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Abstract

We prove a dichotomy theorem for a class of counting problems expressible by Boolean signatures.
The proof methods are holographic reductions and interpolations. We show that interpolatability
provides a universal strategy to prove #P-hardness for this class of problems. For these problems
whenever holographic reductions followed by interpolations fail to prove #P-hardness, we can show
that the problems are actually solvable in polynomial time.

1 Introduction

The study of counting problems and their classifications are a major theme in computational complexity
theory. Some counting problems are computable in P, while others appear hard. Valiant introduced
the class #P to capture most of these counting problems [17]. Some well known examples of this class
of problems are counting perfect matchings, or counting vertex covers. Over the past several years a
uniform framework to address a large class of counting problems has emerged [6, 11, 2].

Consider the problem of counting all vertex covers on a graph G = (V,E). One way to express this
problem is as follows: We will consider all 0-1 assignments σ of the vertex set V , and for every edge
(x, y) ∈ E we assign an OR function on two bits. This is represented by its truth table F = (0, 1, 1, 1),
and is called a “signature”. Then σ is a vertex cover iff

∏
(x,y)∈E F (σ(x), σ(y)) = 1, and the total

number of vertex covers is
∑

σ

∏
(x,y)∈E F (σ(x), σ(y)).

This framework can be generalized to the so-called H-colorings or H-homomorphisms [11]. Here H
is a fixed directed or undirected graph (with possible self loops) given by a Boolean adjacency matrix.
A mapping σ : V (G) → V (H) is a homomorphism iff for every edge (x, y) ∈ E(G), H(σ(x), σ(y)) = 1.
Then the quantity

∑
σ

∏
(x,y)∈E(G) H(σ(x), σ(y)) counts the number of H-homomorphisms. Vertex cover

is the special case where the two-vertex graph H = ({0, 1}, {(0, 1), (1, 0), (1, 1)}). Dichotomy theorems
for H-coloring problems with undirected graphs H and directed acyclic graphs H are given in [11] and
[10] respectively.

When it comes to matchings or perfect matchings, the more natural framework will be to consider
assignments to the edge set of G instead of the vertex set, and the “evaluation” F happens at each
vertex, which is either a Boolean OR function (for matchings) or the EXACT-ONE function (for
perfect matchings). Thus a Boolean assignment σ of E is a matching (resp. a perfect matching) iff at
every vertex v the assignment σ at the incident edges E(v) evaluates to 1 according to F , and the sum∑

σ on E

∏
v∈V F (σ |E(v)) is the total number of matchings or perfect matchings, respectively.

We remark that assigning values on edges can be viewed as a generalization of assigning values on
vertices. To see this, let’s temporarily consider the following further generalization where we assign a
value at each end of an edge e = (x, y), i.e., we assign a value σ(e, x) and σ(e, y). Then we may assign
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an “evaluation” function F at each edge as well as at each vertex. The overall evaluation is done for all
v ∈ V and all e ∈ E, and the sum over all σ of products over all v and e,

∑
σ

∏
v,e F , is then the counting

problem. In this set-up, evaluating over vertex assignments is the special case where F at each vertex is
the Equality function, and evaluating over edge assignments is the special case where F at each edge
is the Equality function. However, we claim that this further generalization can be easily simulated
by the following construction, which remains in the framework of edge assignments: Replace each edge
by a path of length two and introduce a new vertex of degree 2 in the middle. This substitution makes
G a bipartite graph, where every vertex on one side (the new vertices) has degree 2. In this paper we
will study our counting problems in the framework of edge assignments.

It turns out that studying counting problems in this framework has a close connection with
holographic algorithms and reductions. Holographic algorithms have been introduced by Valiant [19].
This beautiful theory has two main ingredients. The first is the use of matchgates to encode
computations, which allows a P-time computation over planar graphs using the FKT method [12, 13]
in terms of Pfaffians. The second ingredient is to use linear algebra to create exponential sums of
perfect matchings in a “holographic mix”, and achieve exponential cancelations in the process. In [5]
we have introduced another family of P-time computable primitives called Fibonacci gates. Holographic
transformations with Fibonacci gates also create exponential cancelations to yield P-time algorithms.

In this paper we take a broader perspective, by considering which counting problems are in P and
which are #P-complere in the framework discussed above. In order to obtain clearly stated results we
restrict our attention here to the class of 2-3 regular graphs. A 2-3 regular graph is a bipartite graph
G = (U, V,E), where deg(u) = 2 and deg(v) = 3 for all u ∈ U and v ∈ V . As indicated above, evaluating
over edge assignments for this class of graphs already encompasses all 3-regular graphs. The reason for
this restriction is that (a) in this simplest case we can already show #P-completeness, and (b) we can
exhibit a dichotomy theorem. In principle our results can be generalized to non-Boolean assignments
and signatures on arbitrary graphs. However a dichotomy theorem will be more difficult.

Our main technical contributions are as follows. Over the class of 2-3 regular graphs we will consider
each vertex u ∈ U (resp. v ∈ V ) is given a Boolean signature, [x0, x1, x2] (resp. [y0, y1, y2, y3]). This
notation (see [19]) means that at u ∈ U of degree 2, a Boolean function F takes the value x0, x1 and
x2 respectively when the Hamming weight of the Boolean assignment at its two incident edges are
0, 1 and 2 respectively. The meaning of the signature [y0, y1, y2, y3] at v ∈ V is similar. We denote
by #[x0, x1, x2]|[y0, y1, y2, y3] the counting problem over all 2-3 regular graphs using these signatures.
Our starting point is the observation that both #[0, 1, 1]|[1, 0, 0, 1] and #[1, 0, 1]|[1, 1, 0, 0] are #P-
complete. (Perceptive readers will notice that #[0, 1, 1]|[1, 0, 0, 1] is just counting vertex covers, and
#[1, 0, 1]|[1, 1, 0, 0] is counting matchings, both over 3-regular graphs [21].) To consider a general
counting problem #[x0, x1, x2]|[y0, y1, y2, y3], we apply holographic reductions to transform either the
signature [1, 0, 0, 1] or the signature [1, 1, 0, 0] to the signature [y0, y1, y2, y3]. This uses some signature
theory of holographic algorithms [3, 4]. Under this holographic reduction, the signatures [0, 1, 1] or
[1, 0, 1] respectively are transformed to some new signature [x′

0, x
′
1, x

′
2]. This transformation will be

an invertible map which shows that the counting problem #[x′
0, x

′
1, x

′
2]|[y0, y1, y2, y3] has the same

complexity as either #[0, 1, 1]|[1, 0, 0, 1] or #[1, 0, 1]|[1, 1, 0, 0], thus #P-complete.
Next we try to show that our given signature pairs [x0, x1, x2] and [y0, y1, y2, y3] can simulate

