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We develop the theory of holographic algorithms initiated by Leslie Valiant. First we
define a basis manifold. Then we characterize algebraic varieties of realizable symmetric
generators and recognizers on the basis manifold, and give a polynomial time decision
algorithm for the simultaneous realizability problem. These results enable one to decide
whether suitable signatures for a holographic algorithm are realizable, and if so, to
find a suitable linear basis to realize these signatures by an efficient algorithm. Using
the general machinery we are able to give unexpected holographic algorithms for some
counting problems, modulo certain Mersenne type integers. These counting problems
are #P-complete without the moduli. Going beyond symmetric signatures, we define
d-admissibility and d-realizability for general signatures, and give a characterization of
2-admissibility and some general constructions of admissible and realizable families.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

It is a testament to the enormous impact of NP-completeness theory [2,18] that the conjecture P �= NP has become a
leading hypothesis in all computer science and mathematics. We consider it a great honor and privilege to dedicate this
paper to the 2009 Kyoto Prize Laureate Prof. Richard M. Karp, a founder of this theory.

The NP-completeness theory is so well established that most computer scientists consider it a proof of computational
intractability in terms of worst-case complexity if a problem is proved to be NP-complete. Expressed in terms of complexity
classes, it has become more or less an article of faith among theoretical computer scientists that the conjecture P �= NP
holds. The theory of holographic algorithms, however, provides a cautionary coda, that our understanding of the ultimate
capability of polynomial time algorithms is far from well understood.

Certainly there are good reasons to believe the conjecture P �= NP, not the least of which is the fact that the usual algo-
rithmic paradigms seem unable to handle any of the NP-hard problems. Such statements are made credible by decades of
in-depth study of these methodologies. On the other hand, there are some “surprising” polynomial time algorithms for prob-
lems which, on appearance, would seem to require exponential time. One such example is to count the number of perfect
matchings in a planar graph (the FKT method) [19,20,25]. In [27,29] L. Valiant introduced an algorithmic design technique of
breathtaking originality, called holographic algorithms. Computation in these algorithms is expressed and interpreted through
a choice of linear basis vectors in an exponential “holographic” mix, and then it is carried out by the FKT method via the
Holant Theorem. This methodology has produced polynomial time algorithms for a variety of problems ranging from re-
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strictive versions of satisfiability, vertex cover, to other graph problems such as edge orientation and node/edge deletion. No
polynomial time algorithms were known for any of these problems, and some minor variations are known to be NP-hard.

These holographic algorithms are quite unusual compared to other kinds of algorithms (except perhaps quantum algo-
rithms). At the heart of the computation is a process of introducing and then canceling exponentially many computational
fragments. Invariably the success of this methodology on a particular problem boils down to finding a certain “exotic” object
represented by a signature.

For example, Valiant showed [30] that the restrictive SAT problem #7Pl-Rtw-Mon-3CNF (counting the number of sat-
isfying assignments of a planar read-twice monotone 3CNF formula, modulo 7) is solvable in P. The same problem
#Pl-Rtw-Mon-3CNF without mod 7 is known to be #P-complete, a result due to Xia et al. [31]; the problem mod 2, #2Pl-
Rtw-Mon-3CNF, is known to be ⊕P-complete (thus NP-hard), a result due to Valiant [30]. The surprising tractability mod 7
is due to the unexpected existence of suitable generators and recognizers over Z7.

These signatures are specified by families of algebraic equations. These families of equations are typically exponential in
size. Searching for their solutions is what Valiant called “the enumeration” of “freak objects” in his “Accidental algorithm”
paper [30].3 Dealing with such algebraic equations can be difficult due to the exponential size. So far the successes have
been an expression of artistic inspiration.

To sustain a belief in P �= NP, we must develop a systematic understanding of the capabilities of holographic algorithms.
One might take the view that the problems such as #7Pl-Rtw-Mon-3CNF that have been solved in this framework are a little
contrived. But the point is that when we surveyed potential algorithmic approaches with P vs. NP in mind, these algorithms
were not part of the repertoire. Presumably the same “intuition” for P �= NP would have applied equally to #7Pl-Rtw-Mon-
3CNF and to #2Pl-Rtw-Mon-3CNF. Thus, Valiant suggested in [29], “any proof of P �= NP may need to explain, and not only
to imply, the unsolvability” of NP-hard problems using this approach.

While finding “exotic” solutions such as the signature for #7Pl-Rtw-Mon-3CNF is inspired artistry, the situation with
ever more complicated algebraic constraints on such signatures (for other problems) can quickly overwhelm such an artistic
approach (as well as a computer search). At any rate, failure to find such solutions to a particular algebraic system yields
no proof that such solutions do not exist, and it generally does not give us any insight as to why. We need a more scientific
understanding. The aim of this paper is to build toward such an understanding.

In this paper we have achieved a complete account for all realizable symmetric signatures. Using this we can show why
the modulus 7 happens to be the modulus that works for #7Pl-Rtw-Mon-3CNF. Underlying this is the fact that 7 is 23 − 1,
and for any odd prime p, any prime factor q of the Mersenne number 2p − 1 has q ≡ ±1 mod 8, and therefore 2 is a
quadratic residue in Zq . Generalizing this, we show that #2k−1Pl-Rtw-Mon-kCNF is in P for all k � 3 (the problem is trivial
for k � 2). Furthermore, no suitable signatures exist for any modulus other than factors of 2k − 1 for this problem.

When designing a holographic algorithm for any particular problem, the essential step is to decide whether there is
a linear basis for which certain signatures of both generators and recognizers can be simultaneously realized (we give a
quick review of terminologies in Section 2. See [29,27,4,5] for more details). Frequently these signatures are symmetric
signatures. Our understanding of symmetric signatures has advanced to the point where it is possible to give a polynomial
time algorithm to decide the simultaneous realizability problem. If a matchgate has arity n, the signature has size 2n .
However for symmetric signatures we have a compact form, and the running time of the decision algorithm is polynomial
in n. With this structural understanding we can give (i) a complete account of all the previous successes of holographic
algorithms using symmetric signatures [29,5,30]; (ii) generalizations such as #2k−1Pl-Rtw-Mon-kCNF and a similar problem
for vertex cover, when this is possible; and (iii) a proof when this is not possible. We think this is an important step in our
understanding of holographic algorithms, from art to science.

In order to investigate realizability of signatures, we found it useful to introduce a basis manifold M, which is defined
to be the set of all possible bases modulo an equivalence relation. This is a useful language for the discussion of symmetric
signatures; it becomes essential for the general signatures. We define the notions of d-admissibility and d-realizability. To
be d-admissible is to have a d-dimensional solution subvariety in M, satisfying all the parity requirements. This is a part
of the requirements in order to be realizable. To be d-realizable is to have a d-dimensional solution subvariety in M for
all realizability requirements, which include the parity requirements as well as the useful Grassmann–Plücker identities [5,28],
called the matchgate identities. To have 0-realizability is a necessary condition. But to get holographic algorithms one needs
simultaneous realizability of both generators and recognizers. This is accomplished by having a non-empty intersection
of the respective subvarieties for the realizability of generators and recognizers. And this tends to be accomplished by
having d-realizability (which implies d-admissibility), for d � 1, on at least one side. Therefore it is important to investigate
d-realizability and d-admissibility for d � 1. We give a complete characterization of 2-admissibility. We also give some
non-trivial 1-admissible families, and 1- or 2-realizable families.

This paper is organized as follows. In Section 2 we give a review of terminologies. In Section 3 we define the basis
manifold M which will be used to express our results throughout. In Section 4 we describe our results on simultaneous
realizability of recognizers and generators, culminating in the polynomial time decision procedure. In Section 5 we describe

3 From [30]: “The objects enumerated are sets of polynomial systems such that the solvability of any one member would give a polynomial time algorithm
for a specific problem. . . . the situation with the P = NP question is not dissimilar to that of other unresolved enumerative conjectures in mathematics. The
possibility that accidental or freak objects in the enumeration exist cannot be discounted, if the objects in the enumeration have not been systematically
studied previously.”
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our results on #2k−1Pl-Rtw-Mon-kCNF and on vertex cover. Further illustrations of the power of the general machinery are
given in Section 6. In Section 7 we go beyond symmetric signatures, and give some general results regarding d-admissibility
and d-realizability.

2. Some background

In this section, for the convenience of readers, we review some definitions and results. More details can be found in
[27,29,28,5,4,3].

Let G = (V , E, W ) and G ′ = (V ′, E ′, W ′) be weighted undirected planar graphs, where V and V ′ are vertices, E and E ′
are edges, and W and W ′ are edge weights. A generator matchgate Γ is a tuple (G, X) where X ⊆ V is a set of external
output nodes. A recognizer matchgate Γ ′ is a tuple (G ′, Y ) where Y ⊆ V ′ is a set of external input nodes. The external nodes
are ordered counter-clock wise on the external face. Γ is called an odd (resp. even) matchgate if it has an odd (resp. even)
number of nodes.

