
The Complexity of Complex Weighted Boolean #CSP

Jin-Yi Cai 1

Computer Sciences Department
University of Wisconsin

Madison, WI 53706. USA
jyc@cs.wisc.edu

Pinyan Lu 2

Institute for Theoretical Computer Science
Tsinghua University

Beijing, 100084, P. R. China
lpy@mails.tsinghua.edu.cn

Mingji Xia 3

Computer Sciences Department
University of Wisconsin

Madison, WI 53706. USA
and State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences
Beijing 100190, P. R. China

xmjljx@gmail.com

1Supported by NSF CCR-0511679.
2Supported by the National Natural Science Foundation of China Grant 60553001 and the National Basic

Research Program of China Grant 2007CB807900, 2007CB807901.
3Supported by Hundred Talent Program of Chinese Academy of Sciences Under Angsheng Li.

Abstract

We prove a complexity dichotomy theorem for the most general form of Boolean #CSP where every
constraint function takes values in the complex number field C. This generalizes a theorem by Dyer,
Goldberg and Jerrum [11] where each constraint function takes non-negative values. We first give
a non-trivial tractable class of Boolean #CSP which was inspired by holographic reductions. The
tractability crucially depends on algebraic cancelations which are absent for non-negative numbers. We
then completely characterize all the tractable Boolean #CSP with complex valued constraints and show
that we have found all the tractable ones, and every remaining problem is #P-hard. We also improve
our result by proving the same dichotomy theorem holds for Boolean #CSP with max degree 3 (every
variable appears at most three times). The concept of Congruity and Semi-congruity provides a key
insight and plays a decisive role in both the tractability and hardness proofs. We also introduce local
holographic reductions as a technique in hardness proofs.

1 Introduction

The complexity of counting problems is a fascinating subject. Valiant defined the class #P to capture
most of these counting problems [18]. Beyond the complexity of individual problems, there have been
a great deal of interest in proving complexity dichotomy theorems which state that for a wide class of
counting problems, every problem in the class is either computable in polynomial time (tractable) or
#P-hard [10, 13, 12, 5, 14, 3, 11].

In this paper we address the following type of counting problems, called Boolean #CSP[16, 9]. Let
F be a set of functions, where each F ∈ F is a function F : {0, 1}k → C, mapping Boolean variables
to C. The #CSP problem #CSP(F) is defined as follows: The input is a finite set of constraints on
Boolean variables x1, x2, . . . , xn of the form F (xi1 , xi2 , . . . , xik), where F ∈ F . The output is

∑

x1,x2,...,xn∈{0,1}

∏
F (xi1 , xi2 , . . . , xik).

If each F takes values 0, 1, then this counts the number of assignments “satisfying” all the Boolean
constraints. In general, functions F ∈ F can take arbitrary values. Complexity dichotomy theorems
have been obtained for many cases [10, 5, 4, 2, 3]. The strongest result for Boolean #CSP before this
work is due to Dyer, Goldberg and Jerrum [11]. They showed that if all functions in F take non-negative
values, then the counting problem is solvable in precisely the following two cases, and is #P-hard in all
other cases: (1) Every function in F is of a product type (a product of unary functions, binary equality
functions and binary disequality functions); and (2) Every function in F is a pure affine function (a
constant on an affine subspace and zero on other inputs).

In this paper we consider problems #CSP(F) where functions F ∈ F take arbitrary complex
values. The presence of both positive and negative values, and more generally, complex numbers, offers
the opportunity for interesting cancelations, which could lead to efficient algorithms. It turns out that
this is indeed the case. We discover a non-trivial class of tractable #CSP(F) problems, where algebraic
cancelation is crucial.

We came to this class of tractable #CSP(F) from a novel direction, that of Holant problems and
holographic reductions, first proposed by Valiant [19, 20, 7, 8]. As this is still not as well known, we
give a brief description of it. A signature grid Ω = (G, F) is a tuple, where G = (V, E) is a graph,
and each v ∈ V (G) is assigned a function Fv ∈ F . A Boolean assignment σ for every e ∈ E gives an
evaluation

∏
v∈V Fv(σ |E(v)), where E(v) denotes the incident edges of v. The counting problem on an

input instance Ω is to compute

Holant(Ω) =
∑

σ

∏

v∈V

Fv(σ |E(v)).

For example, consider the Perfect Matching problem on G. This problem corresponds to attaching
the Exact-One function at every vertex of G, and the sum in Holant(Ω) over all 0-1 edge assignments
counts the number of perfect matchings. If we used the At-Most-One function at every vertex, then
we are counting all (not necessarily perfect) matchings.

There is a simple relation between #CSP and Holant problems. We can represent an instance of
a #CSP problem by a bipartite graph G where LHS are labeled by variables and RHS are labeled by
constraints. We define a signature grid Ω on G by assigning an Equality function to every variable
node on LHS (and every constraint node on RHS has the given constraint function). Then Holant(Ω) is
exactly the same as the #CSP counting problem. In effect, the Equality function on each variable node
forces the incident edges take the same value; this effectively reduces edge assignments in Holant(Ω) to
vertex assignments on LHS in the #CSP problem. Thus #CSP problems are precisely the special case
of Holant problems on bipartite graphs where every vertex on LHS is assigned an Equality function.

1

On the other hand, Holant problems can be considered as #CSP problems where every variable
appears twice. Note that being syntactically more restrictive in Holant problems makes it more
challenging to prove dichotomy theorems, since many techniques, such as “gadget constructions”, take
us out of the class. By the same token, to prove #P-hardness for #CSP problems where each variable
appears at most 3 times is more difficult.

In the study of Holant problems, we discovered that the following three families of functions are
tractable. (We list the functions by their truth tables, and where i =

√−1.)

F1 = {λ([1, 0]⊗k + ir[0, 1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F2 = {λ([1, 1]⊗k + ir[1,−1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F3 = {λ([1, i]⊗k + ir[1, −i]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3}.

We can show that Holant(Ω) for any Ω = (G, F1 ∪F2 ∪F3) is computable in P. They are all related
to each other by holographic reductions.

We note that complex valued functions appear naturally. The special case where r = 1, k = 2 and
λ = (1+i)−1 in F3 is noteworthy. In this case we get a real valued function F (00) = F (01) = F (10) = 1
and F (11) = −1. If we take r = 0, λ = 1 in F1 we get the Equality function on k bits. In this special
case Holant(Ω) is computing exactly the partition function ZH(G) where H =

(
1 1
1 −1

)
is the Hadamard

matrix. This problem essentially counts the number of induced subgraphs with an odd number of edges.
The complexity of ZH(G) had been open for some time [5] and was independently proved to be tractable
in a Magnum Opus by Goldberg et. al. [14], where they proved a dichotomy theorem for all real valued
partition functions. We note that even though some members of F1∪F2∪F3 are real valued functions,
holographic reductions connect them all together and inextricably lead to complex valued functions.

After the discovery of this tractable family F1∪F2∪F3, the question naturally arises as to whether
there are other kinds of non-trivial cancelations which lead to efficient algorithms. Our initial guess
was surely there are other tractable Boolean #CSP(F) problems, given our surreptitious discovery of
F1 ∪F2 ∪F3 as a by-product of holographic reductions. The surprising result is that there are none.

This is our main result. We prove a complexity dichotomy theorem for complex valued Boolean
#CSP. The tractability proof for the symmetric function family F1∪F2∪F3 also proves the tractability
for its natural generalization to unsymmetric functions. The dichotomy theorem says that a Boolean
#CSP is tractable iff either all its constraint functions F are of a simple product type, or all are from
this generalized family. (See Theorem 2.1).

Because we have to rule out all other manners of fortuitous cancelations similar to Theorem 3.1
this part of the proof is delicate. Due to space limit, many details are in the appendix. We isolate a
property we call Congruity and Semi-congruity, which provides a key insight and plays a decisive role
in both the tractability and hardness proofs.

Our second main theorem gives a refinement of the first, by restricting the maximum occurrence
of each variable to 3 times. This part of the proof is more demanding and proof techniques are also
interesting. We introduce a new technique called local holographic reductions. We use this technique
together with the method called polynomial interpolations [18, 17, 13] to prove our second main theorem.
The use of holographic reductions implicitly or explicitly seems crucial to this part of the proof.

Regarding models of computation for C, strictly speaking we should restrict it to computable
numbers [15, 1], or algebraic numbers. However this issue seems not essential for our result, and
we will state our theorems assuming that we can compute + and × etc for all complex numbers used.

2

2 Notations and results

A symmetric function F on Boolean variables can be expressed by [f0, f1, . . . , fk], where fj is the value
of F on inputs of weight j. We also use ∆0,∆1 to denote [1, 0] and [0, 1] respectively. A binary function

F is also expressed by the matrix
[
F (0, 0) F (0, 1)
F (1, 0) F (1, 1)

]
.

Suppose F is a function on input variables x1, x2, . . . , xk. F xs=c denotes the function F xs=c(x1, . . . ,
xs−1, xs+1, . . . , xk) = F (x1, . . . , xs−1, c, xs+1, . . . , xk), and F xs=∗ denotes the function F xs=∗(x1, . . . , xs−1,
xs+1, . . . , xk) =

∑
xs

F (x1, . . . , xk).
The underlying relation of F is given by RF = {X ∈ {0, 1}k|F (X) 6= 0}. A relation R ⊆ {0, 1}k is

affine means it is the affine linear subspace composed of solutions of a system of affine linear equations,
equivalently, if a, b, c ∈ R, then a⊕ b⊕ c ∈ R [9]. If RF is affine, we say F has affine support. We also
view relations as functions from {0, 1}k to {0, 1}.

Because a global constant factor does not affect the complexity of a counting problem, we regard a
function F and c · F as the same function, where c is a nonzero constant in C.

We define two classes of functions, for which the #CSP problems are tractable.
X denotes the k + 1 dimensional column vector (x1, x2, . . . , xk, 1) over Boolean field F2. Suppose A

is a Boolean matrix. χAX denotes the affine relation on inputs x1, x2, . . . , xk, whose value is 1 if AX is
the zero vector, 0 if AX is not the zero vector.

A denotes all functions which have the form χAXiL1(X)+L2(X)+···+Ln(X), where i =
√−1, Lj is a

0-1 indicator function χ〈αj ,X〉, where αj is a k +1 dimensional vector, the inner product 〈·, ·〉 is over Z2.
The additions among LjX are just the usual addition in Z. It can be computed mod 4, but not mod 2.
(Since we ignore global constant, all functions that are constant multiples of these functions are also in
this class.)

