Lemma 1 Let n ≥ 1. For any ε < 1√
n
, fn(ε) > 0, and for any ε ≥ 1√

n
, fn(ε) = 0. Moreover, For

any ε < 1√
n
, the determinant det(I + X) > 0, and thus the absolute value sign in the definition of

fn is unnecessary for all ε ≤ 1√
n
.

To show that det(I + X) is always positive for ||xi|| < 1/
√

n, we apply the Cauchy-Schwarz
inequality to xi and get the 1-norm ||xi||1 < 1. Therefore the matrix I + X has the property of
strict central dominance by the column: ∀j, 1 ≤ j ≤ n,

1 + xjj >
∑

i6=j

|xij |. (5)

Such a matrix must have a positive determinant.
First, the determinant must be non-zero, or else, there exists a non-zero (row) vector vT , such

that

vT (I + X) = 0. (6)

We can assume the infinity norm of v is 1, and say 1 = |v1| ≥ |vi|. By replacing v with −v, we may
assume v1 = 1. Then

1 + x11 +
∑

i≥2

xi1vi ≥ 1 + x11 −
∑

i≥2

|xi1| > 0, (7)

a contradiction.
Then a deformation argument shows that det(I + X) > 0, for otherwise, for some 0 < t < 1,

det(I + tX) = 0, contradicting to what has just been shown.
To see that for ε = 1/

√
n, fn(ε) = 0, we take each xi = − 1

n(1, 1, . . . , 1)T , we observe that the
matrix I + X is singular, having all columns sum to 0.

So the only interesting values for ε are within 0 ≤ ε ≤ 1/
√

n. Suppose now the perturbation
matrix X achieves the minimum volume, for a given ε in that range. Micciancio [4] gave a precise

bound for fn where 0 ≤ ε ≤
√

1
n − 1

n2 . His argument is short and pretty, and will be our starting
point. For the sake of completeness we will present his argument first.

Micciancio observed the following necessary condition for the matrix X: For every dimension
1 ≤ i ≤ n, the perturbation xi must be perpendicular to the hyperplane spanned by {ej + xj | j 6=
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i, 1 ≤ j ≤ n}, and must be of maximum norm ε. This is clear in terms of the geometry and the
fact that det(I + X) is always non-negative in that range. In matrix terms

XT (I + X) = ε2I + diag(x11, x22, . . . , xnn). (8)

Denote by T the diagonal matrix consisting of exactly the diagonal entries of X, then it follows
that XT = ε2I + T − XT X, which is symmetric, and hence so is X, and

X2 + X = ε2I + T. (9)

With suitable renaming of the dimensions, and a suitable permutations of the columns of X we
may assume X is grouped according to equal values on the diagonal, i.e.,

T =




t1I1 0 · · · 0
0 t2I2 · · · 0
...

...
. . .

...
0 0 · · · tkIk


 (10)

where 1 ≤ k ≤ n, each Ij has dimension mj,
∑k

j=1 mj = n, and if i 6= j then ti 6= tj .

Since X is symmetric, there is an orthogonal matrix W such that W T XW is a diagonal matrix
with eigenvalues of X on the diagonal. T being a polynomial of X, it follows that W T TW is also
diagonal with the eigenvalues of T on the diagonal, thus it is a permutation of the diagonal entries
of T . Thus there is a permutation matrix Π such that if we let U = WΠ, then U is orthogonal,
UT TU = T , and UT XU is still a diagonal matrix with eigenvalues of X on the diagonal.

Partition the matrices U = (Uij) and X = (Xij) according to the dimensions m1,m2, . . . ,mk,
then by TU = UT we have tiUij = tjUij and thus Uij = 0 if i 6= j. Therefore U is block
diagonal, we name it U = diag(U1, . . . , Uk), each Uj is orthogonal. Since UT XU is diagonal,
UT

i XijUj = 0 if i 6= j, and thus Xij = 0 as well. So X is block diagonal as well, and we rename it
X = diag(X1, . . . ,Xk). We have arrived at the following necessary condition:

X2
i + Xi = (ε2 + ti)I, (11)

for each block of dimension mi, 1 ≤ i ≤ k.
Note that if the eigenvalues of X are λi, then the volume determinant is Πn

i=1(1 + λi), and this
product decomposes over the subspaces. It follows that the minimization problem is decomposed
into the subproblems over all these blocks (except the perturbation vectors are still subject to the
overall bound 1/

√
n.) It is also clear that if any mi = 1, the optimum is unique for that block with

Xi = −ε. Thus we consider in the following any mi ≥ 2. Rename, for some i, m = mi, Y = Xi,
V = Ui, τ = −ti, then we have

Y 2 + Y = (ε2 − τ)I. (12)

Micciancio’s theorem [4] is the following

Theorem 1 (Micciancio) For all ε <
√

1
n − 1

n2 , fn(ε) = (1 − ε)n and the minimum is uniquely
achieved with X = −εI.