[x′
0, x

′
1, x

′
2]. To do this we develop an algebraic lemma, and apply the powerful technique of interpolation

initiated by Valiant [17]. The lemma gives a sufficient condition for this interpolation to succeed. The
proof of this lemma uses some basic Galois theory. The actual interpolation is accomplished by a couple
of versatile combinatorial gadgets. (But the theory is strong enough that the particular gadgets are
almost generic; see more discussions in the Appendix.) When this interpolation succeeds, we will have
proved that the counting problem #[x0, x1, x2] | [y0, y1, y2, y3] is #P-complete. All our hardness results
are proved by this single universal strategy.
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Along the way we will discover that for certain cases of signature pairs [x0, x1, x2] and [y0, y1, y2, y3]
this hardness proof via interpolation does not work. Then we will see that these cases are in fact
computable in P. They come in three categories: (1) They can be solved by matchgates over planar
graphs; (2) They can be solved by Fibonacci gates over general graphs; and (3) Some special cases
solvable in P for obvious reasons. This gives us a dichotomy theorem. To sum up we show that
interpolatability implies hardness. In the class of problems we considered the converse is also true,
namely failure to interpolate also implies solvability in P. It appears that there are deeper connections
between interpolatability and hardness in general. Some additional results and proofs are given in the
Appendix.

2 Definitions and Background

A signature grid Ω = (G,F) is a tuple, where G = (V,E) is a graph, and each v ∈ V (G) is assigned a
function Fv ∈ F . A Boolean assignment σ for every e ∈ E gives an evaluation

∏
v∈V Fv(σ |E(v)), where

E(v) denotes the incident edges of v. The counting problem on the instance Ω is to compute

HolantΩ =
∑

σ

∏

v∈V

Fv(σ |E(v)).

(The term Holant was first introduced by Valiant in [19] to denote a related exponential sum.) We can

view each function Fv as a truth table, and then we can represent it by a vector in F2d(v)
, or a tensor

in (F2)⊗d(v). This is called a signature.
As discussed in the previous section, many important counting problems can be viewed as computing

HolantΩ for appropriate signatures at each vertex, such as counting (perfect) matchings and counting
vertex covers. Many counting problems not directly defined in terms of graphs can also be formulated
as holant problems, e.g., the #SAT problem.

In this paper we will mainly consider symmetric signatures. A signature is called symmetric, if each
signature entry only depends on the Hamming weight of the input. The signatures we defined above for
matching or perfect matching or Boolean OR all have this property. We use a more compact notation
[f0, f1, . . . , fn] to denote a symmetric signature on n inputs, where fi is the value on inputs of weight i.

2.1 F-Gate

A signature from F at a vertex is considered a basic realizable function. Instead of a single vertex, we
can use graph fragments to generalize this notion. An F-gate Γ is a pair (H,F), where H = (V,E,D) is
a graph with some dangling edges D. (See Figure 1 for one example.) Other than these dangling edges,
an F-gate is the same as a signature grid. The role of dangling edges is similar to that of external nodes
in Valiant’s notion [18], however we allow more than one dangling edges for a node. In H = (V,E,D)
each node is assigned a function in F (we do not consider “dangling” leaf nodes at the end of a dangling
edge among these), E are the regular edges, denoted as 1, 2, . . . ,m, and D are the dangling edges,
denoted as m + 1,m + 2, . . . ,m + n. Then we can define a function for this F-gate Γ = (H,F),

Γ(y1, y2, . . . , yn) =
∑

x1x2···xm∈{0,1}m

H(x1x2 · · · xmy1y2 · · · yn),

where (y1, y2, . . . , yn) ∈ {0, 1}n denotes an assignment on the dangling edges and H(x1x2 · · · xmy1y2 · · · yn)
denotes the value of the signature grid on an assignment of all edges. We will also call this function
the signature of the F-gate Γ. An F-gate can be used in a signature grid as if it is just a single node
with the particular signature. We note that even for a very simple signature set F , the signatures for
all F-gates can be quite complicated and expressive. Matchgate signatures are an example.
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2.2 Holographic Reduction

To introduce the idea of holographic reductions, it is convenient (but not necessary) to consider bipartite
graphs. We note that this is without loss of generality. For any general graph, we can make it bipartite
by adding an additional vertex on each edge, and for each new vertex by giving it the Equality function
(1, 0, 0, 1) on 2 inputs (in symmetric notation [1, 0, 1].)

We use #G|R to denote all the counting problems, expressed as holant problems on bipartite graphs
H = (U, V,E), where each signature for a vertex in U or V is from G or R, respectively. An input
instance of the holant problem is a signature grid and is denoted as Ω = (H,G|R). Signatures in G are
called generators, which are denoted by column vectors (or contravariant tensors); signatures in R are
called recognizers, which are denoted by row vectors (or covariant tensors) [8].

One can perform (contravariant and covariant) tensor transformations on the signatures, which
may produce exponential cancelations in tensor spaces. We will define a simple version of holographic
reductions, which are invertible. Suppose #G|R and #G′|R′ are two holant problems defined for the
same family of graphs, and T = [n,p] ∈ GL2(C) is a basis. We say that there is a holographic
reduction from #G|R to #G′|R′, if the contravariant transformation G′ = T⊗gG and the covariant
transformation R = R′T⊗r map G ∈ G to G′ ∈ G′ and R ∈ R to R′ ∈ R′, where G and R have arity g
and r respectively. (Notice the reversal of directions when the transformation T⊗n is applied. This is
the meaning of contravariance and covariance.)

Theorem 2.1 (Holant Theorem). Suppose there is a holographic reduction from #G|R to #G′|R′

mapping signature grid Ω to Ω′, then

HolantΩ = HolantΩ′ .

The proof of this theorem follows from general principles of contravariant and covariant tensors [8].
In particular, for invertible holographic reductions from #G|R to #G′|R′, one problem is in P iff

the other one is, and similarly one problem is #P-complete iff the other one is also.

2.3 Related Work

Our counting problems are closely related to Constrained Satisfaction Problems (CSP). A uniform
treatment of CSP is given in [7] by Creignou, Khanna and Sudan. Many counting problems can be
formulated as #G|R. When R is fixed to be the set of Equality of all arities, #G|R are called
#Weighted CSP problems. The following table lists some known dichotomy theorems about the
complexity of some subclasses of #Weighted CSP.

Type The range The arity The number Name in Refer-
of variables of function value of functions of functions literature ence

Boolean Boolean arbitrary arbitrary #Boolean CSP [6]

any finitary Boolean two one symmetric #H-coloring [11]

any finitary non-negative rational two one symmetric partition function [2]

one unsymmetric
any finitary Boolean two acyclic #H-coloring [10]

#Weighted
Boolean non-negative rational arbitrary arbitrary Boolean CSP [9]

Obviously, #Weighted CSP generalizes both #H-colorings and #Weighted Boolean CSP, but
unfortunately, there is no dichotomy theorem. Some partial results are given in [1]. When G and
R contain some functions other than Equality, #G|R become our graph counting problems, which is
not expressible as #Weighted CSP. See [15] for some results for these problems.
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3 Interpolation Method

Polynomial interpolation is a powerful tool in the study of counting problems initiated by Valiant [17]
and further developed by Vadhan, Dyer and Greenhill [15, 11]. We discuss the interpolation method we
will use in this paper.