P denotes the class of functions which can be expressed as a product of unary functions, binary
equality functions ([1, 0, 1]) and binary disequality functions ([0, 1, 0]).

Theorem 2.1. Suppose F is a class of functions mapping Boolean inputs to complex numbers. If
F ⊆ A or F ⊆ P, then #CSP(F) is computable in polynomial time. Otherwise, #CSP(F) is #P
hard.

Proof Outline: The polynomial time algorithm for #CSP(P) is easy. Section 3 gives a polynomial
time algorithm for #CSP(A). In dichotomy theorems for unweighted and non-negative weighted #CSP
problems, the tractable part is relatively obvious. In our dichotomy theorem, we have a more interesting
tractable part because of cancelations. In Lemma 4.2, we prove that #CSP({F}) is #P-hard unless F
has affine support. This structure is essential in the proof of Lemma 4.3 and Lemma 4.4, the two key
lemmas of the hardness reduction. The common strategy of Lemma 4.3 and Lemma 4.4 is to reduce the
arity of a given function. In lemma 4.3, we prove that given a function F , which is not in A , we can
simulate (in polynomial time) a unary function F ′ 6∈ A ; In Lemma 4.4, we prove that given a function
G, which is not in P, we can simulate (in polynomial time) a binary or ternary function G′ 6∈ P. Then
we prove that #CSP({F ′, G′}) is #P-hard. The starting point of the hardness result is Lemma 4.1,
which says that if F contains only one binary symmetric function and is not in A ∪P, then the #CSP
problem is #P-hard. To complete the proof, we show that we can always combine functions F ′ and G′

to realize a binary symmetric function which is not in P ∪A .
We also prove a stronger dichotomy theorem that the hardness result holds even when restricted

to those #CSP instances, in which each variable occurs at most three times. Due to space limitation,
many proof details are in an appendix.

Theorem 2.2. If F 6⊆ A and F 6⊆ P, #CSP(F) where each variable occurs at most three times
(that is, #{=1,=2,=3}|F) is #P-hard.

3

3 Tractable cases

We first show that #CSP(P) is tractable. Each constraint function in an instance of #CSP(P) is a
product of unary functions, binary equality functions and binary disequality functions. Replace each
function by its factors as separate constraints. For the new instance of the #CSP, group variables
into connected components depending on whether they are connected by binary functions. In each
connected component there are at most two assignments with nonzero product values, and these can be
easily computed. The value of the problem is the product of its values on each connected component.
Hence, #CSP(P) is computable in polynomial time.

Now we analyze #CSP(A). Firstly, we show how to get rid of the factor χAX .

Lemma 3.1. Let F (x1, x2, . . . , xk) = χAXiL1(X)+L2(X)+···+Ln(X) ∈ A . If AX = 0 is infeasible over
Z2, then

∑
x1,x2,...,xk

F = 0. Suppose AX = 0 is not infeasible. Then in polynomial time, we can
construct another function H(y1, y2, . . . , ys) = iL

′
1(Y)+L′2(Y)+···+L′n(Y) ∈ A , such that 0 ≤ s ≤ k, and∑

x1,x2,...,xk
F =

∑
y1,y2,...,ys

H.

Proof. In polynomial time we can solve the linear system AX = 0 over Z2, and decide if it is feasible.
Suppose AX = 0 is feasible. W.l.o.g, we can assume that y1, y2, . . . , ys is a set of independent variables
over Z2 and the others are dependent variables, where 0 ≤ s ≤ k. Each dependent variable can be
expressed by an affine linear form of y1, y2, . . . , ys. For any Lj(X), we can substitute all the dependent
variables and get an affine linear form of y1, y2, . . . , ys, which we denote by L′j(Y). So we have

∑
x1,x2,...,xk

χAXiL1(X)+L2(X)+···+Ln(X) =
∑

y1,y2,...,ys

iL
′
1(Y)+L′2(Y)+···+L′n(Y).

The following lemma gives a key property of the function iL1(X)+L2(X)+···+Ln(X). This property
plays an important role both in the tractability proof and the hardness proof.

Lemma 3.2. Let F (x1, x2, . . . , xk) = iL1(X)+L2(X)+···+Ln(X). Exactly one of the following two
statements hold:

1. (Congruity) There exists a constant c ∈ {1,−1, i,−i} such that for all x2, x3, . . . , xk ∈ {0, 1} we
have F x1=1/F x1=0(x2, x3, . . . , xk) = c;

2. (Semi-congruity) There exists a constant c ∈ {1, i} and an affine subspace S of dimension k − 2
on T = {(x2, x3, . . . , xk) | xi ∈ Z2}, such that F x1=1/F x1=0(x2, x3, . . . , xk) = c on S, and
F x1=1/F x1=0(x2, x3, . . . , xk) = −c on T − S.

Proof. If for every 1 ≤ j ≤ n, the coefficient for x1 is zero in the affine linear form for Lj(X), then
F x1=1/F x1=0 is a constant 1. Otherwise, w.l.o.g. suppose the coefficients for x1 is nonzero in exactly
the first m affine linear forms Lj(X). Obviously, the other Lj(X)’s cancel in the ratio F x1=1/F x1=0.

For any assignment to x2, x3, . . . , xk, consider the two assignments (0, x2, x3, . . . , xk) and (1, x2, x3, . . . , xk).
For each 1 ≤ j ≤ m, Lj(1, x2, x3, . . . , xk) = 1−Lj(0, x2, x3, . . . , xk). Therefore the ratio F x1=1/F x1=0 =∏m

j=1 i1−2Lj(0,x2,x3,...,xk) = im(−1)
∑m

j=1 Lj(0,x2,x3,...,xk). Here m is independet of the assignment on
x2, x3, . . . , xk. Since the base is −1 now, the sum can be evaluated as a sum mod 2. Therefore there is
an affine linear form α(X) =

∑k
`=2 α`x` + αk+1 (mod 2), such that F x1=1/F x1=0 = im(−1)α(X).

If all α` = 0, for 2 ≤ ` ≤ k, then this ratio is a constant and we are in the case of Congruity. If
α` = 1, for some 2 ≤ ` ≤ k, then we have Semi-congruity.

4

Theorem 3.1. #CSP(A) is polynomial time computable.

Proof. We first observe that A is closed under multiplication. Therefore given an instance of
#CSP(A), the value of the output can be expressed as the summation on a single function F =
χAXiL1(X)+L2(X)+···+Ln(X) ∈ A . We also note that if F ∈ A , so is F xs=c and F xs=∗.

In each step of our algorithm, we reduce the number of variables by at least one and still get a
summation of this form.

If the linear system AX = 0 over Z2 is infeasible, the function is a totally zero function and we just
output 0. If AX = 0 is feasible (including possibly vacuous) then by Lemma 3.1 we can remove the
factor χAX and possibly decrease the number of variables at the same time.

Now we assume it has the form F = iL1(X)+L2(X)+···+Ln(X), we apply Lemma 3.2 to remove x1.
There are three cases.

Case 1: We have Congruity in Lemma 3.2. Then F x1=1/F x1=0 is a constant c, and
∑

x1,x2,...,xk

F = (1 + c) ·
∑

x2,x3,...,xk

F x1=0.

So we get a new summation
∑

x2,x3,...,xk
F x1=0 and have removed a variable x1.

Case 2: We have Semi-congruity in Lemma 3.2, and c = 1. Then on the affine subspace S, the ratio
F x1=1/F x1=0 = 1, and on the complementary subspace T − S the ratio F x1=1/F x1=0 = −1. For all
(x2, x3, . . . , xk) ∈ T − S, the terms cancel, F x1=1(x2, x3, . . . , xk) + F x1=0(x2, x3, . . . , xk) = 0. On S, the
terms are equal. It follows that

∑
x1,x2,...,xk

F = 2
∑

x2,x3,...,xk

χSF x1=0.

Note that χSF x1=0 is also a function in A , so we get a new summation of this form and have removed
a variable x1.

Case 3: We have Semi-congruity in Lemma 3.2, and c = i. Then for all (x2, x3, . . . , xk) in the affine
subspace S, we have F x1=1/F x1=0 = i, and in T − S, we have F x1=1/F x1=0 = −i. It follows that

∑
x1,x2,...,xk

F =
∑

S

(1 + i)F x1=0 +
∑

T−S

(1− i)F x1=0.

Now we make a crucial observation. The ratio of 1 + i and 1− i is exactly i. As a result we can rewrite
the two sums as follows:

∑
x1,x2,...,xk

F =
∑

S

(1− i) · F x1=0 · iL(X′) +
∑

T−S

(1− i) · F x1=0 · iL(X′),

where L(X ′), on X ′ = (x2, x3, . . . , xk, 1), is a 0-1 indicator function which takes the value 1 on S and 0
on T − S. Thus we can combine the two sums and get

∑
x1,x2,...,xk

F = (1− i) ·
∑

x2,x3,...,xk

(
F x1=0 · iL(X′)

)
.

Note that F x1=0 · iL(X′) is also a function in A . So we get a new summation of this form and have
removed a variable x1.

After at most k step we can eliminate all the variables and obtain the value of the initial summation.
Both k and n are bounded by input size. In each iteration, we either resolve an affine linear system
AX = 0 or compute an affine linear equation from Lemma 3.2 representing the affine linear subspace
S, both of which can be done in polynomial time. And after one iteration, the formula inside the
summation at most grows by a factor of iL(X′) or χS . So the whole algorithm is in polynomial time.

5

4 Hardness

Hardness of problems is proved by reductions. In a reduction, we simulate the functions in the
original problem by constructing gadgets, polynomial interpolation, or holographic reduction. In #CSP
problems, if we let variable xj not occur in any other place, then we simulate F xj=∗ using F . We can
simulate ∆0 and ∆1 by pinning lemma in [11], so we can simulate F xj=c using F and ∆c.

The starting point of our hardness proof is the following lemma.

Lemma 4.1. If [a, b, c] 6∈ A ∪P, #CSP({[a, b, c]}) is #P-hard. To be explicit, all tractable functions
[a, b, c] from A ∪ P have one of the following forms: [x, 0, y], [0, x, 0], [x2, xy, y2], x[1,±i, 1] or
x[1,±1,−1].

This lemma says, if restricted to one single symmetric binary function, our Theorem 2.1 holds. We
will give a proof in the appendix. This lemma can also be derived from the general complex weighted
Graph Homomorphism problem, for which Cai, Chen and Lu [6] have proved a complete dichotomy
theorem, a subsequent result to this.