Each matchgate is assigned a signature tensor. A generator Γ with m output nodes is assigned a contravariant tensor
G ∈ V m

0 of type
(m

0

)
, where V m

0 is the tensor space spanned by the m-fold tensor products of the standard basis b =
[b0,b1] = [( 1

0

)
,
( 0

1

)]
. The tensor G under the standard basis b has the form∑

Gi1 i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where

Gi1i2...im = PerfMatch(G − Z),

where PerfMatch(G − Z) = ∑
M

∏
(i, j)∈M wij , is a sum over all perfect matchings M in G − Z , wij is the weight of the edge

(i, j), and where Z is the subset of the output nodes of Γ having the characteristic sequence χZ = i1i2 . . . im . Similarly a
recognizer Γ ′ with m input nodes is assigned a covariant tensor R ∈ V 0

m of type
(0

m

)
. This tensor under the standard (dual)

basis b∗ has the form∑
Ri1 i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where

Ri1i2...im = PerfMatch
(
G ′ − Z

)
,

where Z is the subset of the input nodes of Γ ′ having the characteristic sequence χZ = i1i2 . . . im .
In particular, G transforms as a contravariant tensor under a basis transformation β j = ∑

i biti
j ,(

G ′) j1 j2... jm =
∑

Gi1 i2...im t̃ j1
i1

t̃ j2
i2

. . . t̃ jm
im

,

where (t̃ j
i ) is the inverse matrix of (ti

j). Similarly, R transforms as a covariant tensor, namely(
R ′)

j1 j2... jm
=

∑
Ri1i2...im ti1

j1
ti2

j2
. . . tim

jm
.

A signature is symmetric if each entry only depends on the Hamming weight of the index i1i2 . . . im . This notion is
invariant under a basis transformation. A symmetric signature is denoted by [σ0, σ1, . . . , σm], where σi denotes the value of
a signature entry whose Hamming weight of its index is i.

A matchgrid Ω = (A, B, C) is a weighted planar graph consisting of a disjoint union of: a set of g generators A =
(A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br), and a set of f connecting edges C = (C1, . . . , C f ), where each Ci edge
has weight 1 and joins an output node of a generator with an input node of a recognizer, so that every input and output
node in every constituent matchgate has exactly one such incident connecting edge.

Let G = ⊗g
i=1 G(Ai) be the tensor product of all the generator signatures, and let R = ⊗r

j=1 R(B j) be the tensor product
of all the recognizer signatures. Then Holant(Ω) is defined to be the contraction of the two product tensors, under some
basis β , where the corresponding indices match up according to the f connecting edges Ck:

Holant(Ω) = 〈R,G〉 =
∑

x∈β⊗ f

{[ ∏
1�i�g

G(Ai, x|Ai )

]
·
[ ∏

1� j�r

R
(

B j, x∗∣∣
B j

)]}
.

(If we write the tensor product for the covariant tensor R as a row vector of dimension 2 f , and write the contravariant
tensor G as a column vector of dimension 2 f , then Holant(Ω) is just the inner product of these two vectors.)
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Valiant’s beautiful Holant Theorem is

Theorem 2.1 (Valiant). For any matchgrid Ω over any basis β , let G be its underlying weighted graph, then

Holant(Ω) = PerfMatch(G).

The FKT algorithm can compute the perfect matching polynomial PerfMatch(G) for a planar graph in polynomial time.
This algorithm gives an orientation of the edges of the planar graph, which assigns a ±1 factor to each edge weight. It then
evaluates the Pfaffian of the skew-symmetric matrix of the graph.

Pfaffians satisfy the Grassmann–Plücker identities [24].

Theorem 2.2. For any n × n skew-symmetric matrix M, and any I = {i1, . . . , iK } ⊆ [n] and J = { j1, . . . , jL} ⊆ [n],
L∑

l=1

(−1)lPf( jl, i1, . . . , iK )Pf( j1, . . . , ĵl, . . . , jL) +
K∑

k=1

(−1)kPf(i1, . . . , îk, . . . , iK )Pf(ik, j1, . . . , jL) = 0,

where the notation î indicates that the entry i is omitted.

A set of the so-called useful Grassmann–Plücker identities have been proved to characterize planar matchgate signatures
[28,3,5]. These are called matchgate identities.

We state some theorems from [6], which will be used.

Theorem 2.3. A symmetric signature [x0, x1, . . . , xn] for a recognizer is realizable under the basis β = [n, p] = [( n0
n1

)
,
( p0

p1

)]
iff it takes

one of the following forms:

• Form 1: there exist (arbitrary) constants λ, s, t and ε where ε = ±1, such that for all i, 0 � i � n,

xi = λ
[
(sn0 + tn1)

n−i(sp0 + tp1)
i + ε(sn0 − tn1)

n−i(sp0 − tp1)
i]. (1)

• Form 2: there exists an (arbitrary) constant λ, such that for all i, 0 � i � n,

xi = λ
[
(n − i)n0(p1)

i(n1)
n−1−i + ip0(p1)

i−1(n1)
n−i]. (2)

• Form 3: there exists an (arbitrary) constant λ, such that for all i, 0 � i � n,

xi = λ
[
(n − i)n1(p0)

i(n0)
n−1−i + ip1(p0)

i−1(n0)
n−i]. (3)

We take the convention that α0 = 1 and 0 · α0−1 = 0.

Theorem 2.4. A symmetric signature [x0, x1, . . . , xn] for a generator is realizable under the basis β = [n, p] = [( n0
n1

)
,
( p0

p1

)]
(more

precisely in the dual basis) iff it takes one of the following forms:

• Form 1: there exist (arbitrary) constants λ, s, t and ε where ε = ±1, such that for all i, 0 � i � n,

xi = λ
[
(sp1 − tp0)

n−i(−sn1 + tn0)
i + ε(sp1 + tp0)

n−i(−sn1 − tn0)
i]. (4)

• Form 2: there exists an (arbitrary) constant λ, such that for all i, 0 � i � n,

xi = λ
[
(n − i)p1(n0)

i(−p0)
n−1−i − in1(n0)

i−1(−p0)
n−i]. (5)

• Form 3: there exists an (arbitrary) constant λ, such that for all i, 0 � i � n,

xi = λ
[−(n − i)p0(−n1)

i(p1)
n−1−i + in0(−n1)

i−1(p1)
n−i]. (6)

Theorem 2.5. A symmetric signature [x0, x1, . . . , xn] is realizable on some basis iff there exist three constants a, b, c (not all zero), such
that for all k, 0 � k � n − 2,

axk + bxk+1 + cxk+2 = 0. (7)

The following two simple lemmas are used in the proof of Lemmas 4.5 and 4.6.
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Lemma 2.1. Suppose a sequence (xi)i=0,1,...,n, where n � 3, has the following form: xi = Aαi + Bβ i (AB �= 0, α �= β), then the
representation is unique. That is, if xi = A′(α′)i + B ′(β ′)i (i = 0,1, . . . ,n, n � 3), then A′ = A, B ′ = B, α′ = α, β ′ = β or A′ = B,
B ′ = A, α′ = β , β ′ = α.

Lemma 2.2. Suppose a sequence (xi)i=0,1,...,n, where n � 3, has the following form: xi = Aiαi−1 + Bαi (A �= 0), then the representa-
tion is unique. That is, if xi = A′i(α′)i−1 + B ′(α′)i (i = 0,1, . . . ,n, n � 3), then A′ = A, B ′ = B, α′ = α.

These follow from the fact that second order homogeneous linear recurrence sequence has a unique representation.

3. The basis manifold M

In holographic algorithms, computations are expressed in terms of a set of linear basis vectors of dimension 2k , where k
is called the size of the basis. In almost all cases [29,3], the successful design of a holographic algorithm was accomplished
by a basis of size 1. In [30], initially Valiant used a basis of size 2 to show #7Pl-Rtw-Mon-3CNF ∈ P. Then it was pointed out
in [6] that even in that case the same can be done with a basis of size 1. In [8] and [9], we show that this is generally true,
i.e., higher dimensional bases do not extend the reach of holographic algorithms. Therefore, in this paper we will develop
our theory exclusively with bases of size 1; but our results are universally applicable.

We will identify the set of 2-dimensional bases
[( n0

n1

)
,
( p0

p1

)]
with GL2(F). Over the complex field F = C, it has dimen-

sion 4. However, the following simple proposition (Proposition 4.3 of [29]) shows that the essential underlying structure has
only dimension 2.

Proposition 3.1 (Valiant). (See [29].) If there is a generator (recognizer) with certain signature for size one basis {(n0,n1), (p0, p1)}
then there is a generator (recognizer) with the same signature for size one basis {(xn0, yn1), (xp0, yp1)} or {(xn1, yn0), (xp1, yp0)}
for any x, y ∈ F and xy �= 0.

This leads to the following definition of an equivalence relation:

Definition 3.1. Two bases β = [n, p] = [( n0
n1

)
,
( p0

p1

)]
and β ′ = [n′, p′] = [( n′

0

n′
1

)
,
( p′

0

p′
1

)]
are equivalent, denoted by β ∼ β ′ , iff

there exist x, y ∈ F∗ , the non-zero elements in F, such that n′
0 = xn0, p′

0 = xp0, n′
1 = yn1, p′

1 = yp1 or n′
0 = xn1, p′

0 = xp1,
n′

1 = yn0, p′
1 = yp0.

In other words, to obtain β ′ from β , viewed as a 2 × 2 matrix, we can multiply each row by a non-zero constant, or
exchange the two rows.

Theorem 3.1. GL2(F)/∼ is a 2-dimensional manifold ( for F = C or R).

We call this the basis manifold M. For F = R, it can be shown that topologically M is a Möbius strip. From now on we
identify a basis β with its equivalence class containing it. When it is permissible, we use the dehomogenized coordinates( 1 x

1 y

)
to represent a point (i.e., a basis class) in M. We will assume char.F �= 2.