Let Ω = (G,F) be a signature grid. Suppose g ∈ F is a symmetric signature with arity 2, and we
denote it as [x, y, z]. Thus g(00) = x, g(01) = g(10) = y and g(11) = z. Let Vg be the subset of vertices
assigned g in Ω. Suppose |Vg| = n. Then the holant value HolantΩ can be expressed as

HolantΩ =
∑

i+j+k=n

ci,j,kx
iyjzk, (1)

where ci,j,k is the sum over all edge assignments σ, of products of evaluations at all v ∈ V (G) − Vg,
where σ satisfies the property that the number of vertices in Vg having exactly 0 or 1 or 2 incident edges
assigned 1 is i or j or k, respectively. If we can evaluate these ci,j,k, we can evaluate HolantΩ.

Now suppose {fs} is a sequence of symmetric functions of arity 2, with signatures [xs, ys, zs], for
s = 0, 1, . . .. If we replace each occurrence of g by fs in Ω we get a new signature grid Ωs with

HolantΩs
=

∑

i+j+k=n

ci,j,kx
i
sy

j
sz

k
s . (2)

Note that the same set of values ci,j,k occur. We can treat ci,j,k in (2) as a set of unknowns in a linear
system. The idea of interpolation is to find a suitable sequence {fs} such that we can evaluate HolantΩs

,
and then to find all ci,j,k by solving a linear system (2).

In this paper, the sequence {fs} will be constructed recursively using a suitable gadget. Let F ′ =
F − {g}. A sequence of F ′-gates Ns will be constructed, such that its signature is fs. Recursively
from the construction, fs will be symmetric. Let this signature be denoted by [xs, ys, zs], then the
construction will yield a linear recurrence:



xs

ys

zs


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33






xs−1

ys−1

zs−1


 . (3)

Let A denote the 3 × 3 matrix. This A will be independent of s. Suppose A has distinct eigenvalues
α, β and γ, and A = T−1diag(α, β, γ)T , where the rows of T are the row eigenvectors of A.

Let (u, v,w)T = T (x0, y0, z0)
T be the inner products of the row eigenvectors with the initial values.

Then 


xs

ys

zs


 = T−1




αs 0 0
0 βs 0
0 0 γs


 T



x0

y0

z0


 = T−1




uαs

vβs

wγs


 = T−1




u 0 0
0 v 0
0 0 w







αs

βs

γs


 .

Let B = T−1diag(u, v,w). B is non-singular iff uvw 6= 0, which we will assume in the following. It
follows that 


xs

ys

zs



⊗n

= B⊗n




αs

βs

γs



⊗n

. (4)

The rows and columns of B⊗n are indexed by t1t2 · · · tn ∈ {1, 2, 3}n. There are 3n equalities in (4).
Let κ = {1i2j3k | i + j + k = n} be the set of “types” for all t1t2 · · · tn, and |κ| =

(n+2
2

)
. Define an

equivalence relation on the indices, t1t2 · · · tn ∼ t′1t
′
2 · · · t′n if they have the same numbers of 1’s and 2’s

and 3’s. We identify the equivalence classes with κ.
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Define B̂⊗n to be the 3n×
(n+2

2

)
matrix obtained from B⊗n by adding all columns in each equivalence

class. We claim that this matrix B̂⊗n has full column rank
(n+2

2

)
. This is easy to see, since any non-

trivial linear combination of the columns of B̂⊗n can be also obtained as a non-trivial linear combination
of the columns of B⊗n, which is non-singular. The crucial point is that B̂⊗n is obtained from B⊗n by
adding all columns within each class in a disjoint partition of columns.

Next we claim that there are exactly
(
n+2

2

)
distinct rows in B̂⊗n, and if we select a set of

(
n+2

2

)

distinct representatives to form a new
(n+2

2

)
×

(n+2
2

)
matrix B̃⊗n, it is of full rank. We only need to

prove that if t1t2 · · · tn ∼ t′1t
′
2 · · · t′n then the two rows of B̂⊗n indexed by t1t2 · · · tn and t′1t

′
2 · · · t′n are the

same. Since t1t2 · · · tn ∼ t′1t
′
2 · · · t′n, there is a permutation σ such that σ maps t1t2 · · · tn to t′1t

′
2 · · · t′n =

tσ(1)tσ(2) · · · tσ(n). If we perform a simultaneous permutation of rows and columns of B⊗n by σ, the
entries (B⊗n)t1t2···tn,c1c2···cn

= Bt1,c1Bt2,c2 · · ·Btn,cn
is mapped to (B⊗n)tσ(1)tσ(2)···tσ(n),cσ(1)cσ(2)···cσ(n)

=
Btσ(1),cσ(1)

Btσ(2),cσ(2)
· · ·Btσ(n),cσ(n)

= Bt1,c1Bt2,c2 · · ·Btn,cn
. That is, a simultaneous permutation of rows

and columns of B⊗n by σ leaves it invariant. But the permutation of the columns by σ certainly induces
a permutation within each equivalence class of κ, and thus keeps its sum invariant. It follows that the

two rows of B̂⊗n indexed by t1t2 · · · tn and t′1t
′
2 · · · t′n are the same. Since B̂⊗n has full column rank(

n+2
2

)
, B̃⊗n also has full rank

(
n+2

2

)
(and exactly

(
n+2

2

)
distinct rows).

Now we return to the linear system (2), for 0 ≤ s <
(n+2

2

)
. If we consider this as a linear equation

system with unknowns ci,j,k, indexed by κ, it has a coefficient matrix which is the product of B̃⊗n with
a Vandermonde matrix V. The rows of V are indexed by κ and columns are indexed by 0 ≤ s <

(n+2
2

)
.

The entry of V at (1i2j3k, s) is (αiβjγk)s. This Vandermonde matrix will be of full rank if all entries
αiβjγk are distinct.

We summarize this as follows:

Theorem 3.1. Suppose the recurrence matrix A of the construction Ns satisfies

1. det(A) 6= 0,

2. The initial signature [x0, y0, z0] is not orthogonal to any row eigenvector of A, and

3. For all (i, j, k) ∈ Z3 − {(0, 0, 0)} with i + j + k = 0, αiβjγk 6= 1.

Then all ci,j,k in (1), where 1i2j3k ∈ κ, can be computed in polynomial time.

4 Interpolatability Implies Hardness

Definition 4.1. For n ≥ 2, a signature [x0, x1, . . . , xn] is called non-degenerate if

rank

[
x0 . . . xn−1

x1 . . . xn

]
= 2.

A signature [x0, x1, . . . , xn] is degenerate iff it is of the form [s0tn, s1tn−1, . . . , snt0], for some s and t.