The following lemma generalizes Lemma 11 in [11] to complex weights. However the original proof
does not work for complex weights, due to possible cancelations. The proof is given in appendix.

Lemma 4.2. If RF is not affine, then #CSP({F}) is #P-hard.

Now we come to the two key lemmas for the hardness proof. Both proofs inductively reduce the
arity of a function. Suppose F 6⊆ A and F 6⊆ P. Let F 6∈ A and G 6∈ P, where F, G ∈ F . (It is
possible that G = F). From F and G, we recursively simulate functions with smaller arities, keeping
the property of being not in A and not in P respectively. After the two lemmas we handle the base
case of the induction.

Lemma 4.3. If F 6∈ A , then either #CSP({F}) is #P-hard, or we can simulate a unary function
H 6∈ A , that is, there is a reduction from #CSP({F, H}) to #CSP({F}).
Proof. We prove by induction on the arity of the function F . If F has arity 1, then we are done since
F itself is the unary function we want.

Inductively we assume the lemma has been proved for functions with arity < k, for some k ≥ 2.
Now let F have arity k. In the following proof, for each case, we always construct some functions that
can be simulated in #CSP({F}), but have an arity < k, and then assume they are in A (otherwise, it
is proved by induction). Finally we prove that the problem is #P-Hard, get a unary function H 6∈ A
or reach a contradiction.

Since the constant function 0 is in A , F has a non-empty support RF . Suppose RF is not the
whole space Zk

2, by Lemma 4.2, either #CSP({F}) is #P-hard, or RF is affine. Suppose RF = χAX ,
and x1, x2, . . . , xs (0 ≤ s < k) are free variables of AX = 0. The function F xs+1=∗,xs+2=∗,...,xk=∗ can
be simulated by F and has an arity < k. Thus by our assumption F xs+1=∗,xs+2=∗,...,xk=∗ ∈ A . Then
obviously F = χAXF xs+1=∗,xs+2=∗,...,xk=∗ ∈ A . Contradiction.

So we may assume RF = Zk
2. By our assumption both F x2=0, F x2=1 ∈ A , we can apply Lemma 3.2

to these two functions. Accordingly we have the following 3 cases.

1. Both F x2=0 and F x2=1 have Congruity. We will denote the function F x1=a,x2=b by F ab. Let c1 and
c2 ∈ Z2 be the two constants for the Congruity of F x2=0 and F x2=1. Thus F 10/F 00(x3, . . . , xk) =
c1 and F 11/F 01(x3, . . . , xk) = c2.

(a) c1 = c2.
This means F x1=1/F x1=0 is a constant c in {1,−1, i,−i}. Suppose ir = c. Then F =
(ix1)rF x1=0. Since F x1=0 is in A by arity, this shows that F is also in A . Contradiction.

6

(b) c1 = −c2.
We will use the notation [α(X)] to denote the 0-1 indicator function for an affine linear form
α(X) over Z2. For any input X, it takes value 0 ∈ Z if α(X) = 0 in Z2, and it takes value
1 ∈ Z if α(X) = 1 in Z2.
Since c1 ∈ {1,−1, i,−i}, there exists an r such that ir = c1/i. Then we claim

F = (i[x1])
r · i[x1⊕x2]+[x2]+[x2]+[x2] · F x1=0.

To verify this, first suppose x1 = 0, then the RHS is i4[x2] · F x1=0 = F x1=0. Now let x1 = 1,
then the RHS is ir · i1−[x2]+3[x2] · F x1=0 = c1(−1)[x2]F x1=0. This is c1F

00 = F 10, if x2 = 0.
For x2 = 1, the expression is −c1F

01 = c2F
01 = F 11. Since F x1=0 has arity < k, F x1=0 ∈ A .

But then the claim implies that F ∈ A as well. Contradiction.

(c) c1 = ic2 or c1 = −ic2.
Assign an arbitrary assignment for x3, . . . , xk. Let P be the resulting function on x1, x2. In
matrix form, where the rows are indexed by x1 = 0, 1 and columns are indexed by x2 = 0, 1,

we have P =
[

u v
±ic2u c2v

]
. Let Q(x1, x2) = P 3(0, x2)P (x1, x2). In matrix form, Q =

[
u4 v4

±ic2u
4 c2v

4

]
=

[
1 1

±ic2 c2

]
. Here we used the fact that the values of P are powers of i.

Now Qx2=∗ is a unary function [2, (1±i)c2] which has unequal nonzero norms 2 6= |(1±i)c2| =√
2 and hence not in A .

2. One of F x2=0 and F x2=1 has Congruity and the other has Semi-congruity. Let’s say F x2=0 has
Congruity and F x2=1 has Semi-congruity. The other case is similar.

By Congruity, there is a constant c1 ∈ {1,−1, i,−i}, such that F 10/F 00(x3, . . . , xk) = c1 for
all x3, . . . , xk ∈ Zk−2

2 . By Semi-congruity there is a constant c2 ∈ {1,−1, i,−i}, and a (k − 3)-
dimensional affine linear subspace S ⊂ Zk−2

2 , represented by α(x3, . . . , xk) = 0, such that on S,
F 11/F 01(x3, . . . , xk) = c2 and on Zk−2

2 − S, F 11/F 01(x3, . . . , xk) = −c2. We note that to have
Semi-congruity, k must be ≥ 3, and one of the coefficients of x3, . . . , xk in α(x3, . . . , xk) must be
nonzero. W.l.o.g. let it be the coefficient of x3.

Fix an arbitrary assignment to x4, . . . , xk (if k = 3 this step is vacuous), this gives a function
P (x1, x2, x3). By changing the constant term in α and c2 to −c2 if necessary we may assume
x3 = 0 gives a point with α(x3, . . . , xk) = 0.

Now we will use a special notation to represent P (x1, x2, x3).

P =
z c1z

w −c2w

x c1x
y c2y .

This symbol is to suggest a cube and is to be read as follows: The left (right) 4 entries are function
values with x1 = 0 (x1 = 1); the top (bottom) 4 entries are function values with x2 = 0 (x2 = 1);
finally the inner (outer) 4 entries are values with x3 = 0 (x3 = 1).

Let Q(x1, x2, x3) = P (x1, x2, x3)(P (0, x2, x3))3. This corresponds to taking the 3rd power of each

of left 4 nodes (x, y, z, w) and multipling to itself and the node to its right. We get Q =
1 c1

1 −c2

1 c1
1 c2

since x4 = y4 = z4 = w4 = 1. Next let R(x1, x2, x3) = Q(x1, x2, x3)(Q(x1, x2, 0))3. This gives

7

R =
1 1

1 −1

1 1
1 1 , since c4

1 = c4
2 = 1. Then Rx1=0 =

[
1 1
1 1

]
, Rx1=1 =

[
1 1
1 −1

]
. Rx1=∗ =

[
2 2
2 0

]
, and

Rx1=∗,x2=∗ = [4, 2]. It has unequal nonzero norms, hence this unary function Rx1=∗,x2=∗ 6∈ A .

3. Both F x2=0 and F x2=1 have Semi-congruity. Let F 10/F 00 = c1 on α(x3, . . . , xk) = 0 and −c1 on
α(x3, . . . , xk) = 1. Similarly F 11/F 01 = c2 on β(x3, . . . , xk) = 0 and −c1 on β(x3, . . . , xk) = 1.
Here c1, c2 ∈ {1,−1, i,−i}, and α, β are two non-trivial affine linear forms.

(a) c1 6= ±c2. Since β is non-trivial, we may assume the coefficient of x3 in β is non-zero. Fix
any assignment to x4, . . . , xk, we may assume w.l.o.g. x3 = 0 satisfies β = 0. We have the

following function P (x1, x2, x3), which in our symbol is P =
z ±c1z

w −c2w

x ±c1x
y c2y . If the two entries

±c1z and ±c1x both take the same +c1 or −c1 multiplier, then we are in exactly the same
situation in Case 2. By renaming c1 as −c1, we may assume the two entries are in fact −c1z
and +c1x respectively. Now we take Q(x1, x2, x3) = P (0, x2, x3)3P (x1, x2, x3). Then we have

Q =
1 −c1

1 −c2

1 c1
1 c2

. Finally let R(x1, x2, x3) = Q(x1, 0, x3)3Q(x1, x2, x3). Then R =
1 1

1 c3
1c2

1 1
1 c31c2

.

It can be verified that Rx1=∗,x3=0 = [2, 1 + c2/c1]. Since c2/c1 6= ±1 we have c2/c1 = ±i.
Then this unary function 6∈ A since it has unequal nonzero norms 2 6= |1± i|.

(b) c1 = ±c2 ∈ {1,−1}. In this case F x1=1/F x1=0 only takes values ±1. Then RF x1=∗ is precisely
where F x1=1/F x1=0 = +1. If it is not affine, we have #P-hardness by Lemma 4.2. So let
RF x1=∗ be defined by an affine linear form γ(x2, . . . , xk) = 0. It can be directly verified that

F = F x1=0 · i[x1]+[x1]+[x1]+[x1⊕γ]+[γ]+[γ]+[γ].

Thus, F x1=0 ∈ A =⇒ F ∈ A . Contradiction.

(c) c1 = ±c2 ∈ {i,−i}. In this case F x1=1/F x1=0 only takes values ±i. We may assume
c1 = c2 = i by changing α to α⊕ 1 and/or β to β ⊕ 1 if necessary. Consider the subset

S = {(x2, x3, . . . , xk) | F x1=1/F x1=0 = i}
= {(0, x3, . . . , xk) | α(x3, . . . , xk) = 0} ∪ {(1, x3, . . . , xk) | β(x3, . . . , xk) = 0}.

First suppose all coefficients of x3, . . . , xk in α and β are the same. If α(x3, . . . , xk) =∑k
i=3 αixi + a and β(x3, . . . , xk) =

∑k
i=3 αixi + b over Z2, then (a⊕ b)x2 +

∑k
i=3 αixi + a = 0

over Z2 defines the set S. Denote this affine linear form by γ, then it can be verified that

F = F x1=0 · i[x1⊕γ]+[γ]+[γ]+[γ].

Thus, F x1=0 ∈ A =⇒ F ∈ A . Contradiction.
Now suppose some coefficients of x3, . . . , xk in α and β differ. W.l.o.g suppose the coefficient
of x3 is 0 and 1, in α and β respectively. Fix any assignment to x4, . . . , xk, then the value
of α is fixed, and yet by setting x3 to 0 or 1, the value of β flips. Then we get a function

P (x1, x2, x3) =
z εz

w −δw

x εx
y δy for some ε, δ = ±i. From here the proof is completed as in Case 2.