He also noted the upper bound that fn(ε) ≤ 1− ε
√

n by taking all entries of X to ε/
√

n. Hence
he has

0 < fn(ε) ≤ min{(1 − ε)n, 1 − ε
√

n} (13)
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for all ε < 1/
√

n.
Theorem 1 will follow if Y = −εI for each block, under the restriction on ε (and it follows that

in this case there is in fact only one block).
Our main theorem is to prove the following refinement which completely characterizes the

function fn(ε).

Theorem 2 Let n ≥ 1. Let An(ε) = (1 − ε)n, for 0 ≤ ε ≤ 1√
n
. Let Bn(ε) = x(1 − x)n−1, where

x =
1

n
−
√

ε2 − 1

n
+

1

n2
, (14)

for
√

1
n − 1

n2 ≤ ε ≤ 1√
n
.

Then there is a unique cross over point cn, satisfying
√

1
n − 1

n2 ≤ cn ≤ 1√
n
, such that

fn(ε) =

{
An(ε) for 0 ≤ ε ≤ cn

Bn(ε) for cn ≤ ε ≤ 1√
n

(15)

Moreover, for 0 ≤ ε < cn the minimum An(ε) is achieved uniquely by X = −εI, and for
cn < ε ≤ 1√

n
, the minimum Bn(ε) is achieved by exactly 2n−1 distinct perturbations, given by

X = µI + ξ




ε1

ε2
...

εm


 ( ε1 ε2 · · · εm ) , (16)

where

µ = − 1

n
+

√
ε2 − 1

n
+

1

n2
. (17)

and

ξ = − 1

n
+

2

n2
− 2

n

√
ε2 − 1

n
+

1

n2
, (18)

Finally cn is asymptotically 1√
n
(1 − e−

√
n).

The rest of this paper is to give a proof to this theorem.
Let V T Y V = diag(λ1, . . . , λm), then each eigenvalue of Y satisfies

λ2
i + λi = ε2 − τ. (19)

Thus λi = µ+ or µ−, where

µ± = −1

2
±
√

1

4
+ ε2 − τ . (20)

Lemma 2 For all n ≥ 1, in order to achieve minimum volume, if ε <
√

1
n − 1

n2 , then all eigenval-

ues take the value µ+. Moreover, for all n > 4 and ε ≤ 1/
√

n, there can be at most one eigenvalue
λi = µ−, all others take the value µ+.
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The first claim in Lemma 2 was from [4] and Theorem 1 was proved from that. Indeed, in that
case Y is a scalar matrix, and to have det(I + Y ) minimum obviously it must take the value −εIm,
and thus in fact there is only one block, k = 1, m = n, and X = −εIn.

We may assume µ+ 6= µ−, otherwise the matrix is scalar. Thus n ≥ m ≥ 2.
To prove the lemma, write Y by columns Y = (y1, . . . , ym), and consider the square of Frobenius

norm ||Y ||2F =
∑m

i=1 ||yi||2 = mε2. This is invariant under the orthogonal transformation V T Y V ,
and thus

mε2 =
m∑

i=1

λ2
i . (21)

If there are exactly ` of them taking µ−, then mε2 = `µ2
− + (m − `)µ2

+. If ` ≥ 1, then
mε2 ≥ µ2

− + (m − 1)µ2
+, since |µ−| ≥ |µ+|. Let g(ξ) be the quadratic function g(ξ) = (1/2 + ξ)2 +

(m − 1)(1/2 − ξ)2, for ξ ≥ 0. Then it is easy to show by differentiation that g has the unique
minimum at ξ = 1/2 − 1/m, and we get mε2 ≥ g(1/2 − 1/m) = 1 − 1/m. So

ε2 ≥ 1

m

(
1 − 1

m

)
, (22)

which is ≥ 1
n

(
1 − 1

n

)
, for 2 ≤ m ≤ n.