4. Simultaneous realizability of symmetric signatures

In [6], we gave a complete characterization of all the realizable symmetric signatures (Theorems 2.3–2.5). These tell
us exactly what signatures can be realized over some bases. However, to construct a holographic algorithm, one needs to
realize some generators and recognizers simultaneously. In terms of M, a given generator (recognizer) defines a (possibly
empty) subvariety which consists of all the bases over which it is realizable. The simultaneous realizability is equivalent to
a non-empty intersection of these subvarieties. Thus we have to go beyond Theorems 2.3–2.5. For every signature which is
realizable according to Theorem 2.5, we need to determine the subvariety where it is realizable.

Definition 4.1. Let Brec([x0, x1, . . . , xn]) (resp. Bgen([x0, x1, . . . , xn])) be the set of all possible bases in M for which a sym-
metric signature [x0, x1, . . . , xn] for a recognizer (resp. a generator) is realizable. We also use Brec(R) and Bgen(G) to denote
the realizability subvarieties for general (unsymmetric) signatures R and G .

Since the identically zero signature is realizable in every basis, we will assume the signature is not identically zero in
the following discussion.
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4.1. Realizability of recognizers

The following lemmas give a complete and mutually exclusive list of realizable symmetric signatures for recognizers.

Lemma 4.1.

Brec
(
λ
[
an,an−1b, . . . ,bn]) =

{[(
a

n1

)
,

(
b
p1

)]
∈ M

∣∣∣ n1, p1 ∈ F
}
.

Remark. Every signature with arity 1 is trivially of this form. We will omit the scalar factor λ below as it is trivial. Since
we will exclude the identically 0 signature, a and b are not both 0.

Proof of Lemma 4.1. If n = 1, the standard signature can and can only be (λ,0) or (0, λ) (where λ is arbitrary). One entry
of the signature must be zero due to the parity requirement, as matchgates are defined in terms of perfect matchings. So
the signature over the basis

[( n0
n1

)
,
( p0

p1

)]
is (λn0, λp0) or (λn1, λp1). Since we require the signature to be (a,b), all possible

bases as expressed in M are
[( a

n1

)
,
( b

p1

)]
, taking into account the equivalence relation ∼, where n1, p1 are arbitrary, except

ap1 − bn1 �= 0.
Now we assume n > 1. First suppose this signature is expressed as Form 1 of Theorem 2.3.
In Form 1, denote by u0 = sn0 + tn1, u1 = sp0 + tp1, v0 = sn0 − tn1, and v1 = sp0 − tp1. Then up to a constant factor λ,

for each 0 � i � n, we have un−i
0 ui

1 + εvn−i
0 vi

1 = an−ibi .
We first assume u0 v0 �= 0. Then by multiplying the equations for i = 0 and i = 2, and multiplying the equation for i = 1

by itself, we get an equation on u0, u1, v0 and v1. After some simplifications we get u1/u0 = v1/v0. Denote this common
ratio by ρ .

We claim in this case a �= 0, and ρ = b/a. Assume for a contradiction that a = 0, then all entries of the signature are
0 for i = 0, . . . ,n − 1. However the entry at i = n is obtained from the entry at i = n − 1 by multiplying with the ratio ρ ,
and thus it is also 0. Then it follows that b = 0 as well, contrary to assumption. Therefore a �= 0 and b/a is defined. Now
consider the signature entry at i = 0 and i = 1. The entry at i = 0 is an �= 0, and the entry at i = 1 is obtained by multiplying
the non-zero entry at i = 0 by the ratio b/a, as well as by the common ratio ρ . It follows that ρ = b/a.

Hence bu0 = au1 and bv0 = av1. Then by the definitions of ui and v j , it follows that bsn0 = asp0 and btn1 = atp1.
Because at least one of a, b is non-zero, we claim that this implies either s = 0 or t = 0. Otherwise, st �= 0, we have
n0 p1 − n1 p0 = 0. This is impossible. So we must have s = 0 or t = 0 (and not both zero since otherwise the signature is
identically zero). Now in either cases, it is easy to verify that all the possible bases are

[( a
n1

)
,
( b

p1

)] ∈ M, taking into account
the equivalence relation ∼, where n1, p1 are arbitrary, except ap1 − bn1 �= 0.

The same conclusion holds if we assume u1 v1 �= 0. To complete the proof, assume both u0 v0 = 0 and u1 v1 = 0. By
symmetry, suppose u0 = 0 (the other cases are symmetric). In this case if u1 = 0 as well, then s = t = 0 since the deter-
minant n0 p1 − n1 p0 �= 0. Then v0 = v1 = 0 and the signature is identically zero. Hence u1 �= 0. Then v1 = 0. It follows that
the signature has the form λ[εvn

0,0, . . . ,0, un
1], where there are a non-empty segment of zeros corresponding to 0 < i < n.

These are of the form an−ibi , and thus ab = 0. But then the signature entry is zero at either i = 0 or at i = n. Since u1 �= 0,
we get v0 = 0. The statement of the lemma clearly holds when u0 = v0 = 0.

Now suppose the signature is expressed as Form 2 of Theorem 2.3. (The case with Form 3 is symmetric, exchanging
subscript 0 for 1 in the basis.)

In that expression, if n1 = 0, then a = 0 since x0 = an = nn0nn−1
1 = 0. At i = n − 1, xn−1 = n0 pn−1

1 = an−1b = 0. This gives
n0 = 0 or p1 = 0, together with n1 = 0, we get a singular basis.

So we have n1 �= 0. Then we claim a �= 0. Otherwise at i = 0, x0 = nn0nn−1
1 = an = 0, which implies that n0 = 0. At i = 1,

x1 = p0nn−1
1 = an−1b = 0, we get p0 = 0. This gives a singular basis. So a �= 0, and from the above we also get n0 �= 0. Then

up to a scalar factor an = 1, an−1b = c + ρ , and an−2b2 = 2cρ + ρ2, for c = (n1 p0 − n0 p1)n1/nn0 and ρ = p1/n1. It follows
that 2cρ +ρ2 = (c +ρ)2, which implies that c = 0. As the determinant n1 p0 −n0 p1 �= 0, and n1 �= 0, we get a contradiction.

This completes the proof. �
Definition 4.2. A symmetric signature [x0, x1, . . . , xn], where n � 2, is called non-degenerate iff rank

[ x0 ... xn−1
x1 ... xn

] = 2. Otherwise
it is degenerate.

The signature is identically 0 iff rank
[ x0 ... xn−1

x1 ... xn

] = 0. It has rank 1 iff it can be expressed as λ[an,an−1b, . . . ,bn], for λ �= 0,
and a,b not both 0. In the following we assume the signature is non-degenerate. We directly handle the case for arity n = 2
next.

Lemma 4.2.

Brec
([x0, x1, x2]

) =
{[(

n0
n1

)
,

(
p0
p1

)]
∈ M

∣∣∣ x0 p2
1 − 2x1 p1n1 + x2n2

1 = 0, x0 p2
0 − 2x1 p0n0 + x2n2

0 = 0
or x0 p0 p1 − x1(n0 p1 + n1 p0) + x2n0n1 = 0

}
.
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Proof. Under the equivalence relation, we can assume n0 p1 − n1 p0 = 1.

Then
[( n0

n1

)
,
( p0

p1

)]−1 = [( p1
−n1

)
,
( −p0

n0

)]
. So the standard signature of [x0, x1, x2] is[

x0 p2
1 − 2x1 p1n1 + x2n2

1, x0 p0 p1 − x1(n0 p1 + n1 p0) + x2n0n1, x0 p2
0 − 2x1 p0n0 + x2n2

0

]
.

The fact that the only constraint of a standard signature of arity 2 is the parity constraint completes the proof. �
In the following we assume the signature has arity n � 3, and non-degenerate. In this case, we note that the constants

a, b, c in Theorem 2.5 are unique up to a scalar factor. In fact if there are two linearly independent triples (a,b, c), then the
following matrix[ x0 x1 . . . xn−2

x1 x2 . . . xn−1
x2 x3 . . . xn

]
has rank � 1. The first row and the last row are not both zero, otherwise the signature is identically zero (by n � 3). It
follows that the matrix[

x0 x1 . . . xn−1
x1 x2 . . . xn

]
also has rank 1, hence the signature is degenerate.

Lemma 4.3. Let λ1 �= 0. Let p = char.F. Suppose p = 0, or p � n,

Brec
([0,0, . . . ,0, λ1, λ2]

) =
{[(

0
nλ1

)
,

(
1
λ2

)]}
.

For p | n and λ2 = 0, Brec([0,0, . . . ,0, λ1,0]) = {[( 0
n1

)
,
( 1

p1

)] ∈ M | n1, p1 ∈ F
}

. For p | n and λ2 �= 0, the signature [0,0, . . . ,

0, λ1, λ2] is not realizable.

Proof. Its reversal signature [λ2, λ1,0, . . . ,0] is a special case of Lemma 4.6 (with α = 0). �
Lemma 4.4. For AB �= 0,

Brec
([

A, Aα, Aα2, . . . , Aαn + B
]) =

{[(
1
1

)
,

(
α + ω
α − ω

)] ∣∣∣ ωn = ± B

A

}
.

Proof. Its reversal signature [Aαn + B, Aαn−1, . . . , Aα, A] is a spacial case of Lemma 4.5. (This proof assumes α �= 0. For
α = 0, it can be directly verified.) �

In the following we use the fact that the triple (a,b, c) in the statement of Theorem 2.5 is unique up to a scalar factor.
Also in the remaining cases we may assume c �= 0. So we have a unique characteristic equation cx2 + bx + a = 0, which has
two roots α and β . In particular Forms 1, 2 and 3 from Theorem 2.3 are mutually exclusive. If α �= β , we have the following
lemma:

Lemma 4.5. For AB �= 0 and α �= β ,

Brec
([

Aαi + Bβ i
∣∣ i = 0,1, . . . ,n

]) =
{[(

1 + ω
1 − ω

)
,

(
α + βω
α − βω

)] ∣∣∣ ωn = ± B

A

}
.