8

Lemma 4.4. For any function F 6∈ P, either #CSP({F}) is #P-hard, or we can simulate, using F ,
a function [a, 0, 1, 0] (or [0, 1, 0, a]), where a 6= 0, or a binary function H 6∈ P having no zero values.

Proof. Suppose F has arity k. Since P contains all unary functions and F 6∈ P, k ≥ 2. Define an
|RF | × k {0, 1}-matrix whose rows list every element of RF , and columns correspond to x1, . . . , xk.

We first remove any column which is all-0 or all-1. If we remove an all-0 column corresponding
to xi, then X ∈ RF =⇒ xi = 0. The updated table corresponds to RF xi=0 . Similarly if we remove
an all-1column corresponding to xi, then X ∈ RF =⇒ xi = 1. If two columns are identical or are
complementary in every bit, we remove one of them. If the columns at xi and xj are identical, then
X ∈ RF =⇒ xi ⊕ xj = 0. Then the updated table removing the column at xj corresponds to RF xj=∗ .
Similarly for a pair of complementary columns at xi and xj we have X ∈ RF =⇒ xi ⊕ xj = 1, and the
removal of the column at xj also corresponds to RF xj=∗ .

We remove columns as long as possible. We claim that this removal process maintains the property
of not belonging to P. Suppose we removed an all-0 column at xi, to get G = F xi=0. Since X ∈ RF =⇒
xi = 0, we have F = ∆0(xi)·G, where ∆0(xi) is the unary function [1, 0]. Thus G ∈ P =⇒ F ∈ P. The
case with removing an all-1 column is similar, where we use the unary function ∆1(xi) = [0, 1] instead.
If we removed the column at xj identical to the column at xi, then G = F xj=∗ and F = χxi=xj · G.
Finally for the removal of a complementary column at xj we have G = F xj=∗ and F = χxi 6=xj

· G. In
every step, we maintain G 6∈ P.

Now we suppose there is some G 6∈ P where no more columns can be removed by the above process.
There must be some columns left in the table, otherwise the function just before the last column removal
is a unary function, hence in P. In fact G being not in P, the arity of G is ≥ 2. For simplicity we still
denote it by k. We have two cases:

Case 1: |RG| < 2k. By Lemma 4.2, we may assume RG is affine, given by an affine linear
system AX = 0. We have shown that |RG| 6= 0, as some columns remain. Since G is not unary, the
table has more than one columns. If |RG| = 1, any two columns (of length one) must be identical
or complementary and the removal process should have continued. Thus |RG| > 1. W.l.o.g. assume
x1, . . . , xs are free variables in AX = 0 and xs+1, . . . , xk are dependent variables. |RG| = 2s is a power
of 2. We have shown that s ≥ 1. By |RG| < 2k, s < k. We claim s ≥ 2. If instead s = 1, then
every x2, . . . , xk is dependent on x1 on RG, so the column at x2 must be an all-0 or all-1 column, or
be identical or complementary to x1. The expression of xk in terms of x1, . . . , xs must involve at least
two non-zero coefficients; otherwise the column at xk must be an all-0 or all-1 column, or be identical
or complementary to another column. W.l.o.g., say the coefficients of x1, x2 are non-zero.

Let P (x1, x2, xk) = Gx3=0,...,xs=0,xs+1=∗,...,xk−1=∗ (these two lists of variables could be empty). It can
be verified that RP = χx1⊕x2⊕xk=c for some c ∈ Z2.

The affine linear equation x1 ⊕ x2 ⊕ xk = c is symmetric. Now we define a “symmetrized” function
H(x1, x2, xk) =

∏
σ∈S3

P (xσ(1), xσ(2), xσ(k)), where S3 is the symmetry group on three letters {1, 2, k}.
This H is a symmetric function on (x1, x2, xk) and has support RH = RP . Thus, after normalizing,
H = [a, 0, 1, 0] or [0, 1, 0, a] where a 6= 0. We remark that this ternary function H 6∈ P.

Case 2: |RG| = 2k. If for all 1 ≤ i ≤ k, the ratio Gxi=1/Gxi=0 is a constant function ci, (since
|RG| = 2k there are no divisions by zeros), then G = c0 ·

∏
1≤i≤k Ui(ci), where the constant c0 =

Gx1=0,...,xk=0, and Ui(ci) is the unary function [1, ci] on xi. This gives G ∈ P, a contradiction.
Now suppose for some i, Gxi=1/Gxi=0 is not a constant function. W.l.o.g., we assume i = 1. The

Boolean hypercube on (x2, . . . , xk) ∈ {0, 1}k−1 is connected by edges which flip just one bit. W.l.o.g.,
suppose Gx1=1/Gx1=0(0, a3, . . . , ak) 6= Gx1=1/Gx1=0(1, a3, . . . , ak). Set x3 = a3, . . . , xk = ak, we get a

9

binary function H(x1, x2) = G(x1, x2, a3, . . . , ak). We have H(1, 0)/H(0, 0) 6= H(1, 1)/H(0, 1), hence

the rank of H =
[
H(0, 0) H(0, 1)
H(1, 0) H(1, 1)

]
is 2.

If H were in P, then partition the variable set according to connectivity by binary equality and
disequality functions. If any connected component has at least 2 variables, we can set values to these 2
variables so that H = 0. But H is never zero. Then each component must be a single variable and H is
defined by a product of unary functions. But such a function has rank 1. This contradiction completes
our proof.

Now we are ready to complete the proof for the main Theorem 2.1.
Proof of Theorem 2.1: By Theorem 3.1, #CSP(A) is computable in polynomial time. Also #CSP(P)
is obviously tractable.

If F 6⊆ A and F 6⊆ P, by Lemma 4.3, either #CSP(F) is #P-hard, or we can simulate a function
F = [1, λ] 6∈ A . In particular λ 6∈ {0,±1± i}. By Lemma 4.4, either #CSP(F) is #P-hard, or we can
simulate a function P = [a, 0, 1, 0], or P ′ = [0, 1, 0, a], where a 6= 0, or a binary function H 6∈ P having
no zero values.

Firstly, we prove #CSP(F, P) is #P-hard. Clearly P x1=∗ = [a, 1, 1]. If a 6∈ {1,−1}, it is #P-hard
by Lemma 4.1. If a ∈ {1,−1}, we can construct Q(x1, x2) =

∑
x3

P (x1, x2, x3)F (x3) = [a, λ, 1], which
is [±1, λ, 1]. Both of them are #P-hard by Lemma 4.1. The proof for #CSP(F, P ′) is the same.

Secondly, we prove #CSP(F, H) is #P-hard. After normalizing, we may suppose H =
[
1 x
y z

]
,

where xyz 6= 0, and z 6= xy. There are two cases, depending on whether z = −xy.
For the case z 6= −xy, we construct a symmetric function H(x1, x2)H(x2, x1) = [1, xy, z2]. By the

conditions xyz 6= 0, z 6= xy, z 6= −xy, it is impossible to be the first three tractable cases in Lemma
4.1. If it is the last two tractable cases, then xy is a power of i. Now we can form the function
H(x1, x2)H(x2, x1)F (x1)F (x2), which is [1, λxy, λ2z2]. This function has no zero entry and has rank 2,
so it is not of the first three tractable cases in Lemma 4.1. If it were in the last two tractable cases, then
λxy is a power of i, which implies that λ = (λxy)/(xy) itself is a power of i. However since [1, λ] 6∈ A ,
we know λ is not a power of i.

For the case z = −xy, We construct some binary functions with an integer parameter s as follows:
∑
x3

H(x1, x3)H(x2, x3)(F (x3))s = [1 + λsx2, (y + λsxz), (y2 + λsz2)]

= [1 + λsx2, y(1− λsx2), y2(1 + λsx2)].

As λ is not a power of i, at most one of the two values x2 and λx2 can be a power of i. Now we choose
s = 0 or s = 1 above so that λsx2 6∈ {±1,±i}.

After normalizing, we may write the function [1+λsx2, y(1−λsx2), y2(1+λsx2)] as [1, y(1−λsx2)/(1+
λsx2), y2], noticing that 1 + λsx2 6= 0. We claim that this function is not one of the five tractable cases
from Lemma 4.1. Since there are no zero entries, clearly it is not the first two cases. It has rank
2, therefore it is not the third case. If it were the fourth tractable case [1,±i, 1], then y = ±1, and
(1 − λsx2)/(1 + λsx2) = ±i. This implies that λsx2 = ±i, which is impossible. If [1, y(1 − λsx2)/(1 +
λsx2), y2] = [1,±1,−1], the fifth tractable case, then y = ±i, and again (1 − λsx2)/(1 + λsx2) = ±i,
also impossible.

The proof of Theorem 2.1 is complete.

10

References

[1] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real computation.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

[2] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
J. ACM, 53(1):66–120, 2006.

[3] Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. In Luca
Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP (1), volume 5125 of Lecture Notes in Computer Science, pages
646–661. Springer, 2008.

[4] Andrei A. Bulatov and Vı́ctor Dalmau. Towards a dichotomy theorem for the counting constraint
satisfaction problem. In FOCS, pages 562–571. IEEE Computer Society, 2003.

[5] Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. In Josep Dı́az, Juhani
Karhumäki, Arto Lepistö, and Donald Sannella, editors, ICALP, volume 3142 of Lecture Notes in
Computer Science, pages 294–306. Springer, 2004.

[6] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A dichotomy
theorem. Submitted to STOC 09.

[7] Jin-Yi Cai and Pinyan Lu. Holographic algorithms: from art to science. In STOC ’07: Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing, pages 401–410, New York,
NY, USA, 2007. ACM.

[8] Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holographic algorithms by fibonacci gates and holographic
reductions for hardness. In FOCS ’08: Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science, Washington, DC, USA, 2008. IEEE Computer Society.

[9] N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of boolean constraint satisfaction
problems. SIAM Monographs on Discrete Mathematics and Applications, 2001.

[10] Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting problems.
Inf. Comput., 125(1):1–12, 1996.

[11] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. The complexity of weighted boolean
#csp. CoRR, abs/0704.3683, 2007.

[12] Martin E. Dyer, Leslie Ann Goldberg, and Mike Paterson. On counting homomorphisms to directed
acyclic graphs. J. ACM, 54(6), 2007.

[13] Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homomorphisms
(extended abstract). In SODA, pages 246–255, 2000.

[14] Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity dichotomy
for partition functions with mixed signs. CoRR, abs/0804.1932, 2008.