Suppose now n > 4 and ` ≥ 2. By the same argument

mε2 ≥ 2µ2
− + (m − 2)µ2

+. (23)

Let h(ξ) be the following quadratic function h(ξ) = 2(1/2+ξ)2+(m−2)(1/2−ξ)2, for ξ ≥ 0. Again
it is easy to show that h(ξ) has a unique minimum at ξ = 1/2 − 2/m, and we get mε2 ≥ 2 − 4/m.
Using ε2 ≤ 1/n, we have 2− 4/m ≤ m/n ≤ 1 which implies that m ≤ 4. Moreover, if m = 4 we get
2− 1 ≤ 4/n and if m = 3 we get 2 − 4/3 ≤ 3/n. Being an integer, in either cases, we can conclude
that n ≤ 4. So if n > 4 and ` ≥ 2, then m ≤ 2.

But if m = 2 and ` = 2 we have a scalar matrix Y . But, for a scalar matrix Y to have minimum
determinant det(I + Y ), it must take the smaller eigenvalue µ− twice, and not µ+.

Lemma 2 is proved.
Continuing the argument further, assuming ` ≥ 1, we had (22), from which and ε2 ≤ 1/n, we

get m/n ≥ 1 − 1/m ≥ 1/2. Thus m ≥ n/2. Substituting back we get m/n ≥ 1 − 2/n, from which
we get m ≥ n − 2, a happy situation where the estimate improves itself. Substituting back again
we get m/n ≥ (n− 3)/(n− 2). m being an integer and n > 4, we finally derive that m ≥ n− 1. In
particular such a block Y with more than one eigenvalues, if it exists, is unique.

Lemma 3 Let n > 4. In order to achieve minimum volume, the number of blocks Y with more
than one eigenvalues is at most one, and if such a block exists, its dimension m is either n or n−1.
Furthermore one of its eigenvalues is taken with multiplicity m − 1.

3 Rank 1 perturbation of a scalar matrix

For any m ≥ 2, let the symmetric matrix Y be a block as in Section 2 having the property that
it has two distinct eigenvalues, one of which µ is of multiplicity m − 1. Then Y − µI is of rank 1.
Thus, there exists non-zero vectors y and z, such that Y − µI = yzT . Say yi 6= 0 and zj 6= 0. By
being symmetric, yizj = yjzi 6= 0. Let ξ = yizi 6= 0, take out ξ and rename y and z, we get

Y − µI = ξyzT , (24)
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where yi = zi = 1. Note that ∀k, 1 ≤ k ≤ n, by symmetry, zk = yizk = ykzi = yk, and so y = z.

Y − µI = ξyyT . (25)

Recall that all diagonal entries of Y are the same −τ , take any diagonal entry we get −τ −µ =
ξy2

j . As ξ 6= 0, all |yj | are equal and |yj | = yi = 1. Therefore Y takes the following form,

Y = µI + ξ




ε1

ε2
...

εm


 ( ε1 ε2 · · · εm ) , (26)

where all εj = ±1. We may further write ε1 = 1, which then uniquely specifies 2n−1 choices of εj .
It follows that (Y −µI)2 = mξ(Y −µI). Expanding, we have Y 2 = (2µ+mξ)Y − (µ2 +mξµ)I.

Compare this to the matrix equation Y 2 + Y = (ε2 − τ)I, and noting that {I, Y } are linearly
independent (i.e., Y is not a scalar matrix), we get

1 + 2µ + mξ = 0 (27)

ε2 − τ + µ2 + mξµ = 0 (28)

Also by taking trace,

mτ + mµ + mξ = 0. (29)

So

τ + µ + ξ = 0. (30)

Substituting τ from (30) to (6), we get

0 = ε2 + ξ + µ(1 + µ + mξ) = ε2 + ξ − µ2. (31)

Finally substituting ξ and we can solve for µ in

mµ2 + 2µ + (1 − mε2) = 0, (32)

to get

µ = − 1

m
±
√

ε2 − 1

m
+

1

m2
. (33)

As (Y −µI)2 = mξ(Y −µI), the eigenvalues of Y −µI are 0 with multiplicity m−1 and mξ with
multiplicity one, thus Y has eigenvalues µ with multiplicity m−1 and µ+mξ with multiplicity one.
Hence the determinant det(I + Y ) has the form (1 + µ)m−1(1 + µ + mξ). Since 1 + µ + mξ = −µ
from (27), we get

det(I + Y ) = −µ · (1 + µ)m−1. (34)