Remark. We denote 00 = 1.

Proof of Lemma 4.5. From A + B = x0, Aα + Bβ = x1, we can solve uniquely for A, B . We have AB �= 0; otherwise {xi}
has the form {an−ibi}, which has been dealt with in Lemma 4.1. Having two distinct eigenvalues α �= β , this signature
must be expressed as Form 1 of Theorem 2.3. Let u0 = sn0 + tn1, u1 = sp0 + tp1, v0 = sn0 − tn1, and v1 = sp0 − tp1. Then
Aαi + Bβ i = un−i

0 ui
1 + εvn−i

0 vi
1.

We claim u0 �= 0. Otherwise, for i = 0,1, . . . ,n − 1, the signature entry at i is εvn−i
0 vi

1. It follows that (A + B)(Aα2 +
Bβ2) = (Aα + Bβ)2, and since AB �= 0, we get α = β , a contradiction. Similarly we have v0 �= 0.

Hence we have two expressions

xi = Aαi + Bβ i = un
0

(
u1

)i

+ εvn
0

(
v1

)i

.

u0 v0
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From Lemma 2.1, we know that the representation is unique. So un
0 = A, εvn

0 = B , u1
u0

= α and v1
v0

= β (exchanging notations

A with B , and α with β if necessary). It follows that
[( 2sn0

2tn1

)
,
( 2sp0

2tp1

)] = [( u0+v0
u0−v0

)
,
( u1+v1

u1−v1

)]
. Since α �= β , we can show st �= 0,

by the same proof showing u0 �= 0 and v0 �= 0. Now let ω = v0/u0, then ωn = ±B/A, and[(
n0
n1

)
,

(
p0
p1

)]
∼

[(
2sn0
2tn1

)
,

(
2sp0
2tp1

)]
∼

[(
1 + ω
1 − ω

)
,

(
α + βω
α − βω

)]
.

This completes the proof. �
If the characteristic roots α = β , we have the following lemma:

Lemma 4.6. Let p = char.F and let A �= 0.

Case 1: p = 0 or p � n.

Brec
([

Aiαi−1 + Bαi
∣∣ i = 0,1, . . . ,n

]) =
{[(

1
B

)
,

(
α

nA + Bα

)]}
.

Case 2: p | n and x0 = 0. In this case, the signature has entries xi = Aiαi−1 , with B = 0 in the above form.

Brec
([

Aiαi−1
∣∣ i = 0,1, . . . ,n

]) =
{[(

1
n1

)
,

(
α
p1

)]
∈ M

∣∣∣ n1, p1 ∈ F
}
.

Case 3: p | n and x0 �= 0. In this case the signature [Aiαi−1 + Bαi | i = 0,1, . . . ,n] is not realizable.

Remark. If α = 0, and i = 0, we take the convention that iαi−1 = 0, and also αi = 1.

Proof of Lemma 4.6. In Case 1, from B = x0, A + Bα = x1, we can solve uniquely for A, B . We have A �= 0, so Lemma 2.2
applies. From Lemma 2.2, we know that the representation is unique. From Form 2 of Theorem 2.3 we claim n1 �= 0.
Otherwise, all signature entries xi = 0 for i = 0, . . . ,n − 2. Since n � 3, we have x0 = x1 = 0, which implies that A = 0,
contrary to assumption. In the following we assume Form 2 of Theorem 2.3, Form 3 will give an equivalent basis. Then
we have xi = i(n1 p0 − n0 p1)nn

1(
p1
n1

)i−1 + nn0nn−1
1 (

p1
n1

)i . So by uniqueness (n1 p0 − n0 p1)nn
1 = A, p1

n1
= α, nn0nn−1

1 = B . Since

n1 �= 0, under the equivalence relation, we can let n1 = 1, then we have the unique solution n0 = B/n, p1 = α, p0 = A + Bα
n .

We omit the proofs for Cases 2 and 3. �
The above list of realizable symmetric signatures for recognizers is complete and mutually exclusive. To see that, by

Theorem 2.5, we have a recurrence relation for any realizable signature. The case for any degenerate signature, including the
case n = 1, is handled in Lemma 4.1. Now assume the signature is non-degenerate. The case n = 2 is handled in Lemma 4.2.
Next we assume the signature is non-degenerate and arity n � 3. Then Theorem 2.5 provides a tuple (a,b, c) �= 0, unique up
to a non-zero constant multiple. If c �= 0 this defines a unique second order recurrence relation. If a �= 0 this defines a unique
second order recurrence relation for the reversal. (If both a = 0 and c = 0, this defines the signature [A,0, . . . ,0, B] where
AB �= 0, due to non-degeneracy. This is included in Lemma 4.4, with α = 0.) Assume c �= 0 then the recurrence relation
is second order and has eigenvalues α and β . Depending on whether it has a pair of distinct eigenvalues or a double
eigenvalue, we have Lemmas 4.5 and 4.6. The case when the recurrence relation is for the reversal signature results in the
same expression, except in the case when one of the eigenvalue is 0. And these special cases are handled in Lemmas 4.4
and 4.3 respectively.

4.2. Realizability of generators

The following lemmas give a complete and mutually exclusive list of realizable symmetric signatures for generators. They
can be proved similarly.

Lemma 4.7.

Bgen
(
λ
[
an,an−1b, . . . ,bn]) =

{[(
n0
−b

)
,

(
p0
a

)] ∣∣∣ n0, p0 ∈ F
}
.

Lemma 4.8.

Bgen
([x0, x1, x2]

) =
{[(

n0
n1

)
,

(
p0
p1

)]
∈ M

∣∣∣ x0n2
0 + 2x1n0 p0 + x2 p2

0 = 0, x0n2
1 + 2x1n1 p1 + x2 p2

1 = 0
or x0n0n1 + x1(n0 p1 + n1 p0) + x2 p0 p1 = 0

}
.



J.-Y. Cai, P. Lu / Journal of Computer and System Sciences 77 (2011) 41–61 49
Lemma 4.9. Let λ1 �= 0. Let p = char.F. Suppose p = 0, or p � n,

Bgen
([0,0, . . . ,0, λ1, λ2]

) =
{[(−λ2

1

)
,

(
nλ1

0

)]}
.

For p | n and λ2 = 0, Bgen([0,0, . . . ,0, λ1,0]) = {[( 1
n1

)
,
( 0

p1

)] ∈ M | n1, p1 ∈ F
}

. For p | n and λ2 �= 0, then [0,0, . . . ,0, λ1, λ2] is

not realizable.

Lemma 4.10. For AB �= 0,

Bgen
([

A, Aα, Aα2, . . . , Aαn + B
]) =

{[(
ω − α

−α − ω

)
,

(
1
1

)] ∣∣∣ ωn = ± B

A

}
.

Lemma 4.11. For AB �= 0 and α �= β ,

Bgen
({

Aαi + Bβ i
∣∣ i = 0,1, . . . ,n

}) =
{[(

βω − α
−α − βω

)
,

(
1 − ω
1 + ω

)] ∣∣∣ ωn = ± B

A

}
.

Lemma 4.12. Let p = char.F and let A �= 0.

Case 1: p = 0 or p � n.

Bgen
({

Aiαi−1 + Bαi
∣∣ i = 0,1, . . . ,n

}) =
{[(

nA + Bα
−α

)
,

(−B
1

)]}
.

Case 2: p | n and x0 = 0. In this case, the signature has entries xi = Aiαi−1 , with B = 0 in the above form:

Bgen
([

Aiαi−1
∣∣ i = 0,1, . . . ,n

]) =
{[(−α

n1

)
,

(
1
p1

)]
∈ M

∣∣∣ n1, p1 ∈ F
}
.

Case 3: p | n and x0 �= 0. In this case the signature [Aiαi−1 + Bαi | i = 0,1, . . . ,n] is not realizable.

4.3. Simultaneous realizability

Definition 4.3. The Simultaneous Realizability Problem (SRP):
Input: A set of symmetric signatures for generators and/or recognizers.
Output: A common basis of these signatures if any exists; “NO” if they are not simultaneously realizable.

Algorithm.

For every signature [x0, x1, . . . xn], check if it satisfies Theorem 2.5.
If not, output “NO” and halt.
Otherwise find Bgen([x0, x1, . . . xn]) or Brec([x0, x1, . . . xn]) according to one of the lemmas.
Check if these subvarieties have a non-empty intersection.

Theorem 4.1. This is a polynomial time algorithm for SRP. (If p = char.F is a large prime and is considered part of the input, i.e., input
size includes log p, then the problem is in RP.)

Proof. Checking whether every input signature satisfies Theorem 2.5 can obviously be done in polynomial time. To find the
right form and then the right lemma for a signature which satisfies Theorem 2.5 can also be done in polynomial time as
they are mutually exclusive.