[15] Ker-I Ko. Complexity theory of real functions. Birkhauser Boston Inc., Cambridge, MA, USA,
1991.

11

[16] Thomas J. Schaefer. The complexity of satisfiability problems. In STOC ’78: Proceedings of the
tenth annual ACM symposium on Theory of computing, pages 216–226, New York, NY, USA, 1978.
ACM.

[17] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM J.
Comput., 31(2):398–427, 2001.

[18] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979.

[19] Leslie G. Valiant. Holographic algorithms (extended abstract). In FOCS ’04: Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science, pages 306–315, Washington,
DC, USA, 2004. IEEE Computer Society.

[20] Leslie G. Valiant. Accidental algorthims. In FOCS ’06: Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, pages 509–517, Washington, DC, USA, 2006.
IEEE Computer Society.

Appendix

5 Proof of Lemma 4.1

We give a proof of Lemma 4.1. We first note that every one of the five listed exceptional cases are in
A ∪P, and it can be checked directly that all binary symmetric functions in A ∪P take one of these
five forms.

In several places of this proof, a reduction method called polynomial interpolation [18, 17, 13] is
used. We first show a simple special case using polynomial interpolation method as applied here. The
general method is similar, which involves setting up and then solve a system of linear equations to get
the answer of the original problem. The solvability of these linear systems here in this proof is always
by the fact that it is a Vandermonde system. (See Section 7, in particular the proof of Lemma 7.1 for
more variations on this theme.)

Consider #CSP(F), where F = [1, a, 1] ∈ F . Suppose we want to simulate a function H = [1, b, 1],
that is, reduce #CSP(F ∪ {H}) to #CSP(F). Given an instance I of #CSP(F ∪ {H}), where there
are n constraints given by H, we construct instances Ij of #CSP({F}), by replacing each constraint
H(xi1 , xi2 , xi3) in I by j many constraints F (xi1 , xi2 , xi3). We use #(I) to denote the value of the
#CSP problem instance I. We can write the sum defining #(I) as a sum over all assignments stratified
according to the number of (1, 0) or (0, 1) assigned at the n occurrences of H. Let wi denote the sum
over all assignments with exactly i of n occurrences of H assigned (1, 0) or (0, 1) (the other n − i are
assigned (0, 0) or (1, 1).) The the value #(I) can be written as the summation #(I) =

∑n
i=0 wib

i.
Meanwhile, we have #(Ij) =

∑n
i=0 wia

ij . We let j = 1, . . . , n + 1 to get a system of linear equations
about wi, whose coefficient matrix is a Vandermonde matrix in aj , j = 1, . . . , n+1. If a is not a root of
unity, this is a non-singular matrix, and we can solve for all wi, which gives us #(I). This is essentially
how every reduction by polynomial interpolation in this section will be done.

Our starting point here is the following fact. This Lemma is a special case of the dichotomy theorems
in [5].

Lemma 5.1. Let [a, b, c] be a symmetric binary function, where a, b, c are non-negative real numbers.
Then #CSP({[a, b, c]}) is #P-hard unless [a, b, c] is of one of the following three forms: [a, 0, c]; [0, b, 0];
or [x2, xy, y2].

12

First we prove two simple lemmas.

Lemma 5.2. For any symmetric binary function [0, b, c], where bc 6= 0, #CSP({[0, b, c]}) is #P-hard.

Proof. Since b 6= 0, we can normalize it and assume b = 1. So we have [0, 1, c]. First suppose c is a
root of unity. Let ck = 1. We can realize [0, 1k, ck] = [0, 1, 1]. This problem is the counting problem for
vertex covers, hence it is #P-hard. Now suppose c is not a root of unity. We can realize all [0, 1, x] by
polynomial interpolation. In particular, we can realize [0, 1, 1], which is #P-hard.

Lemma 5.3. For any symmetric binary function [1, b, c], where bc 6= 0 and c 6= b2, there exist two
unary functions [1, x] and [1, y] such that #CSP({[1, b, c], [1, x], [1, y]}) is #P-hard.

Proof. We use F to denote the binary function [1, b, c], and U to denote a unary function [1, x]. Then
we can realize a binary function G by

G(x1, x2) =
∑
x3

F (x1, x3)F (x3, x2)U(x3).

It can be computed that G = [1 + b2x, b(1 + cx), b2 + c2x]. If c 6= −b2, we can choose x = − 1
b2

, and get
G = [0, b2−c

b , b4−c2

b2
]. Since c 6= ±b2, by Lemma 5.2, we know the problem is #P-hard. So we proved

that if c 6= −b2, there exists a unary function [1, x] such that #CSP({[1, b, c], [1, x]}) is #P-hard.
Now suppose c = −b2. We choose x = − 2

b2
, and get G = [−1, 3b,−b2]. Now for this new symmetric

binary function, we can again perform the construction above using a unary function [1, y]. Since b 6= 0
and b2 6= (3b)2, we can prove that the problem is #P-hard.

Our main lemma in this Section is the following:
Lemma 4.1. If [a, b, c] 6∈ A ∪P, #CSP({[a, b, c]}) is #P-hard.

Proof. There are several cases. If a = 0, we know bc 6= 0, otherwise it is in one of the five exceptional
cases. So by Lemma 5.2, #CSP({[a, b, c]}) is #P-hard. The case c = 0 is symmetric. Since [a, b, c] 6∈
A ∪P, we know b 6= 0. Therefore we will assume in the following that abc 6= 0, and by normalizing,
we can assume a = 1.

There are three cases for proving the complexity of #CSP{[1, b, c]}, with bc 6= 0.

1. c is not a root of unity.

Connect two inputs of =3 by [1, b, c], we can get the function [1, c], and realize any function of
the form [1, x] by polynomial interpolation. So by Lemma 5.3, we know that #CSP({[a, b, c]}) is
#P-hard.

2. c is a root of unity, b is not a root of unity.

Suppose ck = 1. We can realize [1, bk, ck] = [1, bk, 1] by k repeated applications of [1, b, c]. Because
b is not a root of unity, we can use it to realize [1, 2, 1] (actually any [1, x, 1]) by interpolation.
This is already #P-hard, by Lemma 5.1.

3. Both b and c are roots of unity.

We can realize G =
[

1 b
b c

]2

= [1 + b2, b + bc, b2 + c2].

13

(a) b = −1. G = [2,−1− c, 1 + c2].
Since [1, b, c] = [1,−1, c] 6∈ A ∪P, we know c 6= ±1. If c = ±i, we get G = [2,−1 ∓ i, 0],
which is #P-hard by Lemma 5.2 (or rather a symmetric version of Lemma 5.2, flipping 0
and 1). If c 6∈ {±1 ± i}, then there are no zero entries in G. Since c is a root of unity, and
c 6= ±1, we have |1 + c2| 6= 2. In particular 1+c2

2 is not a root of unity. Normalizing we have
[1, −1−c

2 , 1+c2

2]. So #CSP(G) is #P-hard by case 1.

(b) b = −c. G = [1 + c2,−c− c2, 2c2].
Since [1, b, c] = [1,−c, c] 6∈ A ∪P, we know c 6= ±1. If c = ±i, we get G = [0, 1∓i,−2], which
is #P-hard by Lemma 5.2. If c 6∈ {±1± i}, then there are no zero entries in G. Normalizing
we get [1, −c−c2

1+c2
, 2c2

1+c2
]. For c a root of unity, the equation |1 + 1

c2
| = 2 would imply that

c2 = 1. As c 6= ±1, we have |1 + c2| 6= |2c2|. In particular 2c2

1+c2
is not a root of unity. It

follows from case 1 that #CSP(G) is #P-hard.

(c) c = 1. G = [1 + b2, 2b, 1 + b2].
Since [1, b, c] = [1, b, 1] 6∈ A ∪P, we know b 6∈ {±1±i}. So 1+b2 6= 0, and | 2b

1+b2
| = 2

|1+b2| 6= 1,

so 2b
1+b2

is not a root of unity. Therefore the problem is #P-hard by case 2.

(d) b 6= −1, b + c 6= 0, c 6= 1. Moreover we are given c 6= b2 since [1, b, c] 6∈ A ∪P.
Connect [1, b, c] and [1, 1], we get [1 + b, b + c]. Neither of the two entries is 0. We claim,
because |b| = |c| = 1, |1 + b| = |b + c| if and only if c = 1 or c = b2.
To see this, just draw two circles, C1 centered at 0 passing through b + 1, and C2 centered
at b, with radius |c| = 1. The unique two intersections of C1 and C2 are clearly symmetric
w.r.t the ray ~0b and therefore c = 1 or c = b2 (Fig. 1).
By the conditions c 6= 1 and c 6= b2, we have |1 + b| 6= |b + c|, and in particular b+c

1+b is not a
root of unity. From [1 + b, b + c], normalizing [1, b+c

1+b], we can realize all unitary functions by
interpolation. Because bc 6= 0, by Lemma 5.3 the problem is #P-hard.

Figure 1: The reason of c = 1 or c = b2.

6 Proof of Lemma 4.2

Proof of Lemma 4.2: We prove by induction on the arity of the function F .

14

All functions of arity 1 have affine support. The conclusion holds trivially for these functions.
We first consider a function F of arity 2. Suppose F does not have affine support. This implies that

exactly one of its four values is 0. Let F also be denoted by the matrix
[
a b
c d

]
=

[
F (0, 0) F (0, 1)
F (1, 0) F (1, 1)

]
,

then in particular det(F) 6= 0. By taking two copies of F sharing a free variable z in the appropriate
order (x, z) and (z, y), we can realize the binary function H(x, y) =

∑
z F (x, z)F (z, y), whose matrix

form is H = FF T =
[
a2 + b2 ac + bd
ac + bd c2 + d2

]
. This H is a symmetric binary function, which can also be

denoted by [a2 +b2, ac+bd, c2 +d2]. We can apply Lemma 4.1 to H. Because F is nonsingular, so is the
matrix for H. Because exactly one entry of F is 0, ac+bd 6= 0 and H is not of the form [x, 0, y]. Because
either a2 + b2 6= 0 or c2 + d2 6= 0, H is not of the form [0, x, 0]. So the only remaining possibilities
for H ∈ A ∪ P is that H is of the form x[1,±i, 1] or x[1,±1,−1]. By symmetry, we only need to
consider the cases a = 0 and bcd 6= 0, or b = 0 and acd 6= 0. If a = 0, we can assume b = 1 by
dehomogenizing, and then the function H is [1, d, c2 +d2]. If H is of the form x[1,±i, 1], we have d = ±i
and c = ±√2. Then we can realize another symmetric binary function by H ′(x, y) = F (x, y)F (y, x).
So H ′ = [a2, bc, d2] = [0,±√2,−1]. #CSP({H ′}) is #P-hard by Lemma 4.1. If H is of the form
x[1,±1,−1], we have d = ±1 and c = ±√2i. Then H ′ = [a2, bc, d2] = [0,±√2i, 1] and #CSP({H ′})
is #P-hard by Lemma 4.1 again. So we have completed for the a = 0 case. If b = 0, we can assume
a = 1 and the function H is [1, c, c2 + d2]. If H is of the form x[1,±i, 1], we have c = ±i and
d = ±√2. Then we can realize another binary function F ′ by F ′(x, y) = F (x, y)F (x, y). In matrix

notation F ′ =
[
a2 b2

c2 d2

]
=

[
1 0
−1 2

]
. Next we can simulate H ′ from F ′ as H ′ = F ′F ′T =

[
1 −1
−1 5

]
.