Lemma 4.1. For any non-degenerate signature [y0, y1, y2, y3], there exists a symmetric signature
[x0, x1, x2] of arity two, such that #[x0, x1, x2]|[y0, y1, y2, y3] is #P-Complete. Furthermore this remains
true even for planar graphs.

Proof: Our starting point is that #[0, 1, 1]|[1, 0, 0, 1] and #[1, 0, 1]|[1, 1, 0, 0] are both #P-Complete.
The first problem is simply counting the number of vertex covers for 3-regular graphs; while the second
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is to count the number of (not necessarily perfect) matchings for 3-regular graphs [21]. We remark that
both of them remain #P-Complete even for planar graphs.

Our technique here is to use the theory of holographic reductions. Given a non-degenerate signature
[y0, y1, y2, y3], we can give a parameterization in terms of a homogeneous 2nd order recurrence relation.
There are three cases: yi = α3−i

1 αi
2 + β3−i

1 βi
2, where α1β2 −α2β1 6= 0; yi = Aiαi−1 + Bαi, where A 6= 0;

or yi = A(3 − i)α2−i + Bα3−i, where A 6= 0. The last case can be viewed as the reversal of the second
case, so we will omit the proof for this case. Note that for any non-degenerate signature one of these
parameterizations is always possible. (In the expression iαi−1, if α = 0, we take the convention that
iαi−1 = 0, 1, 0, 0 for i = 0, 1, 2, 3 respectively.)

For the first case, under the basis T =

[
α1 β1

α2 β2

]
, signature [1, 0, 0, 1] becomes [y0, y1, y2, y3]. This

is the result of the contravariant transformation (y0, y1, y1, y2, y1, y2, y2, y3)
T = T⊗3(1, 0, 0, 0, 0, 0, 0, 1)T .

Under the same basis, [0, 1, 1] undergoes the covariant transformation (x0, x1, x1, x2) = (0, 1, 1, 1)(T−1)⊗2,
to become a new symmetric signature [x0, x1, x2]. So by the holographic reduction the complexity of
#[x0, x1, x2]|[y0, y1, y2, y3] and #[0, 1, 1]|[1, 0, 0, 1] is the same. Since #[0, 1, 1]|[1, 0, 0, 1] is #P-Complete,
we know that #[x0, x1, x2]|[y0, y1, y2, y3] is also #P-Complete.

For the second case, we choose the following basis T =

[
1 B−1

3
α A + B−1

3 α

]
. Then under the

contravariant transformation (y0, y1, y1, y2, y1, y2, y2, y3)
T = T⊗3(1, 1, 1, 0, 1, 0, 0, 0)T , the signature

[1, 1, 0, 0] becomes [y0, y1, y2, y3]. Under the same basis, [1, 0, 1] undergoes the covariant transformation
(x0, x1, x1, x2) = (1, 0, 0, 1)(T−1)⊗2, to become a new symmetric signature [x0, x1, x2]. (We chose these
basis transformations not “out of blue”, but rather they are informed by an underlying signature theory
of holographic algorithms [3, 4]. But for brevity of exposition we state these transformations as is
without discussing the background. They can be directly verified, albeit a bit tedious.)

It follows from holographic reductions the complexity of #[x0, x1, x2]|[y0, y1, y2, y3] and #[1, 0, 1]|[1, 1, 0, 0]
is the same. Since #[1, 0, 1]|[1, 1, 0, 0] is #P-Complete, #[x0, x1, x2]|[y0, y1, y2, y3] is also #P-Complete.

This lemma directly gives the following theorem:

Theorem 4.1. If [y0, y1, y2, y3] is non-degenerate, and if [x0, x1, x2]|[y0, y1, y2, y3] can be used to
interpolate all symmetric signatures of arity 2, then #[x0, x1, x2]|[y0, y1, y2, y3] is #P-Complete.

This theorem gives a sufficient condition for #[x0, x1, x2]|[y0, y1, y2, y3] to be hard. In the next
section, we will prove an algebraic lemma that guarantees this interpolatability, and then in Section 6
we use this theorem to prove all the hardness results for Boolean symmetric signatures.

5 An Algebraic Lemma

Fix a signature set F . Our general recursive construction of a series of gadgets is depicted in Fig. 2.
Every gadget Ns will have arity 2. (In this paper we restrict to interpolations for signatures of arity 2.
But the general theory can be applied to arbitrary arity.) The first gadget is just a vertex with some
signature in F . The key of this construction is the F-gate A in Fig. 2 with arity 4. The specific A’s
we will use are depicted in Fig. 3 and 4. In each step, we will connect a copy of A to make a new
gadget. In order to make use of Theorem 3.1, we choose our F-gate A such that all the signatures are
symmetric. We denote by [xs, ys, zs] the signature of the s-th gadget. Then there is a linear recursive
relation in the constructed gadgets, that is, (xs, ys, zs)

T = A(xs−1, ys−1, zs−1)
T for some matrix A as in

(3). We can use the same A because the matrix is completely determined by the F-gate A.
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According to Theorem 3.1, the interpolatability of the signature requires three conditions, of which
the main condition is: For no i, j, k ∈ Z with i + j + k = 0, other than the trivial (0, 0, 0), do we have

αiβjγk = 1. (5)

This condition ensures that a Vandermonde matrix is non-singular. Let f(x) be the characteristic
polynomial of A. The following algebraic lemma gives a sufficient condition that condition (5) is
satisfied. The proof of this lemma uses some basic Galois theory. Due to space limitation, we present
its proof in the Appendix.

Lemma 5.1. Let f(x) = x3 + c2x
2 + c1x + c0 ∈ Q[x] be a given polynomial with rational coefficients.

It is decidable in polynomial time whether any non-trivial solution to (5) exists, where α, β and γ are
its roots, and if so, find all solutions (in terms of a short basis of the lattice). If f is irreducible, except
of the form x3 + c for some c ∈ Q, there are no non-trivial solutions to (5).

6 Boolean Symmetric Signatures

In this section, we give a dichotomy theorem for all counting problems of the form #[x0, x1, x2]|[y0, y1, y2, y3],
where each xi, yj ∈ {0, 1}. Such signatures are called Boolean symmetric signatures [3]. This family
of signatures is particularly important because they have clear combinatorial meanings and many
combinatorial constraints can be described by these signatures.

By flipping all 0’s and 1’s, we see that the problem #[x2, x1, x0]|[y3, y2, y1, y0] always has the same
complexity as the problem #[x0, x1, x2]|[y0, y1, y2, y3]. So we will only consider one problem for each
pair. In the following we only enumerate problems #[x0, x1, x2]|[y0, y1, y2, y3], where we let (1) x0 ≥ x2,
and (2) if x0 = x2, then y0 ≥ y3, and (3) if x0 = x2 and y0 = y3, then y1 ≥ y2. Also when we
consider a signature [y0, y1, y2, y3] we also consider its reversal, in particular in terms of expressibility
as a second order recurrence relation involving its eigenvalues. We also will only implicitly verify the
other conditions in Theorem 3.1, and not mention it explicitly, i.e., we will only focus explicitly on the
condition (5).