Every subvariety of bases from Lemmas 4.1 to 4.6 and from Lemmas 4.7 to 4.12 is of one of three kinds: a finite set
of points (of linear size), a line or a quadratic curve. More precisely, consider recognizers; the situation for generators is
similar. Expressing things in terms of the manifold M shows that: For Lemma 4.1 we get a line with x = const. (in the
notation defining M). For Lemma 4.2 we get a union of two sets. The first is finite, where both x and y satisfy a quadratic
polynomial (and by projective closure). Therefore there are at most 4 points in M. The second set is defined by an equation
of the form Axy + B(x + y) + C = 0 (and by projective closure), where A, B , C are known constants. Note that if we had
two sets of this type (from Lemma 4.2 and/or Lemma 4.8) we can eliminate A and get a linear equation. (Solving quadratic
equations over large finite field may require randomized polynomial time.)

For Lemma 4.3 we have either a single point for p | n or a line “at infinity”. Lemma 4.6 is similar, where we have either
a point or a line x = const. For Lemma 4.4, we get at most n points from the equation ωn = const. If we are in C (more
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precisely in Q or an algebraic extension field of Q) then the computation is clearly in P. For fields of finite characteristic,
since n is given in unary, the computation is in P, provided p is fixed (or at most O (log n)). For large p (the field size is
exponential in n), this can be done in RP (i.e., in randomized polynomial time). We need to be able to solve equations such
as Xn = const. These can be done in randomized polynomial time; see [1] for more details. �
5. Some not-so-accidental algorithms

In [30], Valiant gave polynomial time algorithms for #7Pl-Rtw-Mon-3CNF and #7Pl-3/2Bip-VC, and he called them
“accidental algorithms”. In this section, we show how such algorithms can be developed almost “mechanically”. This ap-
proach has the advantage that one gains more understanding of what can or cannot be accomplished. With this machinery
we are able to generalize his result to Pl-Rtw-Mon-kCNF and Pl-k/2Bip-VC, for a general k. We show that there is a unique
modulus 2k − 1 for which we can design such a holographic algorithm which counts the number of solutions. In the case
of k = 3, this shows why 7 is special.

5.1. #2k−1Pl-Rtw-Mon-kCNF

For #Pl-Rtw-Mon-kCNF, we are given a planar formula [16] in kCNF form, where each variable appears positively, and
each appears in exactly 2 clauses. The problem is to count the number of satisfying assignments. As noted earlier, this
counting problem is #P-complete already for k = 3.

To solve the problem by a holographic algorithm, we wish to replace each variable by a generator with the signature
[1,0,1], and each clause by a recognizer with the signature [0,1,1, . . . ,1] (with k 1’s). The symmetric signature [1,0,1]
corresponds to a consistent truth assignment on two edges leading to clauses (i.e. the equality function =2 on two Boolean
inputs), and [0,1,1, . . . ,1] corresponds to a Boolean OR function for the clause. If we connect the generators and recognizers
in a natural way, by the Holant Theorem [29] this would solve #Pl-Rtw-Mon-kCNF in polynomial time (if the signatures are
realizable over Q).

Then the question boils down to whether there is a basis in M where [1,0,1] for a generator and [0,1,1, . . . ,1]
(with k 1’s) for a recognizer can be simultaneously realized. For this, we use our machinery.

From Lemma 4.5, with A = 1, B = −1, α = 1, β = 0, we have

Brec
([0,1,1, . . . ,1]) =

{[(
1 + ω
1 − ω

)
,

(
1
1

)] ∣∣∣ ωk = ±1

}
.

We look for some ωk = ±1, such that
[( 1+ω

1−ω

)
,
( 1

1

)] ∈ Bgen([1,0,1]).

According to Lemma 4.8, we want (1 + ω)2 + 1 = (1 − ω)2 + 1 = 0 or (1 + ω)(1 − ω) + 1 = 0.
The first case is impossible, and in the second case we require ω2 = 2. Together with the condition ωk = ±1, we have

2k − 1 = 0. From this we can already see that for every prime p | 2k − 1, #pPl-Rtw-Mon-kCNF is computable in polynomial
time. In particular this is true for every Mersenne prime 2q − 1. (Note that ω2 = 2 means that 2 is a quadratic residue.)
More generally we have:

Theorem 5.1. There is a polynomial time algorithm for #2k−1Pl-Rtw-Mon-kCNF. Furthermore, any modulus m for which the appropri-

ate signatures exist must be a divisor of 2k − 1.

Proof. Our discussion above already shows that the modulus 2k − 1 is the best we can do. (Formally speaking we should
present a generalization of the Holant Theorem [29] over a ring such as Z2k−1, which we will omit here.) We now give the
polynomial algorithms in two cases:

Case 1. k is even.

Over the complex numbers C, from Lemmas 4.8 and 4.4, we can see that a generator for [1,0,1] and a recognizer for

[1 + ε2k/2,1,1, . . . ,1] (where there are k 1’s, and ε = ±1) are simultaneously realizable in the basis β = [( 1+√
2

1−√
2

)
,
( 1

1

)]
.

Setting ε = 1 and replacing each variable by a generator and each clause by a recognizer with the corresponding signa-
tures, we obtain a matchgrid Ω with the underlying weighted planar graph G . Then the Holant Theorem [29] tells us

Holant(Ω) = PerfMatch(G). (8)

We will denote this value by X .
From the left-hand side of (8) we know that X is an integer because every entry in the signatures of generators and

recognizers is an integer. Furthermore we have

X ≡ #Pl-Rtw-Mon-kCNF
(
mod 1 + 2k/2).
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From the right-hand side of (8) we know that X can be computed in polynomial time using the FKT algorithm for perfect
matchings of a planar graph. The planar graph has weights from the subfield Q(

√
2) ⊂ C, which poses no problem to the

Pfaffian evaluation of FKT in polynomial time.
Therefore #2k/2+1Pl-Rtw-Mon-kCNF can be computed in polynomial time. Similarly, setting ε = −1, we can compute

#2k/2−1Pl-Rtw-Mon-kCNF in polynomial time.
Since (2k/2 + 1,2k/2 − 1) = 1 and 2k − 1 = (2k/2 + 1)(2k/2 − 1), we can apply Chinese remaindering to get a polynomial

time algorithm for #2k−1Pl-Rtw-Mon-kCNF.

Case 2. k is odd.

Consider the ring Z2k−1. (Formally we could develop the theory over such a ring, and consider invertible elements
and matrices for the basis manifold. But we will omit this formality; everything we need can be easily done by a slight
modification of the proofs given before.) Let r = 2(k+1)/2 ∈ Z2k−1. Then r satisfies r2 = 2 in Z2k−1. We denote this r by

√
2.

Then 1 − (
√

2)k = 1 − (2k)(k+1)/2 = 0 in Z2k−1.

Therefore over this ring Z2k−1 and with the basis β = [( 1+√
2

1−√
2

)
,
( 1

1

)] = [( 1+2(k+1)/2

1−2(k+1)/2

)
,
( 1

1

)]
, we have a generator for [1,0,1]

and a recognizer for [0,1,1, . . . ,1] (with k 1’s) according to Lemmas 4.8 and 4.4. As a result, we have a polynomial time
algorithm for #2k−1Pl-Rtw-Mon-kCNF. (It is in this case where k is odd, we need 2 as a quadratic residue in Zp for primes
p | 2k − 1, as discussed in Section 1.) �
5.2. #2k−1Pl-k/2Bip-VC

In this problem, we are given a planar bipartite graph with left degree k and right degree 2. These are called regular
(k,2)-bipartite graphs. We wish to count the number of vertex covers mod 2k − 1. The counting problem for this class of
graphs mod 2 is ⊕P-complete and thus NP-hard [30]. Consider an arbitrary subset S of vertices from the right. Every vertex
v on the left either has all its k adjacent vertices in S , in which case there are exactly two choices to extend at v to a
vertex cover, or has some of its k adjacent vertices not in S , in which case there is exactly one choice to extend at v to a
vertex cover. Thus, following the general recipe for holographic algorithms, we want to construct a generator with signature
[1,0,1] and a recognizer with signature [2,1,1, . . . ,1] (with k 1’s), to be simultaneously realized over some basis.

From Lemma 4.5, where A = 1, B = 1, α = 1, β = 0, we have:

Brec
([2,1,1, . . . ,1]) =

{[(
1 + ω
1 − ω

)
,

(
1
1

)] ∣∣∣ ωk = ±1

}
.

We realize that this set is exactly the same as Brec([0,1,1, . . . ,1]). Then the proof in Section 5.1 gives us:

Theorem 5.2. There is a polynomial time algorithm for #2k−1Pl-k/2Bip-VC. Furthermore, any modulus m for which the appropriate

signatures exist must be a divisor of 2k − 1.

Our general machinery not only can find the required signatures when they exist, but also can prove certain desired
signatures do not exist or cannot be simultaneously realized. As an example, one may wish to extend the previous two
problems to allow more than Read-twice as in #Pl-Rl-Mon-kCNF, where l > 2. This calls for a simultaneous realizability of
[1,0,0, . . . ,0,1] (where there are (l − 1) 0’s) and [0,1,1, . . . ,1] (where there are k 1’s). This can be shown to result in an
empty intersection on M.

5.3. An edge-vertex cover problem

Another way to think of a regular (k,2)-bipartite graph is to identify every degree 2 vertex on the right together with
its two incident edges as a new edge. Then we obtain precisely the class of k-regular graphs. We say a subset of edges and
vertices is an edge-vertex cover if every vertex is either in the subset or all of its k incident edges are in the subset. We
consider the following edge-vertex cover problem #2k−1Pl-k-Reg-EVC: Given a planar k-regular graph G , count the number
of edge-vertex covers of G mod 2k − 1.

It is clear that this problem is really the same problem as the one in Section 5.2 and thus the same algorithm also gives
a polynomial time algorithm for this problem.

