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Abstract

UP is the class of languages accepted by polynomial-time nondeterministic Turing

machines that have at most one accepting path. We show that the quadratic residue

problem belongs to UP ∩ coUP. This affirmatively answers an open problem, dis-

cussed in Theory of Computational Complexity (Du and Ko, 2000), of whether the

quadratic nonresidue problem is in NP. We generalize to higher powers and show

the higher power residue problem belongs to UP ∩ coUP.
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1 Introduction

The complexity class UP was defined by Valiant[19], see also [18,3,4].
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Definition 1

(1) A nondeterministic Turing machine (NTM) is unambiguous if, for every

input, the machine has at most one accepting computation path.

(2) UP is the class of languages accepted by polynomial-time unambiguous

nondeterministic Turing machines.

From the definition it is immediately apparent that P ⊆ UP ⊆ NP. It is not

known if either inclusion is strict, although it is widely believed that both in-

clusions are strict. In particular, Hartmanis and Hemachandra [9] conjectured

that UP does not have complete languages, which has a consequence that P

6= UP 6= NP.

The notion of UP has proved useful in the context of structural complexity

theory. It characterizes the complexity of certain weak one-way functions.

Berman [3], Ko [12] and Grollmann and Selman [8] independently showed that

P 6= UP if and only if there exist one-to-one one-way functions according to the

definition in [6, page 120]. Roughly, this definition states that a function f is

polynomial time computable, but is not polynomial time invertible 1 . (While

there are more stringent and widely used definitions of cryptographic one-way

functions [13], they are probably not equivalent to this definition and no clean

cut condition for their existence in terms of complexity classes has yet been

found.)

1 See Selman’s 1992 [17] survey paper for the history of this theorem and other

interesting results on one-way functions and complexity theory [17].
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Rabin [15] showed finding square roots modulo n is random polytime computa-

tionally equivalent to factoring n, but it is not known if the factoring problem

polytime reduces to the quadratic residue problem. Whereas, Manders and

Adleman [14] showed that given positive integers a, c and n, determining if

there is a positive integer x < c such that x2 ≡ a (mod n) is NP-complete,

even if the factorization of n is given.

Watnatabe pointed out that the work of Fellows and Koblitz [7] implies that

Primality is in UP ∩ coUP. This has been superceeded by the recent AKS

proof that Primality is in P [1].

In section 2 we show the quadratic nonresidue problem (QNR) is in UP ∩

coUP. In section 3 we generalize to higher power residuosity 2 (HPR) and show

HPR also is in UP ∩ coUP. In both problems the only place nondeterminism

is used is in the prime factorization of the modulus n.

2 Aka “residuacity”, a spelling which has a longer history, see [5].
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2 Quadratic Residuosity in UP ∩ coUP

Definition 2

(1) For integer n > 1, Z
∗
n = {x ∈ Z : 0 < x < n, gcd(x, n) = 1}. In other

words, Z
∗
n is the multiplicative group of integers relatively to n.

(2) An integer a ∈ Z, with a (mod n) ∈ Z
∗
n, is a quadratic residue (QR) mod

n if a ≡ x2 (mod n), for some x ∈ Z
∗
n; and a is a quadratic nonresidue

(QNR) mod n otherwise.

Definition 3

(1) Quadratic Residue Problem (QR) – given integers (a, n), all written in

binary, where n > 1 and a is relatively prime to n, determine if a is a

quadratic residue mod n, i.e., if there exists x ∈ Z
∗
n, such that x2 ≡ a

(mod n).

(2) Quadratic Nonresidue Problem (QNR) – the complementary problem of

determining if a is a quadratic nonresidue mod n.

Note that, as is traditionally done, we restrict to those integers a relatively

prime to n. These two problems (QR and QNR) can be regarded as comple-

mentary, for one efficiently can check whether a is relatively prime to n in

O(lg a · lg n) bit operations, where lg u equals the number of bits in the binary

representation of the integer u, excepting the sign bit [2, pages 41 and 67-70].