6.1 The Tractable Cases

First if at least one side of the signatures is degenerate, then the holant HolantΩ can be computed
in polynomial time. The degenerate Boolean signatures of arity 2 are: [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 1, 1];
and the degenerate Boolean signatures of arity 3 are: [0, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [1, 1, 1, 1]. These
problems are all trivially solvable; e.g., for #[x0, x1, x2]|[1, 1, 1, 1], the holant is completely decomposed
as a product over identical disjoint paths of length 2, i.e.,

∏
v∈V :deg(v)=3(x0 + 2x1 + x2). From now on,

we discuss non-degenerate Boolean signatures and rule out these 8 signatures.
Some holants evaluate to 0 by a cardinality argument. For example, in the counting problem

#[0, 1, 0]|[0, 1, 0, 0], signature [0, 1, 0] requires that exactly half of all edges have value 1, while the
signature [0, 1, 0, 0] requires that exactly one third of edges have value 1. This is a contradiction. So
there are no feasible solutions and the output of the counting problem is 0. These infeasible cases include
the following problems: #[0, 1, 0]|[1, 1, 0, 0], #[0, 1, 0]|[0, 1, 0, 0], #[1, 1, 0]|[0, 0, 1, 1], #[1, 1, 0]|[0, 0, 1, 0].

Similarly, the following two problems are both tractable: #[1, 0, 1]|[1, 0, 0, 1] and #[0, 1, 0]|[1, 0, 0, 1],
proved by an easy connectivity argument.

The remaining tractable cases are those which can be solved by holographic algorithms with Fi-
bonacci gates [5]. They are #[0, 1, 0]|[1, 0, 1, 0],#[1, 0, 1]|[1, 0, 1, 0], #[1, 0, 1]|[1, 1, 0, 1] and #[1, 1, 0]|[1, 1, 0, 1],
where the recurrences are fi+2 = 0 · fi+1 + fi for the first two, and fi+2 = (−1) · fi+1 + fi for the last
two. It is proved in [5] that fi+2 = m · fi+1 + fi can all be reduced by holographic reductions to the
basic Fibonacci gates fi+2 = fi+1 + fi.
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6.2 Tractable for Planar Graphs but Hard in General

This class contains 3 members: #[1, 0, 1]|[0, 1, 0, 0], #[1, 0, 1]|[0, 1, 1, 0] and #[0, 1, 0]|[0, 1, 1, 0]. The
problem #[1, 0, 1]|[0, 1, 0, 0] is counting perfect matchings in a 3-regular graph (Problem PM). The
second one, #[1, 0, 1]|[0, 1, 1, 0] is a special edge coloring problem we studied in [5]; let’s call it Problem
COLOR (this is not the usual Graph Coloring problem). The third problem #[0, 1, 0]|[0, 1, 1, 0] is an
Ising problem studied by Valiant in [19] (Problem ICE). For planar graphs, all these three problems are
polynomial time computable by holographic algorithms with matchgates.

In [5] (Theorem 7.1), we proved that #[1, 0, 1]|[0, 1, 1, 0] (Problem COLOR) is #P-complete
for general graphs. Next, to prove #[0, 1, 0]|[0, 1, 1, 0] (Problem ICE) is #P-complete we use
#[0, 1, 0]|[0, 1, 1, 0] (Problem COLOR) to interpolate all signatures of the form [a, b, a], the proof can
be found in the Appendix. Then the fact that #[1, 0, 1]|[0, 1, 1, 0] (Problem COLOR) is #P-complete
implies that #[0, 1, 0]|[0, 1, 1, 0] (Problem ICE) is #P-complete, by an adaptation of Theorem 4.1.

The #P-hardness for Problem PM is proved in [17].

6.3 The Hard Cases (Hard even for Planar Graphs)

In this section, we make use of the tools we developed in Sections 4 and Section 5 to prove hardness for
all the remaining problems.

Here we go over all cases of the form #[0, 1, 0]|[y0, y1, y2, y3] (note that there are two cases for each
listed case by symmetry). The first hard case is #[0, 1, 0]|[1, 1, 1, 0]. We will consider instead its flipped
case #[0, 1, 0]|[0, 1, 1, 1]. Over planar graphs (we are assuming planarity in this subsection) this is called
#Pl-Rtw-Opp-3CNF—Satisfiability of planar 3CNF formulae where each variable occurs twice and in
opposite signs. We note that #Pl-Rtw-Mon-3CNF [20] is #P-complete and ⊕Pl-Rtw-Mon-3CNF is
⊕P-complete, while #7Pl-Rtw-Mon-3CNF is P-time computable. Here we use Theorem 4.1 to prove
that #Pl-Rtw-Opp-3CNF is also #P-complete.

We use the gadget in Figure 3 to construct recursively an arity 2 gate Ni using the signatures
[0, 1, 0]|[0, 1, 1, 1]. This means that in the construction, every node of degree two (resp. three) is
assigned a signature [0, 1, 0] (resp. [0, 1, 1, 1]).

Obviously, the signatures [ai, bi, ci] for Ni are all symmetric. It takes some computation, but it can
be verified that the following recursive relation holds:




ai

bi

ci


 =




48 136 96
28 88 68
16 56 48






ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 184x2 + 1600x − 512. It is easy to verify that it is irreducible
over Q[x]. Then by Lemma 5.1, we know that this family of gadgets can be used for interpolation. As
a result, #[0, 1, 0]|[0, 1, 1, 1] is #P-complete.

The next hard case is #[0, 1, 0]|[1, 1, 0, 1]. This is called #Pl-Rtw-Opp-F0,1,3-SAT in the notation
of [21]. In [21], they proved that #Pl-Rtw-Mon-F0,1,3-SAT is P-time computable and if one does not
restrict the occurrence of the variables, then #Pl-Rtw-F0,1,3-SAT is #P-complete. Here we improve this
result by showing that #Pl-Rtw-Opp-F0,1,3-SAT remains #P-complete.

If we use the same gadget as above, we have the following recursive relation:


ai

bi

ci


 =




8 8 0
8 12 4
8 16 8







ai−1

bi−1

ci−1


 .

Unfortunately this matrix is singular and therefore we cannot use this recursive construction to do
interpolation.
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However we can use another gadget (Figure 4). Here again each vertex of degree 2 (resp. 3) shown
in Figure 4 is assigned a signature [0, 1, 0] (resp. [1, 1, 0, 1]).

Then we have a recursive relation:



ai

bi

ci


 =




0 2 0
1 1 1
2 2 0






ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − x2 − 4x − 4. It is easy to verify that it is irreducible over Q[x],
and by Lemma 5.1, we know that this family of gadgets can be used for interpolation. As a result,
#[0, 1, 0]|[1, 1, 0, 1] and #[0, 1, 0]|[1, 0, 1, 1] are #P-complete.