In symmetric notation H ′ = [1,−1, 5]. By Lemma 4.1 #CSP({H ′}) is #P-hard. Finally if H is of the

form x[1,±1,−1], we have c = ±1 and d = ±√2i. Then by the same construction, F ′ =
[
1 0
1 −2

]
and

H ′ =
[
1 1
1 5

]
, which in symmetric notation is H ′ = [1, 1, 5]. So again #CSP({H ′}) is #P-hard. We

have completed the proof for the case where the function F is of arity 2.
Inductively we assume the lemma has been proved for functions with arity < k, for some k ≥ 3,

and now assume the function F has arity k. Since RF is not affine, there exist a, b, c ∈ RF such that
d = a ⊕ b ⊕ c 6∈ RF . We only need to prove that we can use F to simulate a function of smaller arity
that does not have affine support.

Divide the index set [k] of input variables of F into 4 subsets according to the values of a, b, c as
follows:

I = {j|aj = bj 6= cj}, J = {j|aj = cj 6= bj}, K = {j|bj = cj 6= aj}, and L = {j|aj = bj = cj}.

Since each aj , bj and cj = 0, 1, this forms a partition of [k]. We also remark that, if j, l ∈ I, then either
(al, bl, cl) = (aj , bj , cj) or (aj , bj , cj). A similar statement holds for J , K and L.

Now we have the following four cases, and for each case, we prove our result.

• L is not empty. There exists j such that aj = bj = cj .

We fix the jth input of F to be aj , and get a function F xj=aj . F xj=aj does not have affine support.

Now we may assume L = ∅ and [k] = I ∪ J ∪K.

• There are indices l 6= j, such that (al, bl, cl) = (aj , bj , cj).

15

W.l.o.g, we assume l = 1 and j = 2. Define a function of arity k − 1 by H(x1, x3 . . . , xk) =
F (x1, x1, x3 . . . , xk). H can be simulated by F , and by the property that a, b, c ∈ RF and yet
d 6∈ RF , H does not have affine support.

• There are indices l 6= j, such that (al, bl, cl) = (aj , bj , cj).

Clearly both l and j belong to the same set I or J or K. W.l.o.g, we assume l = 1 ∈ I and
j = 2 ∈ I. T he proof for J and K are the same. Then we have a = (α, α, a′), b = (α, α, b′),
c = (α, α, c′), and d = (α, α, d′), where α ∈ Z2, and d′ = a′ ⊕ b′ ⊕ c′ ∈ Zk−2

2 . Assume for a
contradiction that all functions of the forms F xi=β and F xi=∗ have affine support.

Consider F x1=α, whose underlying relation RF x1=α is affine. Because a, b ∈ RF , (α, a′), (α, b′) ∈
RF x1=α . The summation of (α, a′), (α, b′), (α, c′), (α, d′) is the zero vector in Zk−1

2 , so (α, c′) ∈
RF x1=α iff (α, d′) ∈ RF x1=α . This implies that (α, α, c′) ∈ RF iff (α, α, d′) ∈ RF .

Next consider F x2=α. Because c ∈ RF and d 6∈ RF , we have (α, c′) ∈ RF x2=α , and (α, d′) 6∈ RF x2=α .
From what has just been proved, there are only two possibilities: either both (α, α, c′), (α, α, d′) ∈
RF , or both 6∈ RF . Assume it is the first case, then (α, c′), (α, d′) ∈ RF x2=α , but this is impossible
for an affine relation RF x2=α . So we must have both (α, α, c′), (α, α, d′) 6∈ RF .

Similarly, we can prove that both (α, α, a′) and (α, α, b′) 6∈ RF . More precisely, first consider
F x2=α. By a, b ∈ RF , both (α, a′) and (α, b′) ∈ RF x2=α . Having an affine support, it must be that
either both (α, a′) and (α, b′) ∈ RF x2=α , or both do not belong to it. Thus either both (α, α, a′)
and (α, α, b′) ∈ RF or both do not belong to it.

Next consider F x1=α. It also has an affine support. Since c ∈ RF and d 6∈ RF , we have (α, c′) ∈
RF x1=α and (α, d′) 6∈ RF x1=α . If both (α, α, a′) and (α, α, b′) ∈ RF , then both (α, a′) and (α, b′) ∈
RF x1=α . This is impossible for an affine relation RF x1=α . Thus it follows that both (α, α, a′)
(α, α, b′) 6∈ RF .

To summarize we have all (α, α, c′), (α, α, d′), (α, α, a′), (α, α, b′) 6∈ RF .

Finally we consider F x1=∗, and calculate as follows:

F x1=∗(α, a′) = F (a) + F (α, α, a′) = F (a) 6= 0,

F x1=∗(α, b′) = F (b) + F (α, α, b′) = F (b) 6= 0,

F x1=∗(α, c′) = F (c) + F (α, α, c′) = F (c) 6= 0,

F x1=∗(α, d′) = F (d) + F (α, α, d′) = F (d) = 0.

This is a contradiction with the assumption that RF x1=∗ is affine.

• If there are more than one elements in sets I or in J or in K, it is included in the previous two
cases. The remaining case is that the sizes of I, J,K are all no more than 1 and L is empty.
Because k > 2, the sizes of I, J,K are exactly 1, and so k = 3. W.l.o.g., let I = {1}, J = {2} and
K = {3}.
A moment reflection shows that we can write a = (p, q, r), b = (p, q, r), c = (p, q, r), d = (p, q, r),
where p, q, r ∈ Z2.

First we consider F x1=p, which has an affine support, by arity. Let u = (p, q, r), and suppose
u ∈ RF . Then (q, r) ∈ RF x1=p . Because a, b ∈ RF , then (q, r) and (q, r) both belong to RF x1=p .
Then being affine, (q, r) ∈ RF x1=p . Let v = (p, q, r), then v ∈ RF .

Next we consider RF x2=q . By a, c ∈ RF , we get (p, r), (p, r) ∈ RF x2=q . By assumption u ∈ RF ,
then (p, r) ∈ RF x2=q . By RF x2=q being affine, we get (p, r) ∈ RF x2=q . Let w = (p, q, r), then
w ∈ RF .

16

Now a, v, w ∈ RF . This gives us (p, q), (p, q), (p, q) ∈ RF x3=r . Since RF x3=r is affine, (p, q) ∈
RF x3=r . This means that d = (p, q, r) ∈ RF , which is a contradiction.

We conclude that in fact u 6∈ RF .

By tracing the above steps, under the new condition u 6∈ RF , we get v 6∈ RF , and also w 6∈ RF .

Finally we consider F x3=r. By b, c ∈ RF , we get (p, q), (p, q) ∈ RF x3=r . By u 6∈ RF , we have
(p, q) 6∈ RF x3=r . By RF x3=r being affine, we get (p, q) 6∈ RF x3=r . i.e., (p, q, r) 6∈ RF .

We have accounted now for all 8 points of the form (p̂, q̂, r̂), where each bit β̂ = β or β. Exactly
three of them a, b, c belong to RF and the other five points do not. It can be directly verified
that RF x1=∗ has exactly three points (q, r), (q, r), (q, r), but not (q, r), which is a contradiction to
RF x1=∗ being affine. This contradiction completes our proof.

7 Maximum degree 3

In this Section we prove Theorem 2.2. This theorem states that our dichotomy theorem holds even
when restricted to #CSP problems where every variable appears at most three times. Of course the
tractability still applies. The claim is that over these restricted #CSP problems, F 6⊆ A and F 6⊆ P
still imply #P-hardness. We first give a definition.

Definition 7.1. For any positive integer k, we use #Rk-CSP(F) to denote all the Read-k-times
#CSP(F) problems, that is, every variable appears in at most k constraints.

Assume F 6⊆ A and F 6⊆ P, we want to prove the following sequence of reductions:

CSP(F) ≤T #R3-CSP(F ∪ {=2})
≤T #R3-CSP(F ∪ {H})
≤T #R3-CSP(F),

where H is a non-degenerate binary function. The first reduction is easy. In Lemma 7.1 we give the
second reduction above. In Theorem 7.1 we give a preparation theorem in which we introduce a localized
form of holographic reductions using orthogonal matrices. This theorem is used in the proof of the third
step of the reduction above, in Lemma 7.5.

To prove the first reduction, consider a generic #CSP(F) instance where a variable x appears in
` > 3 constraints (functions). Our reduction is as follows. We introduce a new variable x′ and a new
constraint =2 (x, x′). Then we replace two appearances of x by x′. After the modification, x′ appears
3 times, and x appears ` − 1 times. Repeating this substitution, we can make x appear only 3 times.
This modification does not change the value of the #CSP problem. We can do this for every variable
by introducing more new variables, and the size of the problem stays polynomially bounded.

Our first key lemma is to show that if we have any non-degenerate binary function H ∈ F (this
means that the matrix

[
H(0, 0) H(0, 1)
H(1, 0) H(1, 1)

]
is non-degenerate), we can interpolate =2. For readers who are

familiar with holographic reductions, the use of holographic reductions is unmistakable but implicit
here. We note that Dyer et. al. [11] proved a similar result for a symmetric binary function H.

Lemma 7.1. Let H : {0, 1}2 → C be a non-degenerate binary function. Then for any F containing
H, we have

#R3-CSP(F ∪ {=2}) ≤T #R3-CSP(F).

17

Proof. Consider the Jordan normal form of H. There are two cases: either there exist T and Λ =(
λ1 0
0 λ2

)
, such that H = TΛT−1, or there exist T and Λ =

(
λ 1
0 λ

)
, such that H = TΛT−1.