Theorem 5.3. There is a polynomial time algorithm for #2k−1Pl-k-Reg-EVC. Furthermore, any modulus m for which the appropriate

signatures exist must be a divisor of 2k − 1.
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5.4. A problem from neural networks

Consider the following planar two-level neural network N: The input nodes are Boolean variables x1, . . . , xn . Each xi has
fan-out 2. The intermediate level nodes v all have fan-in k from the xi ’s. The output of v feeds into the top node and can
have c + 1 different values 0,1, . . . , c. If all k inputs of v are 0 then the output of v is 0 (unexcited state). Otherwise, the
output of v can be any of the c + 1 values (excited state). The problem is to count the total number of output (firing)
patterns as received at the top node. (In the following, for simplicity we state the result for an odd c. We have a parallel
set of results for c even, but the statement has some number theoretic complications.)

#2k−c2 NNk/c-Firing-Pattern.
Input: A two-level neural network with parameters k and c as above.
Output: The number mod (2k − c2) of all possible firing patterns.

First we suppose k is even. Then we do it over C by taking ω = √
2. We can use the same basis in Section 5.1 to realize

the signature [1 + 2k/2,1,1, . . . ,1] (with k 1’s) for a recognizer and the signature [1,0,1] for a generator simultaneously.
This is verified by ω2 = 2 and ωk = 2k/2.

Let X be the value of the Holant. With mod 2k/2 − c, the recognizer signature is the same as [1 + c,1,1, . . . ,1]. Thus

X ≡ #NNk/c-Firing-Pattern
(
mod 2k/2 − c

)
.

Similarly we can also achieve the signature [1 − 2k/2,1,1, . . . ,1] (with k 1’s) for a recognizer and the signature [1,0,1]
for a generator simultaneously. This is verified by ω2 = 2 and ωk = −(−2k/2). This recognizer signature is congruent to
[1 + c,1,1, . . . ,1] mod 2k/2 + c. Thus we can compute in polynomial time some value X ′ for a Holant, where

X ′ ≡ #NNk/c-Firing-Pattern
(
mod 2k/2 + c

)
.

Then by Chinese remaindering, we can compute the value #NNk/c-Firing-Pattern modulo the l.c.m. of 2k/2 − c and 2k/2 + c.
Since c is odd, this is 2k − c2.

Now we suppose k is odd. As c is relatively prime to N = 2k − c2, there exists a c′ such that cc′ ≡ 1 mod N . Take
ω = 2(k+1)/2c′ . Then ω2 = 2k+1c′2 ≡ 2 mod N . Also ωk = (2k)(k+1)/2c′k ≡ ck+1c′k ≡ c mod N . Thus we can construct [1 +
c,1,1, . . . ,1] (with k 1’s) for a recognizer and the signature [1,0,1] for a generator simultaneously in the ring ZN directly.

6. Some more examples

In [29] Valiant gave a list of combinatorial problems all of which can be solved by holographic algorithms. In each case,
a “magic” design of matchgates and signatures were presented to derive the algorithm. With our machinery, we can show
all these problems can be systematically derived. In particular, we will see how the two mysterious bases b1 and b2 show
up naturally. The framework here can handle all the problems from [29]. (But for PL-FO-2-COLOR, which uses a basis of
three vectors, it is more naturally dealt with in the context of more general bases.)

6.1. Not-All-Equal gate

In [29], four problems employ the NAE (Not-All-Equal) gate [0,1,1,0]. They are #PL-3-NAE-SAT, #PL-3-NAE-ICE, #PL-3-
(1,1)-CYCLECHAIN and PL-NODE-BIPARTITION (this last one uses a generator with signature [x,1,1, x]).

Notice that they have a common restriction of “maximum degree 3”. This is necessary because if k > 3, then
[0,1,1, . . . ,1,0] ((k − 1) 1’s) is not realizable. This is a result of [5], but it’s easy to see now.

For the case of degree 3, by Lemma 4.5, taking α, β to be the two roots of x2 − x + 1 = 0 and A/B = −1, we have
Brec([0,1,1,0]) = {[( 1+ω

1−ω

)
,
( α+βω

α−βω

)] | ω3 = ±1
}

.

Noticing that α3 = −1 and αβ = 1, letting ω = α, we have (using ∼ on M)[(
1 + ω
1 − ω

)
,

(
α + βω
α − βω

)]
=

[(
1 + α
1 − α

)
,

(
α + βα
α − βα

)]
=

[(
1
1

)
,

(
1

−1

)]
.

This is b2 in [29]. Actually for each of the four problems, in order to intersect with the subvarieties of other generators
and recognizers, this is the only choice. We omit the details.

6.2. #k+12/k-X-Matchings

Input: A planar bipartite graph G = (V 1, V 2, E). Nodes in V 1 and V 2 have degrees 2 and k respectively.
Output: The number mod (k + 1) of all (not necessarily perfect) matchings.
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This problem is a slight variation on #X-Matchings from [29], which has general weights on edges and uses an unsym-
metric signature. (We will discuss unsymmetric signatures in Section 7.) The case k = 4 was explicitly stated in [29], but the
proof there clearly also handles general k. Jerrum [17] showed that counting matchings for planar graphs is #P-complete.
Vadhan [26] showed that this remains #P-complete for planar bipartite graphs of degree 6.

For this problem we are looking for a generator with signature [1,1,0] and a recognizer with signature [1,1,0, . . . ,0]
((k − 1) 0’s) simultaneously. From Lemma 4.6, with A = B = 1, α = 0, we have: Brec([1,1,0, . . . ,0]) = {[( 1

1

)
,
( 0

k

)]}
. We hope

that
[( 1

1

)
,
( 0

k

)] ∈ Bgen([1,1,0]).
From Lemma 4.8, we must have k + 1 = 0. So we can only work inside the ring Zk+1.

Remark. In Zk+1, this basis
[( 1

1

)
,
( 0

k

)]
in M under the equivalence relation ∼ is exactly b1 in [29].

Theorem 6.1. There is a polynomial time algorithms for #k+12/k-X-Matchings. Any modulus m for which the appropriate signatures
exist must be a divisor of k + 1.

6.3. ⊕PL-EVEN-LIN2

In this problem, we wish to construct generators for [1, x,1], [x,1, x], [1,0,1], [0,1,0], [1,0,0, . . . ,0,1] and recognizers
for [1,0,−1,0,1], [0,1,0,−1,0], [1,0,1], [0,1,0].

By Lemma 4.5, for A = B = 1/2, α = i, β = −i (here i = √−1), we have

Brec
([1,0,−1,0,1]) =

{[(
1 + ω
1 − ω

)
,

(
i − iω
i + iω

)] ∣∣∣ ω4 = ±1

}
.

We hope that
[( 1+ω

1−ω

)
,
( i−iω

i+iω

)]
is also a basis for the recognizer [0,1,0].

By Lemma 4.2, we require that (1 + ω)(i + iω) + (1 − ω)(i − iω) = 0. That is, ω = i, and[(
1 + ω
1 − ω

)
,

(
i − iω
i + iω

)]
=

[(
1 + i
1 − i

)
,

(
i + 1
i − 1

)]
=

[(
1
1

)
,

(
1

−1

)]
.

We can easily verify that this is also a basis for the other recognizers and generators and we remark that this basis is
precisely b2 in [29]. One can also prove 2 is the only modulus for this problem.

7. Beyond symmetric signatures

The theory of symmetric signatures has been satisfactorily developed. Symmetric signatures are particularly useful be-
cause they have clear combinatorial meanings. However general (i.e. unsymmetric) signatures have also been used before.
To understand completely the power of holographic algorithms, we must study unsymmetric signatures as well. (In the
following, we discuss generators only; the situation for recognizers is similar.)

Following the framework in [4], a generator is a contravariant tensor of the form G = (gi1 i2...in ) where the index
i1i2 . . . in ∈ {0,1}n . We also denote G = (g S) where S ⊆ [n], and g S = gχS (1)χS (2)...χS (n) . A generator signature G is realiz-
able on a basis β iff the standard signature G ′ = β⊗nG can be realized by some planar matchgate. There are two conditions
for a standard signature (g′S) to be realizable:

Parity constraints: Either g′S = 0 for all |S| even, or g′S = 0 for all |S| odd.
Matchgate identities: G ′ satisfies all the useful Grassmann–Plücker identities.

Definition 7.1. A tensor G is admissible as a generator on a basis β iff G ′ = β⊗nG satisfies the parity constraints. Let B p
gen(G)

denote the subset of M for which G is admissible as a generator.

By definition we have Bgen(G) ⊆ B p
gen(G) for all G .

For symmetric signatures, we already observed that there are some different levels of realizability. Some signatures are
realizable on isolated points, while others are realizable on lines or curves. Any success of getting a holographic algorithm
typically results from either a generator or a recognizer having more than isolated points of realizability. In terms of M,
this refers to the dimension of the subvariety Bgen(G) (and the corresponding subvarieties for recognizers). More precisely,

Definition 7.2. A generator G is called d-realizable (resp. d-admissible) for an integer d � 0 iff Bgen(G) ⊆ M (resp. B p
gen(G) ⊆

M) is a (non-empty) algebraic subset of dimension at least d.

By definition, if a generator G is d-realizable, then it is d-admissible.
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Remark. Since M has dimension two, 2-realizability is universal realizability which means that G is realizable on any basis.
This is because the conditions defining realizability are polynomial equations (with coefficients from (g S), and variables
on M). If there is at least one polynomial which is not identically 0, the algebraic set has dimension � 1. Using any
2-realizable signature is a freebie in the design of holographic algorithms; it places no restriction on the rest of the design.
Therefore they are particularly desirable.