We summarize our treatment of problems of the form #[0, 1, 0]|[y0, y1, y2, y3]: The cases where
[y0, y1, y2, y3] = [0, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [1, 1, 1, 1] are trivial signatures. The pair [0, 0, 1, 0],
[0, 1, 0, 0] and the pair [0, 0, 1, 1], [1, 1, 0, 0] are both trivial by a counting argument. The pair [0, 1, 0, 1]
and [1, 0, 1, 0] are solvable in P by Fibonacci gates. The Problem ICE #[0, 1, 0]|[0, 1, 1, 0] is solvable in
P for planar graphs, but #P-complete for general graphs. The pair where [y0, y1, y2, y3] = [0, 1, 1, 1]
and [1, 1, 1, 0] are #P-complete, dealt with as #Pl-Rtw-Opp-3CNF. The case [1, 0, 0, 1] is trivial by a
connectivity argument. Finally the pair [1, 0, 1, 1] and [1, 1, 0, 1] are #P-complete, dealt with as #Pl-
Rtw-Opp-F0,1,3-SAT. This completes all 16 cases of #[0, 1, 0]|[y0, y1, y2, y3].

All hard cases of the form #[1, 0, 1]|[y0, y1, y2, y3] have been proved in [21] using a different proof.
We can reprove them in our framework to give a uniform treatment, but we omit the details here. In
the Appendix we prove all the hardness results of the form #[1, 1, 0]|[y0, y1, y2, y3].

To recap for the side [x0, x1, x2] of arity 2, the cases [0, 0, 0], [0, 0, 1], [1, 0, 0] and [1, 1, 1] are trivial.
The case [0, 1, 0] is discussed above in detail. The proof for the pair [0, 1, 1] and [1, 1, 0] is presented in
the Appendix. The case [1, 0, 1] has been done in [21].

To sum up, we have the following table (we removed entries for degenerate signatures). In the table
“T” means that it is computable in P-time by some trivial reasons; “F” means that it is computable in
P-time by holographic algorithms with Fibonacci gates; “P” means that it is computable in P-time for
planar graphs (by holographic algorithms with matchgates) but #P-complete for general graphs; and
“H” means that it is #P-complete even for planar graphs.

f2 | g3 [0, 1, 0] [1, 0, 1] [1, 1, 0]

[0, 0, 1, 0] T P T

[0, 0, 1, 1] T H T

[0, 1, 0, 0] T P H

[0, 1, 0, 1] F F H

[0, 1, 1, 0] P P H

[0, 1, 1, 1] H H H

[1, 0, 0, 1] T T H

[1, 0, 1, 0] F F H

[1, 0, 1, 1] H F H

[1, 1, 0, 0] T H H

[1, 1, 0, 1] H F F

[1, 1, 1, 0] H H H

Theorem 6.1. Every counting problem #[x0, x1, x2]|[y0, y1, y2, y3], where [x0, x1, x2] and [y0, y1, y2, y3]
are Boolean signatures, is either (a) in P; or (b) #P-complete but solvable in P for planar graphs; or
(c) #P-complete even for planar graphs. The results are summarized in the table (with some trivial
cases removed.)
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Appendix

8 More Hardness Results

In this section, we go over all the cases of the form #[1, 1, 0]|[y0, y1, y2, y3].
First we remark that it has already been noted in Section 6 that the following problems

#[1, 1, 0]|[0, 0, 1, 0] and #[1, 1, 0]|[0, 0, 1, 1] are trivial by a counting argument. Also the problem
#[1, 1, 0]|[1, 1, 0, 1] is solvable in P by Fibonacci gates.

Now we discuss hardness. All the proofs here will be given by the same proof technique, using the
two gadgets in Figures 3 and 4.

The first problem we consider is #[1, 1, 0]|[0, 1, 0, 0]. Using gadget 2 in Figures 4 we derive the
following recursive relation: 


ai

bi

ci


 =




3 4 1
1 3 1
0 2 1






ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 7x2 + 9x − 1. It is easy to verify that it is irreducible over Q[x].
Then by Lemma 5.1, we know that interpolation succeeds. Hence, #[1, 1, 0]|[0, 1, 0, 0] is #P-complete.

In the following, the reasoning in each case is identical. We will only list the problem, the gadget
used, the recursive relation from Ni−1 to Ni, and the characteristic polynomial.

Problem #[1, 1, 0]|[0, 1, 0, 1]. We use gadget 2 and get:




ai

bi

ci


 =




3 6 3
1 3 2
0 2 1






ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 7x2 + 5x + 3.
Problem #[1, 1, 0]|[0, 1, 1, 0]. We use gadget 2 and get:



ai

bi

ci


 =




5 14 8
1 6 5
0 2 3







ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 14x2 + 39x − 14.
Problem #[1, 1, 0]|[0, 1, 1, 1]. We use gadget 1 and get:




ai

bi

ci


 =




477 2120 2332
125 634 778
32 186 259






ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 1370x2 + 105835x − 352450.
Problem #[1, 1, 0]|[1, 0, 0, 1] is Matching.
Problem #[1, 1, 0]|[1, 0, 1, 0]. We use gadget 2 and get:




ai

bi

ci


 =




3 6 3
2 3 1
1 2 0






ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 6x2 − 8x − 3.
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Problem #[1, 1, 0]|[1, 0, 1, 1]. We use gadget 2 and get:




ai

bi

ci


 =




3 8 5
2 4 1
1 2 0






ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 7x2 − 11x − 2.
Problem #[1, 1, 0]|[1, 1, 0, 0]. We use gadget 2 and get:




ai

bi

ci


 =




8 6 1
5 5 1
3 4 1






ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 14x2 + 16x − 1.
Problem #[1, 1, 0]|[1, 1, 1, 0]. We use gadget 1 and get:




ai

bi

ci


 =



7191 12618 5535
3816 6723 2961
2025 3582 1584







ai−1

bi−1

ci−1


 .

The characteristic polynomial is x3 − 15498x2 + 419904x − 19683.
In all problems listed above, it is easy to verify that the characteristic polynomial is irreducible over

Q[x]. By applying Lemma 5.1, interpolation succeeds, and as a result the corresponding problem is
#P-complete.

For some of the problems listed in the table of Section 6, in order to apply Theorem 4.1 we have
to consider the reversal signatures [y3, y2, y1, y0]. For all these problems (except one) the reversal does
not change the [x0, x1, x2] side at all. But for the last problem #[1, 1, 0] | [1, 1, 1, 0] this reversal gives
#[0, 1, 1] | [0, 1, 1, 1]. However in the proof using gadget 1 for this problem, if we reverse all 0’s and 1’s
in edge assignments, we will obtain a linear recurrence for #[0, 1, 1] | [0, 1, 1, 1] with the matrix which
is the double reversal of rows and columns of the matrix for #[1, 1, 0] | [1, 1, 1, 0]. Thus it will have the
same characteristic polynomial, and the same proof works.