For the first case, consider an instance I of #R3-CSP(F ∪{=2}). Suppose the function =2 appears
m times. Replace each occurrence of =2 by a chain of T , =2, T−1. More precisely, we replace any
occurrence of =2 (x, y) by T (x, z) · (=2)(z, w) · T−1(w, y), where z, w are new variables. This defines
a new instance I ′. Since TI2T

−1 = I2, where I2 denotes the 2 × 2 identity matrix, the CSP value of
the instance I and I ′ are the same. We can stratify the CSP sum defining the value on I ′ according to
how many (0, 0), (0, 1), (1, 0) and (1, 1) assignments are given to the occurrences of the new Equality
constraints of the form (=2)(z, w). Clearly any assignment assigning a value (0, 1) or (1, 0) to some
(=2)(z, w) has a 0 contribution to the sum. Thus we only need to consider those assignments which
assign i many times (0, 0), and m − i many times (1, 1). Let the sum over all such assignments of the
evaluation (including those of T (x, z) and T−1(w, y)) on I ′ to be ρi. Then the CSP value on the instance
I ′ can be written as

∑m
i=0 ρi.

Now we construct from I a sequence of instances I ′k indexed by k. Replace each occurrence of
(=2)(x, y) by a chain of k functions H to get an instance I ′k of #R3-CSP(F). More precisely, each
occurrence of =2 (x, y) is replaced by H(x, x1)H(x1, x2) . . . H(xk−1, y), where x1, x2, . . . , xk−1 are new
variables (only for this occurrence of =2 (x, y)). The function of this chain is Hk = TΛkT−1. A moment
of reflection shows that the value of the instance I ′k is

m∑

i=0

ρiλ
ki
1 λ

k(m−i)
2 = λmk

2

m∑

i=0

ρi(λ1/λ2)ik.

If λ1/λ2 is a root of unity, then take a k such that (λ1/λ2)k = 1. (Input size is measured by the
number of variables and constraints. The functions in F are considered constants. Thus this k is a
constant.) We have the value

∑m
i=0 ρiλ

ki
1 λ

k(m−i)
2 = λmk

2

∑m
i=0 ρi. As λ2 6= 0, (H is non-degenerate), we

can compute the value of I from the value of I ′k.
If λ1/λ2 is not a root of unity, (λ1/λ2)i, i = 1, 2, . . . never repeat. We can take k = 1, . . . , m + 1

and get a system of linear equations about ρi. Because the coefficient matrix is Vandermonde in
(λ1/λ2)i, i = 1, 2, . . . m + 1, we can solve ρi and get the value of I.

For the second case, the construction is the same, so we only show the difference with the proof
in the first case. Again we can stratify the CSP sum for I ′ according to how many (0, 0), (0, 1),
(1, 0) and (1, 1) assignments are given to the occurrences of the new Equality constraints of the form
(=2)(z, w). Assignment with a non-zero number of (0, 1)’s or (1, 0)’s in I ′ will produce a 0 contribution
for I ′. However, this time we cluster all assignments according to exactly i many times (0, 0) or (1, 1),
and the rest m − i are (0, 1)’s. Note that any assignment with a non-zero number of (1, 0)’s will
produce a 0 contribution in the CSP value for I ′k, after the substitution of each =2 (x, y) in I by
H(x, x1)H(x1, x2) . . . H(xk−1y). This is because, by this substitution, effectively each (=2)(z, w) in I ′ is
replaced by Λk = =

(
λk kλk−1

0 λk

)
. Again let the sum over all assignments with i many (0, 0) or (1, 1),

and m− i many (0, 1) of the evaluation (including those of T (x, z) and T−1(w, y)) on I ′ to be ρi. Then
the CSP value on the instance I ′ (and on I) is just ρm.

The value of I ′k is
m∑

i=0

ρiλ
ki(kλk−1)m−i = λ(k−1)m

m∑

i=0

(λiρi)km−i.

We can take k = 1, . . . , m + 1 and get a system of linear equations on λiρi. Because the coefficient
matrix is a Vandermonde matrix, we can solve λiρi and (since λ 6= 0 as H is non-degenerate) we can
get the value of ρm, which is the value of I.

18

Definition 7.2. Given two sets of functions F and G , we define a counting problem #G |F :
Input: A signature grid Ω = (G, G ,F , π), where G = (V1, V2, E) is a bipartite graph, and π maps V1

to G and maps V2 to F ;
Output: Holant(Ω).

It can be seen that #R3-CSP(F) is just #{=1,=2,=3} |F , and the more general Holant(F)
corresponds to the computation of the value of #{=2} |F . Lemma 7.1 proves that for any F containing
a non-degenerate binary function H, and G containing =2, we have #G |F ∪ {=2} ≤T #G |F .

Our next step is to realize a non-degenerate binary function H from F which is assumed to be
neither a subset of A nor a subset of P.

A function of arity k can be expressed by its truth table of length 2k. Define

D = {F | F = [a1, b1]⊗ [a2, b2]⊗ · · · ⊗ [ak, bk]}

to be the set of functions that can be expressed as a tensor product of k unary functions for some integer
k, that is, a function in D is the product of k unary functions applied to its k variables respectively.
(Here D stands for degenerate. A binary function is in D iff its corresponding matrix is singular. A
binary function is not in D iff it is non-degenerate as defined earlier. D is a subset of P.)

As F 6⊆ P, certainly F 6⊆ D , therefore there exists some F ∈ F and F 6∈ D . We will prove that
if F 6∈ D , then we can use F to construct a non-degenerate binary function H. That is, #{=1,=2,=3

} |F ∪ {H} ≤T #{=1,=2,=3} |F . In fact, we prove a stronger statement

#{=1,=2} |F ∪ {H} ≤T #{=1,=2} |F .

This result may be of independent interest in the study of Holant problems. (The unary Equality
function (=1) = [1, 1] is just the constant 1 function, and is avaiable in all CSP problems, because for
any variable x, adding no matter how many =1 (x) constraints, the answer is unchanged.) Another
advantage of this restricted construction is that we can use the technique of a local holographic reductions
without considering its effect on =3.

As a first step, we prove

Lemma 7.2. If a function F 6∈ D , then we can use F , ∆0, ∆1 and =2 to simulate a non-degenerate
binary function H. That is, there exists a non-degenerate binary function H, such that

#{∆0,∆1,=2} |F ∪ {H} ≤T #{∆0,∆1,=2} |F .

Proof. Suppose the arity of F is k. All functions of arity 1 are in D , so k 6= 1. If k = 2, we let H = F .
Suppose k ≥ 3 and the conclusion holds for arity less than k. In the following, whenever we

constructed (simulated) a function of arity less than k, we always assume the function is in D , for
otherwise the lemma is proved by induction. We eventually will reach a contradiction.

We note that, since we can use the unary functions ∆0 and ∆1, from the given F we can construct
any F xi=c, where c = 0, 1, on k − 1 variables.

If F x1=0 is identically 0, then obviously F = ∆1 ⊗ F x1=1 ∈ D . Contradiction.
Suppose F x1=0(Y) 6= 0, for some Y = y2 · · · yk ∈ {0, 1}k−1. Let Ȳ denote ȳ2 · · · ȳk, where ȳj = 1−yj .

Let Z = z2 · · · zk be any assignment in {0, 1}k−1 such that Z 6= Y and Z 6= Ȳ . We want to show that,

either F x1=1(Z) = F x1=0(Z) = 0, or
[
F x1=0(Z) 6= 0 and

F x1=1(Y)
F x1=0(Y)

=
F x1=1(Z)
F x1=0(Z)

]
. (1)

To prove (1), w.l.o.g., since Z 6= Ȳ , we suppose y2 = z2 = c.

19

Because F x2=c ∈ D , and F x2=c(0y3 · · · yk) = F x1=0(Y) 6= 0, F x2=c has the form [1, λ]⊗[a3, b3]⊗· · ·⊗
[ak, bk]. Hence, F x1=1(Z) = λF x1=0(Z). It follows that F x1=0(Z) = 0 =⇒ F x1=1(Z) = 0. Thus, either
F x1=1(Z) = F x1=0(Z) = 0, or [F x1=0(Z) 6= 0 and F x1=1(Z)/F x1=0(Z) = λ = F x1=1(Y)/F x1=0(Y).]

Consider all Z ∈ {0, 1}k−1 such that Z 6= Y and Z 6= Ȳ . There are two cases:

1. There exists a Z0, satisfying Z0 6= Y and Z0 6= Ȳ such that F x1=0(Z0) 6= 0.

We can substitute Y by Z0 and Z0 by Ȳ in the above proof, and since Ȳ 6= Z0 and Ȳ 6= Z̄0,
(1) applies to the pair Z0 and Ȳ . Thus either F x1=1(Ȳ) = F x1=0(Ȳ) = 0, or [F x1=0(Ȳ) 6= 0
and F x1=1(Z0)/F x1=0(Z0) = F x1=1(Ȳ)/F x1=0(Ȳ).] It follows that for any W ∈ {0, 1}k−1,
F x1=1(W) = (F x1=1(Y)/F x1=0(Y))F x1=0(W), so F = [1, F x1=1(Y)/F x1=0(Y)] ⊗ F x1=0 ∈ D .
Contradiction.

2. F is zero at all points other than the following four inputs: (0Y), (1Y), (0Ȳ), (1Ȳ).

By induction F x1=0 ∈ D and therefore it has the form F x1=0 = [a2, b2]⊗ · · · ⊗ [ak, bk]. It is zero
everywhere except possibly at Y and Ȳ . If it is non-zero at both points, then F x1=0(Y)F x1=0(Ȳ) =
a2b2 · · · akbk 6= 0. This implies that F x1=0 is non-zero everywhere. Since k ≥ 3, this is impossible.
Since F x1=0(Y) 6= 0, it must be that F (0Ȳ) = 0.

Similarly, because F x1=1 ∈ D , at most one of F (1Y) and F (1Ȳ) is non-zero. If F (1Ȳ) = 0, then
F is non-zero only possibly at (0Y), (1Y). Thus F x2=ȳ2 is identically 0, and F = ∆(x2) · F x2=y2 ,
where ∆(x2) is a unary function on x2, such that it takes value 1 if input x2 = y2 and 0 otherwise.
Note that F x2=y2 ∈ D by induction, and ∆(x2) is just [0, 1] or [1, 0] on x2, it follows that F ∈ D .
Contradiction.