But which sign ± does µ take in equation (33)?
We claim that it must be the + sign.
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Denote by z =
√

ε2 − 1
m + 1

m2 , then

det(I + Y ) =

(
1

m
+ z

)
·
(

1 − 1

m
− z

)m−1

(35)

if the minus sign − is taken; and

det(I + Y ) =

(
1

m
− z

)
·
(

1 − 1

m
+ z

)m−1

(36)

if the plus sign + is taken. We want to show that the determinant is smaller with the + sign. This
will follow if we can show that the following polynomial in z has non-negative coefficients,

g(z) =

(
1

m
+ z

)
·
(

1 − 1

m
− z

)m−1

−
(

1

m
− z

)
·
(

1 − 1

m
+ z

)m−1

. (37)

Clearly

g(z) = −
(

1 − 1

m
− z

)m

+

(
1 − 1

m
− z

)m−1

+

(
1 − 1

m
+ z

)m

−
(

1 − 1

m
+ z

)m−1

. (38)

Collecting the coefficients of zi, we get for even i all terms cancel out, and for odd i,

2

(
m

i

)(
1 − 1

m

)m−i

− 2

(
m − 1

i

)(
1 − 1

m

)m−1−i

(39)

= 2

(
1 − 1

m

)m−1−i
[(

m

i

)(
1 − 1

m

)
−
(

m − 1

i

)]
, (40)

= 2

(
1 − 1

m

)m−1−i (
1 − 1

i

)(
m − 1

i − 1

)
(41)

which is clearly non-negative (and strictly positive if i > 1). We conclude that in order to have
minimum determinant, the rank 1 perturbation matrix Y has

µ = − 1

m
+

√
ε2 − 1

m
+

1

m2
. (42)

Note that in case m = 2 so that there is no odd i > 1, we can still assume µ takes the + sign, since
in Eqn (34)

−µ · (1 + µ)m−1 =

(
1

2
+

√
ε2 − 1

4

)(
1

2
−
√

ε2 − 1

4

)
(43)

which is completely symmetric.
Also from (27), (28) and (30)

ξ = − 1

m
+

2

m2
− 2

m

√
ε2 − 1

m
+

1

m2
, (44)

and

τ =
2

m
− 2

m2
−
(

1 − 2

m

)√
ε2 − 1

m
+

1

m2
. (45)
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Furthermore the other eigenvalue of Y must be

µ + mξ = −1 +
1

m
−
√

ε2 − 1

m
+

1

m2
. (46)

Referring to Eqn(20), and substituting τ from Eqn (45) we get

1

4
+ ε2 − τ =

1

4
+ ε2 − 2

m
+

2

m2
+

(
1 − 2

m

)√
ε2 − 1

m
+

1

m2
(47)

=

[
1

2
− 1

m
+

√
ε2 − 1

m
+

1

m2

]2

(48)

It follows that

µ+ = −1

2
+

√
1

4
+ ε2 − τ (49)

= − 1

m
+

√
ε2 − 1

m
+

1

m2
(50)

= µ (51)

Hence the µ+ is µ, the one eigenvalue taken with multiplicity m− 1. Lemma 2 already asserts this
for all n > 4. But here we derive it for all blocks of size m ≥ 2, but only for rank 1 perturbations
of a scalar matrix.

Given Y as in Eqn (26), with µ in (42) and ξ in (44), we can verify that each column vector
does have 2-norm ε.

Set m = n, with these choices for µ in (42), ξ in (44), all εj = ±1, and ε1 = 1, we do achieve
the determinant in (34). This gives 2n−1 distinct perturbation matrices. In particular, taking all
εj = 1, we have the following n × n matrix

X =




−τ ξ · · · ξ
ξ −τ · · · ξ
...

...
. . .

...
ξ ξ · · · −τ


 (52)

which achieves the determinant as given in (34) (with m = n).

4 Full dimensional block m = n

Suppose n ≥ 3. In this section we suppose a full dimensional block Y exists with more than one
distinct eigenvalues, as stipulated in Lemma 2. From Section 3 we know that, with m = n, Y is
given in the form of Eqn (26), and the determinant is given in Eqn (34), where µ is given in Eqn
(42).