This completes the discussion for the problems of the form #[1, 1, 0]|[y0, y1, y2, y3].

9 The Proof of the Algebraic Lemma

We now discuss when the condition in (5) is satisfied, and give a proof of Lemma 5.1.
Let f(x) = x3 + c2x

2 + c1x + c0 ∈ Q[x] be a cubic polynomial with rational coefficients. Let α, β
and γ be its three roots, and let F = Q(α, β, γ) be the splitting field of f over Q, then F is a Galois
extension of degree [F : Q] ∈ {1, 2, 3, 6}, depending on whether f has three rational roots, or exactly
one rational root, or no rational root.

In the first case where α, β, γ ∈ Q, condition (5) is a question on the linear dependence of the
exponents of α, β, γ with respect to various prime factors. More precisely, if p1, p2, . . . , pm are all the
prime factors appearing in the numerators and denominators of α, β, γ, and we can write α, β, γ as
integer vectors in Zm, i.e., we write α as (ordp1(α), . . . , ordpm

(α)), and similarly for β and γ, where
ordpi

(α) is the exact order (possibly negative) of the prime pi which appears in α. Then the set of
integer solutions (i, j, k) to (5) is a lattice (possibly trivial, namely just (0, 0, 0)). A basis of this lattice
exists, consisting of zero or more vectors. If the prime factors pi are known, then this can be easily
computed. But even if the prime factorizations are unknown, a basis exists with absolute values of i, j, k
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at most polynomially bounded in the binary input length of α, β, γ. Thus one can directly search and
find it (either it is trivial (0, 0, 0), or a small non-trivial basis is found in polynomial time.)

Next we suppose f has exactly one rational root α and f(x) = (x − α)g(x), where g(x) ∈ Q[x] is
irreducible in Q[x]. In this case the Galois extension has degree [F : Q] = 2. If (5) holds for some
integers (i, j, k), this gives a relation βjγk ∈ Q. We first assume j 6= k. As γ is the (real or complex)
conjugate β of β, we have ββ ∈ Q. It follows that for some integer ℓ 6= 0, βℓ ∈ Q. By taking reciprocal,
clearly we can take ℓ > 0. There are two cases. (I) If β is real, then β = r + r′

√
s for some rational

r, some non-zero rational r′ and a positive square-free integer s > 1. If r = 0, then g is of the form
g(x) = x2 − c, for a positive nonsquare c, and in this case, (5) is indeed possible and we can easily find
all solutions. Suppose r 6= 0. By replacing β for β, we may assume rr′ > 0. In this case we claim βℓ

is never in Q for ℓ > 0. This is clearly seen if we collect all the terms in the expansion (r + r′
√

s)2ℓ

corresponding to an odd power of r′
√

s; it is a positive rational multiple of
√

s and thus can not be

canceled out. (II) If β is not real, then both βℓ ∈ Q and β
ℓ

= βℓ ∈ Q. This implies that (β/β)ℓ = 1
and β/β is an ℓ-th root of unity in the degree 2 extension F. Consider the minimal ℓ, we can assume
the root of unity is primitive. If ξ is a t-th primitive root of unity then the cyclotomic polynomial
Φt(x) ∈ Q[x] is irreducible and is the minimal polynomial of ξ. Then any field F which contains ξ
must have degree [F : Q] divisible by ϕ(t) = deg Φt. Since our [F : Q] = 2, from the formula of the
Euler’s totient function ϕ(t), it follows that the only possible values for ℓ are ℓ = 1, 2, 3, 4, 6. ℓ = 1 is
impossible since in that case β = γ = β, and g(x) has double roots, and therefore not irreducible. ℓ = 2
means that β = −β, and this is the case g(x) = x2 + c for a rational c > 0. In this case (5) is indeed
possible, and by a similar analysis as above we can find all the solutions in polynomial time. The case
ℓ = 4 is β = ±iγ. But by being a conjugate, β = γ, it implies that β = ±|β|(1 ± i)/

√
2. By taking the

trace, ±|β|
√

2 must be rational. It follows that β = (1 ± i)r, for some rational r. Thus g is of the form
g(x) = x2 − 2rx + 2r2. In this case (5) is possible, and all solutions can be found in polynomial time.
Next consider the case ℓ = 3. A similar analysis shows that β = ωr and γ = ωr for some rational r.
And then g takes the form g(x) = x2 + rx+ r2. Finally for the case of γ/β being a 6th primitive root of
unity, we can show by a similar analysis that g takes the form g(x) = x2 + 3rx + 3r2 for some rational
r. Again in this case, all solutions to (5) can be found in polynomial time.

Now we assume j = k in βjγk ∈ Q. As ββ is indeed rational, the solutions, if they exist, are of
the form α−2jβjγj = α−2j(ββ)j = 1. This is again a problem on the linear dependence relation on the
prime exponents, and can be similarly dealt with as before.

Lemma 9.1. If f(x) = x3 +c2x
2 +c1x+c0 ∈ Q[x] is reducible over Q[x], either (x−α)(x−β)(x−γ) or

(x−α)g(x) where g is irreducible, we can find all solutions to (5) in polynomial time. The computation,
with the following exceptions, reduces to finding a linear dependence lattice on the exponents of prime
factors of rationals. The exceptional cases are those involving roots of unity of order 3, 4 and 6, and
where g(x) takes the forms x2 + r, x2 + rx + r2, x2 + 2rx + 2r2, or x2 + 3rx + 3r2, where r ∈ Q.

Finally we come to the case where f(x) has no rational root, which is the same as f(x) is irreducible.
In this case, the Galois group is either isomorphic to Z3 or S3. In either case it is transitive.

Suppose f has three distinct real roots. In absolute values they must be distinct. Otherwise, say
|α| = |β|. As f(x) is irreducible over a field of characteristic 0, it has no multiple roots. Therefore
α = −β. But then the trace α + β + γ = γ is a rational root, contradicting f(x) being irreducible. If
αiβjγk = 1, where i + j + k = 0, and suppose one exponent is 0, say i = 0, then k = −j. Being a
non-trivial solution, k 6= 0, and β/γ is a root of unity. Being real, the only possibilities are ±1, both
contradicting f being irreducible. If no exponent is 0, then we may assume two of them are positive
and one is negative, say, αiβj = γi+j, where i, j > 0. By a transitive permutation on the three roots we
may assume in the above |α| < |β| < |γ|. This implies that |αiβj | < |γi+j |, a contradiction. Thus when
f is irreducible and it has three distinct real roots, there are no non-trivial solutions to (5).
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Lemma 9.2. Let f(x) = x3 + c2x
2 + c1x + c0 ∈ Q[x] be a cubic irreducible polynomial with

rational coefficients. If f has three distinct real roots, α, β and γ, then ∀i, j, k ∈ Z, i + j + k =
0, other than (0, 0, 0), αiβjγk 6= 1.