While it is clear that QR is in NP (or equivalently QNR is in coNP), the

membership of QNR in NP has escaped notice and remained an open problem.
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In their recent book Du and Ko specifically comment that it is unknown

whether QNR ∈ NP (see [6] page 356). We give a simple proof that QNR ∈

NP by showing that both QR and QNR are in UP ∩ coUP.

2.1 Preliminaries

We start by recalling some basic number theory.

Criterion 4 (Euler) [11]–For any odd prime p and a ∈ Z
∗
p we have a(p−1)/2 (mod p) =

1 when a is a QR mod p, and = −1 when a is a QNR mod p – for a ∈ Z
∗
p

there are no other possibilities.

This follows easily from the fact that Z
∗
p is a cyclic group of order p − 1.

The next few Lemmas are all known. For the convenience of the readers we

include short proofs.

Lemma 5 If a is a QR mod p and p is an odd prime, then a is a QR mod

pi, for all i ≥ 1.

Proof of Lemma 5. Proof by induction on i. Given x2 ≡ a mod pi, for some

i ≥ 1, then x2 ≡ a + bpi mod pi+1 for some b. We let y = x + αpi, where

α ≡ −(2x)−1b (mod p), then y2 ≡ a mod pi+1. �

Lemma 6 If a is a QR mod 8, then a is QR mod 2k, for all k ≥ 1.

Proof of Lemma 6. If a is a QR mod 8, then a is a QR mod 2 and 4.

Inductively, let x2 ≡ a mod 2k for some k ≥ 3. Then x2 = a + b2k mod 2k+1.

5



Let y = x − b2k−1, then

y2 = x2 − 2xb2k−1 + b222k−2

≡ a + b2k − b2k mod 2k+1 (1)

≡ a mod 2k+1

where equation (1) follows from the fact that x is odd and 2k − 2 ≥ k + 1. �

For a ∈ Z
∗
2k , where k = 1, 2 or 3, the test for quadratic residuosity is trivial: a

is a quadratic residue mod 2k if and only if a ≡ 1 mod 2k.

Lemma 7 Let n = q1q2 · · · qm be the unique prime factorization of n, where

qi = pαi

i , αi > 0, each pi is a prime number, and p1 < p2 < · · · < pm−1 < pm.

Then, a is a QR mod n if and only if a is a QR for each prime power qi of n.

Furthermore, a is a QR mod n if and only if the following conditions are met.

(1) For each odd prime factor, pi, a is a QR.

(2) When n is even, a is a QR mod 2min{3,α1}, where p1 = 2 and α1 > 0.

Proof of Lemma 7. By the Chinese Remainder Theorem, the square root

of a (mod n) exists if and only if it exists for each modulus qi, since the qi are

pair-wise relatively prime. The rest follows from Lemmas 5 and 6. �

Euler’s totient function is defined as φ(n) = |Z∗
n|. For ps, p a prime number,

φ(ps) = ps−1(p − 1). A primitive root of a number n is an integer g such that

g has order φ(n) modulo n. In other words, g is a multiplicative generator of

Z
∗
n.
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2.2 Membership of QR and QNR in UP

Theorem 8 QNR and QR are in UP ∩ coUP.

PROOF. We show membership of QNR and QR in UP. Define a polynomial-

time NTM M as follows. Given input (a, n), M first verifies that n > 1 and

gcd(a, n) = 1. Then M on each computation path guesses the prime factors

pi in ascending order, with multiplicities αi > 0, where 1 ≤ i ≤ r, and

1 ≤ r ≤ blog2 nc. Verify that pi are primes, and n = pα1

1 pα2

2 · · · pαr

r . Primality

can be verified in deterministic polynomial time using the recent AKS result

that Primality is in P [1]). By unique factorization exactly one path finds the

correct factorization, and all paths except this one are terminated.