As ε < 1√
n
, we see that

µ = − 1

n
+

√
ε2 − 1

n
+

1

n2
< 0. (53)

Consider the function

g(x) = x(1 − x)n−1. (54)
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It is the determinant function det(I + Y ) if we let x = −µ > 0 as a function of ε. As ε varies from√
1
n − 1

n2 to 1√
n
, x strictly monotonically varies from 1/n down to 0.

Now we view g(x) as a function of x, for 0 ≤ x ≤ 1/n. By differentiation, g′(x) = (1−x)n−2(1−
nx), which is positive for the range 0 ≤ x < 1/n. Hence g(x) is strictly monotonically increasing

(as x increases from 0 to 1/n), taking values from 0 to g(1/n) = 1
n

(
1 − 1

n

)n−1
each exactly once.

Our next task is to compare this with the “trivial” bound corresponding to the matrix −εI,
i.e., when all the eigenvalues are equal. In this case, the determinant det(I + Y ) is (1 − ε)n.

When ε increases from
√

1
n − 1

n2 to 1√
n
, both g(x), now viewed as a function of ε, and the

“trivial” bound (1 − ε)n, are strictly monotonically decreasing. We wish to show that there is a
unique cross over.

Let D(x) = g(x) − (1 − ε)n, where

ε =

√(
x − 1

n

)2

+
1

n
− 1

n2
(55)

is now viewed as a function of x, in 0 ≤ x ≤ 1/n.
We would like to show that D |x=0< 0 and D |x=1/n> 0, and D′(x) > 0 for 0 < x < 1/n. This

implies a unique cross over.
If we differentiate D we have

dD

dx
= (1 − nx)

[
(1 − x)n−2 − (1 − ε)n−1

ε

]
. (56)

Clearly in that range

(1 − x)n−2 >

(
1 − 1

n

)n−2

(57)

and

(1 − ε)n−1

ε
≤ n√

n − 1

(
1 −

√
n − 1

n

)n−1

(58)

as ε ≥
√

1/n − 1/n2 =
√

n − 1/n. Thus to show D′(x) > 0 it suffices to show that

(
1 − 1

n

)n−1

>
√

n − 1

(
1 −

√
n − 1

n

)n−1

. (59)

As (1+ 1
k )k monotonically increases to e, (1− 1

n)n−1 = [(1+ 1
n−1)n−1]−1 monotonically decreases

to e−1. In particular on the left hand side of (59)

(
1 − 1

n

)n−1

> e−1. (60)

On the right hand side of (59), we claim that for all n ≥ 7,

(
1 −

√
n − 1

n

)n−1

≤ e−
√

n−1. (61)
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Expanding in Taylor series,

(
1 −

√
n − 1

n

)n−1

= e(n−1)·[−
√

n−1
n

−n−1

2n2 −···] (62)

= e−
(n−1)3/2

n
− (n−1)2

2n2 −··· (63)

where every successive term in the exponent has a negative sign. The claim follows from

(n − 1)3/2

n
+

(n − 1)2

2n2
≥

√
n − 1, (64)

for n ≥ 7, or,

n − 1

n
+

(n − 1)3/2

2n2
≥ 1. (65)

This simplies to the simple polynomial (n − 1)3 ≥ 4n2.
Thus for n ≥ 7,

√
n − 1

(
1 −

√
n − 1

n

)n−1

≤
√

n − 1e−
√

n−1. (66)

The proof for (59) if completed, at least for the cases n ≥ 7, by observing that for all x ≥ 1,
e−1 ≥ √

xe−
√

x, as the latter function of x has negative derivative for x ≥ 1.
For the cases n < 7, we can verify (59) numerically. Indeed, for 3 ≤ n ≤ 6, the inequality is

strict.
D |x=0< 0 is immediate since g |x=0= 0 and (1 − ε)n |x=0= (1 − ε)n |ε= 1√

n
> 0.

To show D |x=1/n> 0 takes a bit more work. We want

1

n

(
1 − 1

n

)n−1

>

(
1 −

√
n − 1

n

)n

(67)

From (60), the left hand side of (67) is greater than 1
en . Also, by Taylor expansion,

(
1 −

√
n−1
n

)n
<

e−
√

n−1, so we need only to show

1

en
≥ 1

e
√

n−1
. (68)

This can be shown to be true for all n ≥ 15. For 3 ≤ n ≤ 14, Eqn (67) can be directly verified
numerically.