7.1. Characterization of 2-admissibility

The following theorem is a complete characterization of 2-admissibility over fields of characteristic 0. It uses rank esti-
mates related to the Kneser Graph KG2k+1,k [21–23,12–15].

Theorem 7.1. G is 2-admissible iff (1) n = 2k is even; (2) all g S = 0 except for |S| = k; and (3) for all T ⊆ [n] with |T | = k + 1,∑
S⊂T , |S|=k

g S = 0. (9)

The solution space is a linear subspace of dimension 1
k+1

(2k
k

)
(the Catalan number).

Consider all subsets of [n] of a certain cardinality. Let 0 � k � � � n, and let Ak,�,n denote the
(n

k

) × (n
�

)
Boolean matrix

indexed by (A, B), where A, B ⊆ [n] and |A| = k, |B| = �, and the entry at (A, B) is χ[A⊆B] , i.e., it is 1 if A ⊆ B and 0
otherwise. It is known that over the rationals Q , the rank rk(Ak,�,n) = min{(n

k

)
,
(n
�

)} [12–15]. We will not deal with finite
characteristics here. The situation with finite characteristic p is interesting and is more involved. For example, Linial and
Rothschild [15] proved exact rank formula for characteristic 2 and 3. The rank “defect” compared to the characteristic 0 case
provides more admissible signatures. This will be discussed in future work.

We restate the definition of d-admissibility in more detail.

Definition 7.3. G = (g S)S⊆[n] is called d-admissible if the following algebraic variety V has dimension at least d, where
V = V 0 ∪ V 1 ⊆ M, and V 0 (resp. V 1) is defined by the set of all parity requirements for the generator signature of an odd
(resp. even) matchgate.

More precisely, consider V 0. We take a point (in dehomogenized coordinates)
( 1 x

1 y

) ∈ M. We also denote x0 = x, x1 = y.
Let T ⊆ [n] with |T | even. Then we require〈

n⊗
σ=1

[1, x[σ∈T ]], G

〉
= 0.

Note that the left-hand side is precise the entry of the standard signature indexed at T , under the (contravariant) basis
transformation. Similarly we define V 1, where the equations are over all T with an odd cardinality.

We note that〈
n⊗

σ=1

[1, x[σ∈T ]], G

〉
=

∑
0�i�n−|T |

0� j�|T |

xi y j
∑

A⊆T c , |A|=i
B⊆T , |B|= j

g A∪B . (10)

If dim(V ) = 2, then either dim(V 0) = 2 or dim(V 1) = 2. For dim(V 0) = 2, we have the following: For all T ⊆ [n] with |T |
even, and for all 0 � i � n − |T | and 0 � j � |T |,∑

A⊆T c , B⊆T , |A|=i, |B|= j

g A∪B = 0. (11)

(If there is one equation not satisfied, then there is at least one non-trivial polynomial among the parity requirements,
which implies dim(V 0) � 1.) For dim(V 1) = 2, the above holds for all |T | odd. Continuing with dim(V 0) = 2, by taking i = 0,
we get for all T ⊆ [n] with |T | even, and j � |T |,∑

S⊆T ,|S|= j

g S = 0. (12)

Also by taking j = 0, we get for all i � n − |T |,∑
c

g S = 0.
S⊆T , |S|=i
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If S ⊆ [n] with |S| even, then we may take T = S and j = |T |, and it follows that

g S = 0.

If n is odd, then T is even and T c is odd, and together they range over all possible subsets of [n]. It follows that

g S = 0,

for all S ⊆ [n]. That is, G is trivial.
An identical argument also shows that for n odd and dim(V 1) = 2, the trivial G ≡ 0 is the only possibility.
Now we assume n = 2k is even, and continuing with dim(V 0) = 2. Both T and T c are even. Pick any T even and

i = n − |T |, we get∑
A⊆T c , B⊆T , |A|=i, |B|= j

g A∪B =
∑

S⊇T c, |S|=i+ j

g S = 0,

i.e. for all even T ′ ⊆ [n] and all i � |T ′|,∑
S⊇T ′, |S|=i

g S = 0. (13)

If |S| = i < k, we form the following system of equations from (12),∑
S⊆T , |S|=i

g S = 0,

where T ranges over all subsets of [n] with |T | = t , and t = i or i + 1, whichever is even. This linear system has rank
(n

i

)
. It

follows that g S = 0 for all |S| < k.
Similarly if |S| = i > k, we can use (13) with |T | = i or i − 1, whichever is even, and summing over all subsets S

containing T . This linear system also has rank
(n

i

)
. It follows that g S = 0 for all |S| > k.

Therefore the only non-zero entries of G are among g S with half weight |S| = k. Also with dim(V 0) = 2, we may assume
k is odd. Otherwise, we already know g S = 0 for all |S| even.

A similar argument for V 1 shows that, in order for dim(V 1) = 2, we must have n = 2k even, all g S = 0 except for |S| = k
and k is even.

Summarizing, we have

Lemma 7.1. If G is 2-admissible, then n = 2k is even, all g S = 0 except for |S| = k. If k is odd (resp. even) then the only possibility is
dim(V 0) = 2 (resp. dim(V 1) = 2). Moreover, for all T ⊆ [n] with |T | = k + 1,∑

S⊆T , |S|=k

g S = 0. (14)

Next we prove that the conditions in Lemma 7.1 are also sufficient for G being 2-admissible, i.e., we prove (11), thus all
the polynomials in (10) are identically zero.

Suppose k odd. We prove dim(V 0) = 2. A similar argument does for k even and dim(V 1) = 2. We only need to verify
(11) for all i + j = k, namely for all T ⊆ [n] with |T | even, and for all 0 � i � n − |T |, and 0 � j = k − i � |T |,∑

A⊆T c , B⊆T , |A|=i, |B|=k−i

g A∪B = 0. (15)

Denote by t = |T | and s = n − |T |. By exchanging T and T c (both being even subsets of [n]) we may assume s � t . Since k
is odd, we have the strict s < t , for otherwise s = t = k would be odd.

We prove (15) by induction on i � 0. The base case is i = 0 and j = k. Let’s consider all U ⊆ T with |U | = k + 1. Note
that as t � k + 1, this is not vacuous. By (14) we have∑

S⊆U , |S|=k

g S = 0.

Summing over all such U , and consider how many times each S ⊆ [n] with |S| = k appears in the sum, we get∑
A⊆T c , |A|=0

g A∪B =
∑

S⊆T , |S|=k

g S = 1(t−k
1

) ∑
U⊆T

|U |=k+1

∑
S⊆U ,|S|=k

g S = 0. (16)
B⊆T , |B|=k
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Inductively we assume (15) has been proved for i − 1, for some i � 1. Consider i and j = k − i. We may assume i � s;
otherwise we are done. Also k − i + 1 � k + 1 � t . Consider all subsets U = U1 ∪ U2 ⊆ [n], where U1 ⊆ T c , U2 ⊆ T , with
|U1| = i and |U2| = k − i + 1. Note that |U | = k + 1. We have

0 =
∑

S⊆U , |S|=k

g S =
∑

A⊆U1, |A|=i−1

g A∪U2 +
∑

B⊆U2, |B|=k−i

gU1∪B ,

as all sets S ⊆ U with |S| = k are classified into two classes according to whether |S ∩ U1| = i − 1 or i. Then summing over
all such U ,

0 =
∑

U

∑
S⊆U ,|S|=k

g S =
(

s − (i − 1)

1

) ∑
A⊆T c , |A|=i−1

B⊆T , |B|=k−i+1

g A∪B +
(

t − (k − i)

1

) ∑
A⊆T c , |A|=i

B⊆T , |B|=k−i

g A∪B ,

by considering how many times each S of the two classes appears in the sum
∑

U

∑
S . Since the first sum is 0 by inductive

hypothesis, and t − k + i � 1, the second sum is also zero. Thus∑
A⊆T c , B⊆T , |A|=i, |B|=k−i

g A∪B = 0.

This proves Theorem 7.1.
We can further prove:

Theorem 7.2. If G is 2-admissible with arity 2k, then ∀β = ( n0 p0
n1 p1

) ∈ M, β⊗2kG = (n0 p1 − n1 p0)
kG.

In order to prove this theorem, we first prove the following lemma:

Lemma 7.2. Let G be 2-admissible with arity 2k, S ⊆ [2k] with |S| = k, and A ⊆ Sc . Then∑
B⊆S and |B|=k−|A|

g A∪B = (−1)|A| g S .

Proof. We prove it by induction on |A| � 0.
The case |A| = 0 is obvious.
Inductively we assume the lemma has been proved for all |A| � i − 1, for some i � 1. Letting |A| = i > 0 and letting G

be 2-admissible, it follows from Lemma 7.1 that we have∑
C⊆A∪S and |C |=k

gC = 0.

Then

0 =
∑

C⊆A∪S and |C |=k

gC

=
∑

B⊆S and |B|=k−|A|
g A∪B +

|A|−1∑
t=0

∑
A1⊆A, |A1|=t

∑
B⊆S, |B|=k−|A1|

g A1∪B ,

according to t = |A ∩ C | = 0,1, . . . , |A|. Since |A1| = t � |A| − 1, by induction we have:∑
B⊆S, |B|=k−|A1|

g A1∪B = (−1)|A1|g S = (−1)t g S .