Next, deterministically for every odd prime pi, we have M compute xi =

a(pi−1)/2(mod pi). If n is even, say p1 = 2, we check if a is a QR mod 2i, by

inspection; namely we set x1 = 1 if and only if a ≡ 1 mod 2min{3,i} (and set

x1 = −1 otherwise). Then clearly a is a QNR mod n if and only if some

xi = −1, and M accepts. And a is a QR if and only if all xi = 1. �

Remark 9 Verifying the primality of the factorization of n can also be done

unambiguously by the result of Watanabe [7] that Primality is in UP ∩ coUP.

Corollary 10 QNR is in NP ∩ coNP.

This answers the question of Du and Ko [6].
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3 Higher Power Residuosity

In this section we consider the natural generalization of quadratic residuosity

to higher power residuosity. We show that this problem is also in UP ∩ coUP.

Definition 11 Higher power residue problem (HPR) – given integers (a, k, n),

all written in binary, where n > 1, k ≥ 1, and a is relatively prime to n,

determine if a is a kth power residue mod n, i.e., if there exists x ∈ Z
∗
n, such

that xk ≡ a (mod n).

This problem has relevance with the RSA cryptosystem [16]. Note that we

write the modulus and the exponent as binary numbers.

Our approach is the same as for QNR. We first reduce the problem to the

k-th power residues mod prime powers of n. For odd prime powers ps, we can

use a generalized Euler’s criterion which follows from the cyclic structure of

the group Z
∗
ps . We have to work just a little harder for prime powers 2s if n is

even.

3.1 Preliminaries

Theorem 12 (Gauss) [10]. The only numbers that have primitive roots are

2, 4, ps and 2ps, where p is an odd prime and s ≥ 1.

Theorem 13 [10] Given s ≥ 3, then for any odd a, there exists a unique

0 ≤ t < 2s−2 such that

a ≡ (−1)
a−1

2 5t (mod 2s).

In other words, the multiplicative group Z
∗
2s of order 2s−1 is isomorphic to the
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direct product Z2 × Z2s−2 , with generators −1 and 5 respectively.

The following lemma follows from the Chinese Remainder Theorem.

Lemma 14 Let n = q1q2 · · · qm be the unique prime factorization of n, where

qi = pαi

i , αi > 0, each pi is a prime number, and p1 < p2 < · · · < pm−1 < pm.

Then, a is a k-th power residue mod n if and only if a is a k-th power residue

mod each prime power qi of n.

Criterion 15 (Euler) Let p be an odd prime, gcd(a, p) = 1 and d = gcd(k, φ(ps)),

then a is a kth power residue (mod ps) if and only if aφ(ps)/d ≡ 1 (mod ps).

To prove this criterion we need the following lemma.

Lemma 16 Let p be an odd prime, and a, k and s be integers, k, s ≥ 1,

(a, p) = 1, and let d = gcd(k, φ(ps)). Then xk ≡ a (mod ps) is solvable if and

only if yd ≡ a (mod ps) is solvable.

Proof of Lemma 16. (only if part) Given d|k, if we let y = xk/d, it im-

mediately follows that yd = xk ≡ a mod ps.

(if part) By Theorem 12, Z
∗
ps is a cyclic group of order φ(ps). Let g be a

primitive root that generates this group. We are given some y ≡ gr mod ps

for some power r, such that yd ≡ a mod ps. Since d = (k, φ(ps)), we have

(k/d, φ(ps)/d) = 1, there exists an integer u, such that u · (k/d) ≡ 1 mod

φ(ps)/d. It follows that uk ≡ d mod φ(ps). Let x = gt, where t = ru. Then

xk = gruk ≡ grd mod ps ≡ a mod ps. �
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Now Euler’s Generalized Criterion 15 follows from the cyclic group structure

of Z
∗
ps of order φ(ps): As d|φ(ps), clearly a ∈ Z

∗
ps is a d-th power if and only if

aφ(ps)/d ≡ 1 mod ps.