We conclude that there is a unique cross over for the minimization of g(x) and (1 − ε)n. In

terms of ε, between
√

1
n − 1

n2 and 1√
n
, (1 − ε)n is asymptotically e−

√
n. On the other hand, for

0 ≤ x ≤ 1/n, 1 ≥ (1−x)n−1 ≥ e−1 and thus g(x) = Θ(x). It follows that the cross over happens at
around x = Θ(e−

√
n) asymptotically. In terms of ε, this happens at around ε ≈ 1√

n
(1 − Θ(e−

√
n)).

One can get a bit more precise. Since from the above it is known that at cross over x ≈ Θ(e−
√

n),
then (1 − x)n−1 ≈ 1, and g(x) ≈ x, thus ε ≈ 1√

n
(1 − e−

√
n) asymptotically.

10



Lemma 4 For all n ≥ 3, there is a unique cross over point cn, satisfying
√

1
n − 1

n2 ≤ cn ≤ 1√
n
,

such that

(1 − ε)n < x(1 − x)n−1 (69)

for
√

1
n − 1

n2 ≤ ε < cn, and

(1 − ε)n > x(1 − x)n−1 (70)

for cn < ε ≤ 1√
n
. where x = 1

n =
√

ε2 − 1
n + 1

n2 Moreover, cn is asymptotically 1√
n
(1 − e−

√
n).

5 Can minimum be achieved with m = n − 1?

Let n ≥ 3. Let us suppose there is a co-1 dimensional block Y , which has more than one distinct
eigenvalues as stipulated in Lemma (2), that achieves minimum volume. Of course the left over
1-dimensional block must contribute 1 − ε to the volume, and the total determinant is given as
(1 − ε)y(1 − y)m−1, where m = n − 1, and y is given as follows

y =
1

m
−
√

ε2 − 1

m
+

1

m2
. (71)

ε satisfies the global constraint that ε ≤ 1/
√

n. Furthermore, in order that the eigenvalues of Y be

real, we must further restrict ε ≥
√

1
m − 1

m2 . In the following, we will denote by ` and r the left
and the right end points of this interval,

` =

√
1

n − 1
− 1

(n − 1)2
, (72)

r =
1√
n

. (73)

Note that r > ` since r2 − `2 = 1
n(n−1)2 .

We want to compare (1 − ε)y(1 − y)n−2 with x(1 − x)n−1, the possible minimum volumes
corresponding to a full dimensional block versus a co-1 dimensional block together with an extra one
dimensional block. The common interval of definition is [`, r], as the interval for the n-dimensional

case is [
√

1
n − 1

n2 , 1√
n
] and its left most most point

√
1
n − 1

n2 < `, for all n ≥ 3.

Define

Fn(ε) = x(1 − x)n−1 (74)

=

(
1

n
−
√

ε2 − 1

n
+

1

n2

)(
1 − 1

n
+

√
ε2 − 1

n
+

1

n2

)n−1

(75)

and

F̂n(ε) = (1 − ε)y(1 − y)n−2 (76)

= (1 − ε)

(
1

m
−
√

ε2 − 1

m
+

1

m2

)(
1 − 1

m
+

√
ε2 − 1

m
+

1

m2

)m−1

(77)

where m = n − 1.
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From what’s proved in the last section, both Fn and F̂n are strictly monotonically decreasing
in ε. We want to show that for any ε ∈ [`, r],

Fn(ε) < F̂n(ε). (78)

Our strategy is to show that the end points of the interval satisfy

Fn(`) < F̂n(r), (79)

from which it follows that ∀ε ∈ [`, r],

Fn(ε) ≤ Fn(`) < F̂n(r) ≤ F̂n(ε). (80)

Our strategy works for all n ≥ 4, and the inequality (78) for the special case n = 3 will be proved
separately in the Appendix.

At the left end ε = `, we estimate
√

ε2 − 1
n + 1

n2 =
√

n2−3n+1
n(n−1) < 1

n . Thus, in Fn(`) one factor

1 − 1

n
+

√
ε2 − 1

n
+

1

n2
< 1. (81)

Also, it is trivial to verify for n ≥ 5,

√
n2 − 3n + 1

n − 1
>

n − 1

n
, (82)

thus the other factor

1

n
−
√

ε2 − 1

n
+

1

n2
<

1

n
− 1

n

(
1 − 1

n

)
=

1

n2
. (83)

We arrive at the upper bound for all n ≥ 5,

Fn(`) <
1

n2
. (84)