Hence F (1Ȳ) 6= 0. Therefore F (1Y) = 0. We conclude that F is zero everywhere except at inputs
(0Y), (1Ȳ), where it is non-zero. Now we construct H(x, y) =

∑
x2,...,xk

F (x, x2 . . . , xk)F (y, x2 . . . , xk).

Then H =
[

F 2(0Y) 0
0 F 2(1Ȳ)

]
6∈ D .

Lemma 7.2 shows that if we had available [0, 1] and [1, 0] then we can construct a non-degenerate
binary H. One way to get [0, 1] and [1, 0] is via a form of pinning lemma, which usually requires
Equality functions. However, not all Equality functions are free for #R3-CSP problems, we can
not get [0, 1] and [1, 0] by pinning lemma. The only available unary function is (=1) = [1, 1], but we
find [1, 0] is much easier to analyze than [1, 1], so we use a holographic reduction (in fact, an orthogonal
holographic reduction) to turn [1, 1] into ∆0 = [1, 0].

It is an algebraic fact that =2 is unchanged under an orthogonal holographic transformation: =2 can
also be written as a row vector [1, 0]⊗2 + [0, 1]⊗2. Then for any orthogonal matrix M , the holographic
transformation is (

[1, 0]⊗2 + [0, 1]⊗2
)
M⊗2 = ([1, 0]M)⊗2 + ([0, 1]M)⊗2 ,

which is equal to [1, 0]⊗2 + [0, 1]⊗2, as can be easily checked. (We are not claiming [1, 0]M = [1, 0] and
[0, 1]M = [1, 0], but the equality holds for the sum of the tensor products.) Thus M⊗2 turns =2 into
=2.

The following is Valiant’s Holant Theorem [19].

Theorem 7.1 (Holant Theorem). #G |F is equivalent to #G̃ | F̃ , where F̃ = {M⊗kF | F ∈
F , F has arity k} and G̃ = {F (M−1)⊗` | F ∈ G , F has arity `}, for any 2 × 2 nonsingular matrix
M .

20

We now introduce a technique of local holographic reductions. Instead of applying a holographic
reduction on the whole signature grid instance, implicitly taken as the default in Theorem 7.1, we can
apply it locally for gadgets, which realizes a non-degenerate binary function from a function not in D .
The orthogonal holographic transformation will not change the value of the whole instance. For the
local orthogonal holographic transformation, the function of gadgets will be changed according to M .
In #G |F , if we constructed a gadget to realize function H whose inputs are from functions in F , then
we call this gadget a RHS gadget, and get a reduction from #G |F ∪ {H} to #G |F .

Lemma 7.3. Let H be a function with k variables constructed by a RHS gadget in problem #G |F .
Then we can construct a function H̃ = M⊗kH if we use the same gadget in problem #G̃ | F̃ .

The proof is essentially the same proof as for Theorem 7.1.
We go back to our problem. We have some F 6∈ D . We want to prove there exists a binary function

H 6∈ D (i.e., H is non-degenerate) such that #{=1,=2} | {F, H} ≤T #{=1,=2} | {F} by constructing

a gadget to realize H. We choose M =

[
1√
2

1√
2

1√
2

− 1√
2

]
here to do a local holographic reduction, which is

an orthogonal matrix. This changes [1, 1] to [1, 0] after a scaling, and changes =2 into =2. By Lemma
7.3, if we can construct a RHS binary gadget H̃ 6∈ D in #{∆0,=2} | {F̃}, then we can construct a
RHS gadget H, where H̃ = M⊗2H in #{=1,=2} | {F}. In problem #{=1,=2} | {F}, the holographic
reduction is restricted in the gadgets realizing H.

This local holographic reduction is illustrated in the following commutative diagram.
#{=1,=2} | {F}

OO

M⊗k

²²

// HOO

M⊗2

²²

#{∆0,=2} | {F̃} // H̃
A simple observation here is

Lemma 7.4. Let M be a non-singular 2× 2 matrix, then a function F with arity k is in D iff M⊗kF
is in D .

Applying a local holographic reduction and Lemma 7.4 to the pair F, F̃ and the pair H, H̃, we
conclude that to prove there is a gadget realizing a binary function H 6∈ D in #{=1,=2} | {F}, it is
equivalent to find a gadget realizing a binary function H̃ 6∈ D in #{∆0,=2} | {F̃}. This is the following
lemma.

Lemma 7.5. If function F 6∈ D , then we can use F , [1, 0] and =2 to simulate a non-degenerate binary
function H. That is, #{∆0,=2} | {F, H} ≤T #{∆0,=2} | {F}.
Corollary 7.1. If a function F 6∈ D , then

#{=1,=2} | {F, H} ≤T {=1,=2} | {F},
for some non-degenerate binary function H.

Proof. Suppose the arity of F is k. All functions of arity 1 belong to D . Hence k ≥ 2. If k = 2, we let
H = F . Now suppose k ≥ 3 and the conclusion holds for arity less than k.

We have ∆0 = [1, 0]. This allows us to fix some inputs to the value 0. If we construct some function
not in D with arity less than k, then the proof is completed by induction; so we always assume the
function is in D .

Note that with [1, 0] we can construct F x1=0. We may therefore assume F x1=0 = [a2, b2]⊗ [a3, b3]⊗
· · · ⊗ [ak, bk] ∈ D . There are three cases:

21

1. F x1=0 is identically zero. This means that there exists some j ∈ {2, . . . , k}, such that aj = bj = 0.

If F x1=1 ∈ D , then F = [0, 1]⊗ F x1=1 ∈ D . Contradiction.

Now suppose F x1=1 6∈ D . We define the following function P (x2, . . . , xk, y2, . . . , yk) =∑
x1,y1

F (x1, . . . , xk)F (y1, . . . , yk)I2(x1, y1) = F (1, x2, . . . , xk)F (1, y2 . . . , yk). This function can
be obtained by taking two copies of F and connecting the respective two first variables x1 and y1

by =2. In fact, since F x1=0 is identically zero, P = (F x1=1)⊗2, and we can use it as two individual
functions F x1=1, on two sets of disjoint variables (x2, . . . , xk) and (y2 . . . , yk). Since F x1=1 6∈ D ,
by induction hypothesis, we have a construction for simulating a binary non-degenerate H using
F x1=1, ∆0 and =2. Take two copies of this construction, and replace each two F x1=1 functions by
one P . This realizes H⊗2. Connecting two inputs of the four inputs of H⊗2 by =2, as illustrated
in Figure 2, we get a non-degenerate function H2.

Figure 2: From H⊗2 to H2.

2. There exists some as = 0, and if as′ = 0 then bs′ 6= 0.

For all j such that aj 6= 0, fix the value of xj to be 0 (we have ∆0) and we get a function
Q of the form [0, c1] ⊗ · · · ⊗ [0, cm], where m ≥ 1 and all cj 6= 0. This is a constant multiple
of (∆1)⊗m, which allows us to effectively apply ∆1 on m separate variables at once. Take m
copies of the construction from Lemma 7.2, and then replace every m occurrence of ∆1 by the
(∆1)⊗m constructed above. We get some H⊗m, for a non-degenerate binary H. Then by the same
connection technique we can get Hm, which is also a non-degenerate binary function.

3. All aj are nonzero.

F x1=0(0, . . . , 0) =
∏k

j=2 aj 6= 0. Taking out a global constant F x1=0(0 . . . 0) from F x1=0, we can get
[1, b2/a2]⊗ [1, b3/a3]⊗· · ·⊗ [1, bk/ak]. For convenience, we denote it by [1, b2]⊗ [1, b3]⊗· · ·⊗ [1, bk].

Suppose Y = y2 · · · yk 6= 1 · · · 1. W.l.o.g. suppose y2 = 0. Because we have ∆0 we can get
F x2=0. So F x2=0 ∈ D by induction. It follows that either F x1=1(Y) = F x1=0(Y) = 0, or
[F x1=0(Y) 6= 0 and F x1=1(Y)/F x1=0(Y) = F x1=1(0 · · · 0)/F x1=0(0 · · · 0)]. For both cases,
F x1=1(Y) = (F x1=1(0 · · · 0)/F x1=0(0 · · · 0))F x1=0(Y) holds. Hence, F = [1, b1] ⊗ · · · ⊗ [1, bk] +
(0, . . . , 0, δ) for some number δ, where b1 = F x1=1(0 · · · 0)/F x1=0(0 · · · 0), and (0, . . . , 0, δ) is a
vector of length 2k which only affects the value F (1, . . . , 1). Note that δ 6= 0, for otherwise F ∈ D .

We construct a function P . Note that F x2=x3=...xk=0 = [1, b1]. Applying function [1, b1] to the
first input of F , we get a function P . More precisely, we define

P (x2, . . . , xk) =
∑
x1

[1, b1](x1) · F (x1, x2, . . . , xk).

22

If (x2, . . . , xk) 6= (1, . . . , 1),

P (x2, . . . , xk) = F (0, x2, . . . , xk) + b1F (1, x2, . . . , xk) =
∏

j:xj=1

bj + b2
1

∏

j:xj=1

bj = (1 + b2
1)

∏

j:xj=1

bj ,

and

P (1, . . . , 1) =
k∏

j=2

bj + b1(
k∏

j=1

bj + δ) = (1 + b2
1)

k∏

j=2

bj + b1δ,

so
P = (1 + b2

1)[1, b2]⊗ · · · ⊗ [1, bk] + (0, . . . , 0, b1δ).

The above process can be applied to any xi.

There are two subcases:

(a) There exists a bs ∈ {i,−i}.
W.l.o.g. assume s = 1. In this case b2

s = −1 implies that P is always 0 except on input
(1, . . . , 1), so we can use P as k − 1 copies of ∆1, and by a similar argument to the second
case, using Lemma 7.2, the conclusion holds.

(b) For all j, bj 6∈ {i,−i}.
From F , we get P . Repeat this construction from P , until only two variables are left. At
last we get a function of the form, up to a non-zero factor, Q = [1, c1]⊗ [1, c2] + (0, 0, 0, δ′) =(

1 c1

c2 c1c2 + δ′

)
for some δ′ 6= 0, which is non-degenerate.

We can prove Theorem 2.2 now.

Proof. If F 6⊆ A and F 6⊆ P, #CSP(F) is hard.
Because D ⊆ P, by Lemma 7.5, we can simulate a non-degenerate binary function H. That is, we

reduce #R3-CSP(F ∪ {H}) to #R3-CSP(F).
By Lemma 7.1, we can reduce #R3-CSP(F ∪ {=2}) to #R3-CSP(F ∪ {H}).
At last, reduce #CSP(F) to #R3-CSP(F ∪ {=2}).

23