We now consider the case of powers of 2. For modulus 2 or 4 the same criterion

as above works, since Z
∗
n is cyclic, for n = 2 and 4. More concretely, for

modulus 2, xk ≡ a (mod 2) is always solvable for every odd a, and for modulus

4, xk ≡ a (mod 4) is unsolvable precisely when a ≡ −1 (mod 4) and k is even

(solvable precisely when a ≡ 1 (mod 4) or k is odd).

For the next three Lemmas, we suppose s ≥ 3 and consider the modulus 2s.

The group Z
∗
2s is a direct product of a cyclic group of order 2 with another

cyclic group of order 2s−2, Z2×Z2s−2 , with −1 and 5 as generators respectively

(cf. Theorem 13).

Lemma 17 If xk ≡ a mod 2s is solvable then

a2s−2/d ≡ 1 mod 2s,

where d = gcd(k, 2s−2).

PROOF. Let x be a solution to xk ≡ a mod 2s in Z
∗
2s . Then a2s−2/d ≡

x2s−2·(k/d) ≡ 1 mod 2s, as d|k. �

Lemma 18 If a ≡ 1 (mod 4) and a2s−2/d ≡ 1 mod 2s, then a solution to

xk ≡ a mod 2s exists, where, again, d = gcd(k, 2s−2).

PROOF. As a ≡ (−1)
a−1

2 5r mod 2s, for some 0 ≤ r < 2s−2, we have a ≡

5r mod 2s, since a ≡ 1 (mod 4). Since a2s−2/d ≡ 1 mod 2s, and 5 has order

2s−2 in Z
∗
2s , we get d|r. Denote by q = r/d.
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Since (k/d, 2s−2/d) = 1, there exists an integer u, u · k/d ≡ 1 mod 2s−2/d,

hence uk ≡ d mod 2s−2.

Now let x = 5qu. Then we can verify

xk ≡ 5quk ≡ 5qd ≡ 5r ≡ a mod 2s.

�

Lemma 19 If a ≡ −1 (mod 4) then xk ≡ a mod 2s has a solution if and only

if k is odd.

PROOF. Suppose a ≡ −1 (mod 4). Clearly, if k is even, then for all x ≡

±5t mod 2s, xk ≡ 5kt mod 2s, and taking it further mod 4, we get xk ≡ 1

(mod 4) 6≡ −1 (mod 4). Hence xk ≡ a mod 2s has no solution in this case.

Now suppose k is odd. Note that a ≡ −5r mod 2s, for some 0 ≤ r < 2s−2. As

gcd(k, 2s−2) = 1, there exists an integer u, such that uk ≡ 1 mod 2s−2.

Now let x = −5ru. Then

xk ≡ −5ruk ≡ −5r ≡ a mod 2s.

�

Note that in the case of odd k in the above lemma, d = gcd(k, 2s−2) = 1 and

a2s−2/d ≡ 1 mod 2s always holds.

Summarizing, we have the following theorem.

Theorem 20 For s ≥ 3, xk ≡ a mod 2s has a solution if and only if the

following conditions are satisfied:
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(1) a2s−2/d ≡ 1 mod 2s, for d = gcd(k, 2s−2)

(2) a ≡ 1 (mod 4) or [ a ≡ −1 (mod 4) and k is odd ].

3.2 Membership of HPR in UP ∩ coUP

Theorem 21 The Higher Power Residuosity problem (HPR) is in UP ∩

coUP.

PROOF. Based on these facts, a UP machine, M, for HPR can easily be de-

signed as in the quadratic (non)residue case. M simply guesses, with ascending

order of prime powers, the unique prime factorization of n, and verifies it. On

the unique computation path with the correct prime factorization of n, M can

check in deterministic polynomial time, for each of the prime powers of n,

whether a is a k-th power residue, using Criterion 15 and Theorem 20. Then

by Lemma 14 the UP machine, M, accepts the input for HPR mod n if and

only if it is a HPR mod each of the prime powers of n. �
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