At the right end ε = r,
√

ε2 − 1
n−1 + 1

(n−1)2 = 1
(n−1)

√
n
. Hence

F̂n(r) =
1

n − 1

(
1 − 1√

n

)2 (
1 − 1

n − 1
+

1

(n − 1)
√

n

)n−2

. (85)

We know from (60) that (1 − 1/k)k−1 > e−1, it follows that

(
1 − 1

n − 1
+

1

(n − 1)
√

n

)n−2

>

(
1 − 1

n − 1

)n−2

>
1

e
. (86)

Hence,

F̂n(r) >

(
1 − 1√

n

)2 1

e(n − 1)
. (87)

Thus it all comes down to checking

(
1 − 1√

n

)2

≥ e

n

(
1 − 1

n

)
. (88)

12



It is obvious that this is true asymptotically. But in fact, the left hand side is monotonically
increasing and the right hand side is monotonically decreasing, and we can directly check that the
inequality hold for n = 7 and thus for all n ≥ 7.

Finally for the values n = 4, 5, 6, one can directly check that Fn(`) ≤ F̂n(r). Thus it holds for
all n ≥ 4.

For the special case n = 3, unfortunately Fn(`) > F̂n(r). But we can nonetheless prove that for
all ε ∈ [1/2, 1/

√
3], that pointwise Fn(ε) < F̂n(ε). The details are given in the Appendix.

Lemma 5 For all n ≥ 3, the possibility of an m = n − 1 dimensional block with more than one
eigenvalues together with an additional one dimensional block never produces a smaller volume than
the corresponding n dimensional block with more than one eigenvalues, for the common interval of
respective definitions.

6 Putting it all together

To put all this information together, we note that for n > 4 we already have enough to prove
Theorem 2.

As noted already in Micciancio’s theorem the case ε <
√

1
n − 1

n2 has the unique minimizing

X = −εI and fn(ε) = (1 − ε)n. More generally a minimizing block Y is unique, Y = −εI, if it has
only one eigenvalue (hence a scalar matrix).

Suppose
√

1
n − 1

n2 ≤ ε ≤ 1√
n
, and suppose n > 4. Then by Lemma 2 and Lemma 3 a minimizing

X has at most one block which is non-scalar, and if it exists, it’s unique and its dimension is either
n or n − 1. Moreover, by Lemma 2 the characterization of such a block from Section 3 applies.
Hence the only competing minimizing determinants det(I+Y ) take the form (1−ε)n, or x(1−x)n−1

or (1 − ε)y(1 − y)m−1, where m = n − 1, and x and y are as given in Section 4 and 5.
As shown there, (1 − ε)y(1 − y)m−1 in fact is always greater than x(1 − x)n−1. Moreover there

is a unique cross over between (1 − ε)n and x(1 − x)n−1. This completes the proof for all n > 4.

Finally we deal with all possible cases where the dimension n ≤ 4.
The case n = 1 is trivial. By (14) x(1 − x)n−1 = 1 − ε in this case.
Let n = 2. Then the expression for x(1 − x)n−1 evaluates to 1/2 − ε2. Note that (1 − ε)2 −

(1/2 − ε2) = 2(1/2 − ε)2 ≥ 0, and strictly so for all ε 6= 1
2 . Thus in this case, x(1 − x)n−1 is the

minimum through out the interval [
√

1
n − 1

n2 , 1√
n
] = [1/2, 1/

√
2]. In other words, the cross over

happened immediately at the left most point of the interval.
Let n = 3. If there are no block with more than one eigenvalues, then the minimum volume is

(1 − ε)3. Suppose there is such a block, which of course must be of dimension either 2 or 3. The
case of m = 2 = n − 1 with (1 − ε) · (1/2 − ε2) can be dismissed by Section 5 as inferior to the
m = n = 3 case with volume x(1 − x)n−1 = (1/3 −

√
ε2 − 2/9)(2/3 +

√
ε2 − 2/9)2, (even though

(1− ε) · (1/2− ε2) is better than (1− ε)3 throughout the common domain of definition [1/2, 1/
√

3].)
Now Lemma 4 applies, and we conclude that Theorem 2 holds. The cross over happens in this

case (n = 3) between
√

2/3 and 1/2.
Let n = 4. If there are no block with more than one eigenvalues, then the minimum is (1− ε)4.