So

0 =
∑

B⊆S and |B|=k−|A|
g A∪B + g S

|A|−1∑
t=0

(−1)t
(|A|

t

)
=

∑
B⊆S and |B|=k−|A|

g A∪B − (−1)|A| g S .

From the last equation, we have∑
B⊆S and |B|=k−|A|

g A∪B = (−1)|A|g S .

This completes the proof. �
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Corollary 7.1. If G is any 2-admissible signature, then ∀S ⊆ [2k], g S = (−1)k g Sc
.

Now we can prove Theorem 7.2.

Proof. To simplify notations, we use the dehomogenized coordinates β = ( 1 x
1 y

) = ( 1 x0
1 x1

)
. Some exceptional cases can be

proved directly.
First it is obvious that β⊗2kG is also 2-admissible. So for any S ⊆ [2k] and |S| �= k,〈

n⊗
σ=1

[1, x[σ∈S]], G

〉
≡ 0.

Now let S ⊆ [2k] and |S| = k,〈
n⊗

σ=1

[1, x[σ∈S]], G

〉
=

∑
0�i�k

xi yk−i
∑

A⊆Sc, |A|=i

∑
B⊆S, |B|=k−i

g A∪B .

By Lemma 7.2 and for A ⊆ Sc , |A| = i, we have∑
B⊆S, |B|=k−i

g A∪B = (−1)i g S .

So 〈
n⊗

σ=1

[1, x[σ∈S]], G

〉
=

∑
0�i�k

xi yk−i
∑

A⊆Sc, |A|=i

(−1)i g S = g S
∑

0�i�k

xi yk−i(−1)i
(

k

i

)
= (y − x)k g S .

This completes the proof. �
Since a scaling preserves realizability, the theorem gives:

Corollary 7.2. If a 2-admissible G is realizable on some basis (e.g., on the standard basis), then it is realizable on any basis, which
means it is 2-realizable.

For n = 6, all 2-admissible G ’s form a 5-dimensional linear space. Applying the matchgate identities, we find that there
are 5 different 2-realizable signatures (up to scaling). Let G1 and G2 be the following

gα
1 =

{1, α ∈ {000111,011001,101010,110100},
−1, α ∈ {111000,100110,010101,001011},
0, otherwise,

gα
2 =

{1, α ∈ {010101,011010,100110,101001},
−1, α ∈ {101010,100101,011001,010110},
0, otherwise.

Then all the 2-realizable signatures are obtained by cyclically rotating the indices of G1 or G2. (Rotating 3 bits on G1 is G1
itself up to a scaling factor −1; rotating 2 bits on G2 gives G2 back. So there are 3 different 2-realizable signatures from
rotating G1 and 2 different ones from rotating G2. See Figs. 1 and 2.)

It turns out that all of these can be obtained from the planar tensor product operation which we define next.

Definition 7.4. Let Rotr(G) be the tensor obtained by circularly rotating clockwise the coordinates of G by r bits. Let G ⊗ G ′
be the tensor product with all indices of G before all indices of G ′ . A planar tensor product is a finite sequence of operations
of Rotr(G) and G ⊗ G ′ .

By direct constructions and matchgate identities, we can prove the following theorem.

Theorem 7.3. Bgen(Rotr(G)) = Bgen(G) and Bgen(G1 ⊗ G2) = Bgen(G1) ∩ Bgen(G2). Thus a planar tensor product preserves Bgen.

Theorem 7.4. Each of the five 2-realizable signatures for n = 6 is obtainable as a planar tensor product from (0,1,−1,0).

Valiant [30] already noted that (0,1,−1,0) is realizable under all bases, i.e., 2-realizable in our terminology. From
(0,1,−1,0), we can construct a family of 2-realizable signatures for any arity 2k by planar tensor product. It is an open
question if this family (up to scaling) captures all the 2-realizable signatures. This is true for n � 6.
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Fig. 1. One planar tensor product for arity 6.

Fig. 2. Another planar tensor product for arity 6.

Definition 7.5. A signature G is called prime iff it cannot be decomposed as a planar tensor product of two signatures of
positive arity.

In particular (0,1,−1,0) is a prime 2-realizable signature. The above open problem is essentially whether (0,1,−1,0)

is the unique prime 2-realizable signature (up to scaling).

7.2. 1-admissibility and 1-realizability

1-admissibility (resp. 1-realizability) is strictly weaker than 2-admissibility (resp. 2-realizability). In this section, we give
some constructions of 1-admissible and 1-realizable families which are not in general 2-admissible or 2-realizable. These
are in fact prime signatures. Planar tensor product can be applied to construct more 1-realizable families.

First we give a family of 1-admissible generators.

Theorem 7.5. Letting n = 2k be even, we have all g S = 0 except for those |S| = k. Finally for all S ⊂ [n] with |S| = k, g S = g Sc
. Then

G is 1-admissible.

Proof. We prove this by showing that ∀x,
( 1 x

1 −x

) ∈ V 1, where V 1 is defined in Definition 7.3. Let T ⊂ [n] with |T | odd. Then
we require the following polynomial to be identically zero:〈

n⊗
[1, x[σ∈T ]], G

〉
≡ 0,
σ=1
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where x0 = x and x1 = −x. In the above setting, we have〈
n⊗

σ=1

[1, x[σ∈T ]], G

〉
= xk

∑
max{0,|T |−k}�i�min{k,|T |}

(−1)i
∑

A⊆T c , |A|=k−i
B⊆T , |B|=i

g A∪B .

We assume that k � |T | (the case k < |T | is similar). Then the outer sum is
∑|T |

i=0. Since |T | is odd, the first and the last
term of the outer sum cancel out. Similarly the second and the second last term cancel out, and so on. There are altogether
an even number |T | + 1 of terms of this outer sum over i, and the term indexed by i and by |T | − i cancel out. It follows
that this summation is identically 0. This completes the proof. �

For n = 4, in order to be 1-realizable, the matchgate identities further require g0011 g1001 = 0. This gives the following
two 1-realizable signatures (they are prime for a2 �= b2):

gα =
{a, α ∈ {0101,1010},

b, α ∈ {0011,1100},
0, otherwise

and

gα =
{a, α ∈ {0101,1010},

b, α ∈ {1001,0110},
0, otherwise.

This family of 1-realizable signatures has been used in a subsequent paper [10] to obtain some surprising holographic
algorithms.

Next, we present another family of 1-realizable signatures, which are not subsumed by any of the above. It also has
some generalized symmetry. It can be viewed as a generalization of Case 2 in Lemma 4.12.

Theorem 7.6. For any g1, g2, . . . , gn,α ∈ F, where g1 + g2 + · · · + gn = 0, let G = (g S)S⊆[n] be defined as follows

g S = α|S|−1
∑
i∈S

gi .

Then G is 1-realizable and

Bgen(G) =
{[(−α

n1

)
,

(
1
p1

)]
∈ M

∣∣∣ n1, p1 ∈ F
}
.

Proof. For simplicity, we use the dehomogenized coordinates
( 1 x

1 y

)
where x = −1/α. Some exceptional cases such as α = 0

can be proved directly (we use the convention that α0 = 1 and 0 · α0−1 = 0 even when α = 0).
Let T ⊆ [n]. If |T | = 0 or |T | = n, by (10) and the definition of G , it follows easily that〈

n⊗
σ=1

[1, x[σ∈T ]], G

〉
= 0.

Otherwise we have〈
n⊗

σ=1

[1, x[σ∈T ]], G

〉
=

∑
0�i�n−|T |

0� j�|T |

xi y j
∑

A⊆T c , |A|=i
B⊆T , |B|= j

g A∪B

=
∑

0�i�n−|T |
0� j�|T |

xi y j
∑

A⊆T c , |A|=i
B⊆T , |B|= j

α|A∪B|−1
∑

k∈A∪B

gk

=
∑

0�i�n−|T |
0� j�|T |

xi y jαi+ j−1
∑

A⊆T c , |A|=i
B⊆T , |B|= j

(∑
k∈A

gk +
∑
l∈B

gl

)

=
∑

0�i�n−|T |
xi y jαi+ j−1

((|T |
j

)(|T c| − 1

i − 1

) ∑
k∈T c

gk +
(|T c|

i

)(|T | − 1

j − 1

)∑
l∈T

gl

)

0� j�|T |
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Fig. 3. 1-realizability.

=
∑
k∈T c

gk

( ∑
0�i�n−|T |

0� j�|T |

xi y jαi+ j−1
(|T |

j

)(
n − |T | − 1

i − 1

)
−

∑
0�i�n−|T |

0� j�|T |

xi y jαi+ j−1
(

n − |T |
i

)(|T | − 1

j − 1

))

=
∑
k∈T c

gk
(
x(1 + αx)n−|T |−1(1 + αy)|T | − y(1 + αx)n−|T |(1 + αy)|T |−1).

If |T | < n − 1, the above equation is identically 0 when x = −1/α.
For |T | = n − 1, suppose T = [n] − {t}, then at x = −1/α, the value of the above equation is λgt where λ = −(1 +

αy)n−1/α. This standard signature is realizable by the star (see Fig. 3). �
Remark. When n = 2, this generator is the 2-realizable signature (0,1,−1,0).

Addendum. In this paper we could only prove a characterization of 2-admissibility, some results on 2-realizability and
constructed some families of 1-admissible and 1-realizable signatures. In a subsequent paper [11], we have proved a com-
plete characterization of 2-realizability, which confirms the conjecture here. And the characterization of 2-admissibility in
this paper serves as a good start point of that result. In [11], we also give some characterizations of 1-admissibility and
1-realizability.
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