Lastly we consider the case where f(x) is irreducible, but it has exactly one real root (and two
complex conjugate roots.) In this case [F : Q] = 6 and the Galois group is S3. We now suppose in
this case αiβjγk = 1, and i + j + k = 0. We assume at least one pair among the exponents (i, j, k) are
distinct integers, for otherwise i = j = k = 0 is the trivial case. Let’s suppose i 6= j. Since the Galois
group in this case is S3, we can assume α is real by a permutation. Also by a permutation we have
βiαjγk = 1. This implies that the ratio β/α is a root of unity. Since f is irreducible, clearly it is not
the case that α = ±β. Thus we have a certain primitive root of unity of order at least 3 in the field F

of degree [F : Q] = 6. This leads to the following cases of possible primitive roots of order 7, 9, 14, 18 in
addition to the previous cases of 1, 2, 3, 4, 6.

We already showed that it must be at least 3. Suppose the order of β/α is 4, i.e., β/α = ±i, then,
the trace α + αi − αi = α would be rational, a contradiction. Suppose the order of β/α is 6, i.e.,

β/α = ±e2πi/6 = 1
2 ± i

√
3

2 . Again taking trace, we have a contradiction 2α ∈ Q. If a 7th primitive
root of unity belongs to F, then there is a cyclic element of the Galois group of order 6, acting on the
7th roots of unity by x 7→ x3. But clearly the Galois group Gal(F/Q) = S3 has no such element. The
situation of a 14th primitive root of unity reduces to that of a 7th primitive root of unity. Similarly, if
there is a 9th primitive root of unity belonging to F, then there is a cyclic element of the Galois group
of order 6, acting on the 9th roots of unity by x 7→ x2. Again S3 has no such element. Also the situation
of a 18th primitive root of unity reduces to that of a 9th primitive root of unity.

The only case left is that β/α is a primitive root of unity of order 3, i.e., β/α = ω or ω. In this case,
the polynomial f must be x3 + c for some c ∈ Q not a cubic power of a rational. In this case there are
indeed non-trivial solutions to (5), and again all solutions to (5) can be computed in polynomial time.
This finishes all the cases.

We note that for a given f(x) ∈ Q[x], one can decide in polynomial time, first its irreducible
factorization [14], and then find all solutions to (5) in all the cases discussed above. Thus the criterion
of (5) is effective. (In fact factorization of f in this case can be done easier than LLL, e.g., we can use
Sturm’s sequence and a sufficiently good rational approximation to find its rational roots, if any exists.)

Theorem 9.1. In all cases, we can decide in polynomial time for f(x) = x3 + c2x
2 + c1x + c0 ∈

Q[x], whether any non-trivial solutions to (5) exists, and if so, find all solutions. In particular if f is
irreducible, except of the form x3 + c for some c ∈ Q, there are no non-trivial solutions to (5).

10 Tractable Cases are not Interpolatable

Assuming that P 6= #P, then “interpolatable implies hardness” implies that “tractable cases are not
interpolatable”. However, in this section, we will unconditionally and algebraically prove that all the
known tractable cases, i.e., the degenerate cases, Fibonacci gates, and planar matchgates, indeed cannot
be used to do interpolation.

All the proofs are actually unified. Because all the signatures realizable in these tractable cases
satisfy some homogeneous identities, such as Matchgate Identities for matchgate signatures.

We will be brief here. Assume for a contradiction that signatures F1, F2, . . . , Fm can be used to
interpolate all the signatures of arity n. We assume that K is the number of the target signature
involved in the problem. Then the coefficients are exactly all the K-th homogeneous terms of the
entries of the signature Fi. Since all the signatures F1, F2, . . . , Fm are realizable, they satisfy some
homogeneous identity. We can pad it to a homogeneous identity of degree K and this is a linear
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dependence among the coefficients of the linear system. Therefore the linear system is degenerate and
can not be used to do interpolation.

11 The Proof for a Claim in Subsection 6.2

Theorem 11.1. #[0, 1, 0]|[0, 1, 1, 0] can be used to interpolate all the signatures of the form [a, b, a].

Proof: The proof technique are similar to that of section 6 and 8. We use gadget 2 for a recursive
construction. However all the signatures have the further symmetry that they have the form [a, b, a]. We
use [ai, bi, ai] to denote the signature of the i-th gadget. Then we have the following recursive relation:

[
ai

bi

]
=

[
2 2
2 3

] [
ai−1

bi−1

]
.

Then by the Lemma of Vadhan [15], we can verify that this can be used to interpolate all the signatures
of the form [a, b, a].

12 Some Remarks

We make some remarks on the proof methodology. As can be seen all the hardness results in this paper
are proved by a uniform method. The general principle is simplification using holographic reductions
followed by interpolation. The success of interpolation depends on an algebraic lemma whose proof uses
some basic Galois theory, but the actual interpolation using the lemma must be carried out by specific
gadgets, case by case.

It is these specific gadgets we wish to comment further. Somewhat unlike a typical NP-hardness
proof, here the gadgets are fairly generic, without any particular built-in design purpose. In a typical
NP-hardness proof, we usually design a particular gadget with some definite functionality built-in, e.g.,
as a truth setting component related to a SAT problem. Here there is no apparent custom designed
feature, except, since the conditions of the algebraic lemma are fairly general, one expects that a generic
gadget will work (if the underlying problem is indeed hard). Whether this is always true remains an
interesting question. In forthcoming work we will report some partial results in this direction.

There is another aspect of the proof methodology that is worth commenting. When we design a
gadget using e edges for interpolation in this framework, the theory dictates that we must compute the
transition matrix from Ns to Ns+1 for their respective signatures. The computation of this matrix is
in fact not a trivial matter, involving 2e steps in the worst case for each entry. In our proofs we simply
presented these matrices as a matter of fact, without giving any efficient way to verify these. This is
a marked departure from the practice in typical NP-hardness proofs, where we usually have a built-in
structure in the gadget which ensures that there are only a few cases to be examined, in order for us
to “understand” the gadget. Here this “understanding” comes at a cost of 2e steps of computation. If
we usually equate NP as a proof system with an efficient verification, then these interpolation proofs fit
tenuously at best. One can easily contemplate moderately sized gadgets with over 50 or 100 edges, say,
and then to verify a particular gadget works, it may require the computation of 2100 steps, far exceeding
most cryptosystems such as DES. Moreover these computations are in fact being treated as constants
when we use them to prove #P-completeness.

Suppose we arrive at a #P-hardness proof by interpolation using such a gadget, and we can’t find
a smaller gadget for this purpose. Then are we at a point where we are making a structural distinction
of P versus #P-hardness, but the only way we know how to make this distinction is to treat 2100-step
computation as a constant, and thus “trivial” according to the usual tenet of complexity theory? We
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remark that in the paper [16] by Trevisan et. al. a similar situation was discussed, where one had to
search in a huge but constant sized space for an optimal gadget.
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