Suppose there is such a block. If this block size is 4, then we have the competing volume x(1− x)3

as before, which would have a unique cross over. From Lemma 5 we can dismiss the possibility of
block size 3. This leaves the possibility of m = 2. Referring to µ± in Eqn (20) this block must
have minimum volume (1/2 −

√
1/4 + ε2 − τ)(1/2 +

√
1/4 + ε2 − τ). Taking trace, −2τ = −1 and

τ = 1/2. Substituting back we get (1/2 −
√

ε2 − 1/4)(1/2 +
√

ε2 − 1/4) = 1/2 − ε2. This would
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have been smaller than (1 − ε)2 except in order to be a real number, ε ≥ 1/2. But here n = 4 and
we are required to have ε ≤ 1/2, and at ε = 1/2, f4(1/2) = 0. Thus this case can be dismissed.
This completes the proof of Theorem 2

Appendix: n = 3

We complete the proof of Lemma 5 for n = 3. We have

F3(ε) = x(1 − x)2 (89)

=

(
1

3
−
√

ε2 − 2

9

)(
2

3
+

√
ε2 − 2

9

)2

(90)

=
10

27
− ε2 −

(
ε2 − 2

9

)3/2

(91)

for
√

2
3 ≤ ε ≤ 1√

3
, where as

F̂3(ε) = (1 − ε)y(1 − y) (92)

= (1 − ε)

(
1

2
−
√

ε2 − 1

4

)(
1

2
+

√
ε2 − 1

4

)
(93)

= (1 − ε)

(
1

2
− ε2

)
(94)

for 1
2 ≤ ε ≤ 1√

3
. Note that 1

2 ≤ ε ≤ 1√
2

could have been the interval of definition for y(1 −
y) corresponding to the 2 dimensional block. but this must be further restricted by the global
constraint ε ≤ 1√

3
in dimension 3. Also 1

2 ≤ ε is necessary in order to have real eigenvalues for the

2 dimensional block.
We now show that in the common interval of definition, ∀ε ∈ [`, r] = [ 1

2 , 1√
3
],

F3(ε) < F̂3(ε) (95)

pointwise.
This is equivalent to

10

27
− ε2 − (1 − ε)

(
1

2
− ε2

)
<

(
ε2 − 2

9

)3/2

, (96)

The left hand side is ε
2 − ε3 − 7

54 . By taking squares both sides and collecting terms, Eqn (96) is
implied by,

f(ε) = −1

3
ε4 +

7

27
ε3 +

11

108
ε2 − 7

54
ε +

1

36
< 0. (97)

We start differentiate f .

f ′(ε) = −4

3
ε3 +

7

9
ε2 +

11

54
ε − 7

54
(98)
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f ′′(ε) = −4ε2 +
14

9
ε +

11

54
(99)

f ′′′(ε) = −8ε +
14

9
(100)

f ′′′′(ε) = −8 < 0. (101)

Thus, f ′′′ is strictly monotonically decreasing and takes its maximum over the interval [1/2, 1/
√

3]
at

f ′′′(1/2) = −4 +
14

9
< 0. (102)

So similarly f ′′ is strictly monotonically decreasing over the interval and takes its maximum at

f ′′(1/2) = −1 +
7

9
+

11

54
=

−1

54
< 0. (103)

It follows that f ′ is strictly monotonically decreasing over the interval and takes its maximum
at

f ′(1/2) = − 1

2 · 3 +
7

22 · 32
+

11

22 · 33
− 7

2 · 33
=

−2 · 32 + 7 · 3 + 11 − 7 · 2
22 · 33

= 0. (104)

Thus, for all ε ∈ (1/2, 1/
√

3], f ′(ε) < 0 and therefore f(ε) is strictly monotonically decreasing
over the interval and takes its maximum at

f(1/2) =
−32 + 7 · 2 + 11 − 7 · 22 + 3 · 22

24 · 33
= 0. (105)

Finally we conclude that ∀ε ∈ (1/2, 1/
√

3], f(ε) < 0.
In fact at 1/2 it is also true that F3(ε) < F̂3(ε):

1

F3(1/2) =
25

23 · 33
< F̂3(1/2) =

1

8
. (106)
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1There is no inconsistency, even though f(1/2) = 0. Recall that f(ε) < 0 is a sufficient condition for F3(ε) < F̂3(ε).

What happened is that even though at 1/2, F3(ε) < F̂3(ε), the squaring in Eqn (96) produced a square of a negative
term, and results in an equality.
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