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Abstract: We consider the problem of proving circuit lower bounds against the polynomial-

time hierarchy. We first revisit a lower bound given by Kannan [Kan82], and for any fixed

integer k > 0, we give an explicit Σp
2 language, recognizable by a Σp

2-machine with running

time O(nk2+k), that requires circuit size > nk. Next, as our main results, we give relativized

results showing the difficulty of proving polynomial-size circuit lower bounds for languages in

the polynomial-time hierarchy. For providing fair relativized comparisons, we impose a restric-

tion on a simulating machine that it cannot make queries longer than a simulated machine can

access. Under this stronger relativization setting, we show, for example, an oracle with which

all languages in the polynomial-time hierarchy can be recognized by some polynomial-size cir-

cuits. Our proof techniques are based on the decision tree version of the Switching Lemma

for constant depth circuits and Nisan-Wigderson pseudorandom generator. We also take this

opportunity to publish some unpublished older results of the first author on constant depth

circuits, both straight lower bounds and inapproximability results based on decision tree type

Switching Lemmas.
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1 Introduction

It is a most basic open problem in Theoretical Computer Science to give circuit lower bounds for

various complexity classes. The class P has polynomial size circuits. It is also widely believed

that NP does not share this property, i.e., that some specific set such as SAT in NP requires

super polynomial circuit size. While this remains the most concrete approach to the NP vs. P

problem, we can’t even prove, for any fixed k > 1, that any set L ∈ NP requires circuit size

> nk.

If we relax the restriction from NP to the second level of the Polynomial-time Hierarchy1

Σp
2 , R. Kannan [Kan82] did prove that for any fixed polynomial nk, there is some set L in Σp

2

which requires circuit size > nk. Kannan in fact proved the existence theorem for some set in

Σp
2 ∩ Πp

2 . This result has been improved by Köbler and Watanabe [KW98] who showed, based

on the technique developed in [BCGKT], that such a set exists in ZPPNP. More recently, the

work in [Cai01] implies that a yet lower class Sp
2 contains such a set. (See [BFT98, MVW99] for

related topics.)

However, Kannan’s proof for Σp
2 , and all the subsequent improvements mentioned above,

are not “constructive” in the sense that it does not identify a single Σp
2 machine whose language

requires circuit size > nk. In this paper we first remark this point and give some constructive

proof for Σp
2 .

At the top level, all these proofs for the above mentioned results are of the same type. Let

us review Kannan’s proof for Σp
2 : Either SAT does not have nk size circuits, then we are done,

or SAT has nk size circuits, then we can define some other set, which by the existence of the

hypothetical circuit for SAT can be shown in Σp
2 , and it requires circuit size > nk. Thus, in

each case, we have some set L0 in Σp
2 that has no nk size circuits; but this does not give any

single Σp
2 machine whose language requires circuit size > nk. Constructively, Kannan gave a set

in Σp
4 ∩ Πp

4 . In [MVW99] a set in ∆p
3 was constructively given. We improve this to Σp

2 .

Theorem 1 For any integer k > 0, we can construct a Σp
2 machine with O(nk2

logk+1 n) run-

ning time that accepts a set with no nk size circuits.

Notice that Σp
2 has complete languages. Thus, by using any standard complete language C

for Σp
2 , it is easy to obtain a result like the above. We can argue as follows: Estimate the time

complexity of a reduction from L0 to C, which is possible even from the above “nonconstructive”

proof of the existence of L0. Then define a padded version C ′ of C so that L0 is reducible to

C in linear time. This C ′ is a language that requires circuit size > nk; clearly, we can give

explicitly a Σp
2 machine recognzing C ′ and its time bound. Our contribution here is to show a

way to construct such a machine directly, which we hope to be of any help when discussing a

similar constructive proof that is open for the stronger statements, i.e., the existence of a set

with nk circuit size lower bound in Σp
2 ∩ Πp

2 (resp., ZPPNP, and Sp
2).

Our main result in this paper deals with the difficulty in proving super polynomial circuit

size lower bound for any set in the Polynomial-time Hierarchy, PH. While it is possible to prove

a lower bound above any fixed polynomial, at least for some sets in Σp
2 , the real challenge is to

1We will use standard notions and notations in complexity theory; see textbooks, e.g., [DK00], for their

definition.
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prove super polynomial circuit size lower bound for a single language. Not only have we not

been able to do this for any set in NP, but also no super polynomial lower bound is known for

any set in PH. In this paper we prove that it is infeasible to give relativizable super polynomial

lower bound for any set in the Polynomial-time Hierarchy.

For our relativized argument, we propose a new computation model that gives us more

“stringent” relativized results. Relativization results can be generally classified as either sepa-

ration or collapsing/containment results. The implication of a relativized separation result is

that the corresponding collapse is difficult to prove. Similarly a relativized collapsing result im-

plies that the corresponding separation is difficult to prove. Notice that it is still possible (and

in fact, such examples have been shown) to have a separation or collapsing result against the

corresponding relativized result; relativized results just suggest some “difficulty” and not “im-

possiblity”. Also we should note that the degree of “difficulty” may depend on a relativization

type. Here we deal with relativized collapsing results, and we introduce a new relativization

notion — stringent relativization — for demonstrating the difficulty of proving circuit lower

bounds for PH.

By surveying existing relativized collapsing results, we came to realize an asymmetry is often

present. In almost all of these relativized collapsing results the proof is achieved by allowing

stronger access to oracles by the simulating computation than the simulated computation. For

example, in the usual proof of PA = NPA or PA = PSPACEA, we encode QBF in the oracle.

In terms of the simulation by the PQBF machine M simulating an NPQBF or PSPACEQBF

computation M′ on an input x, M will access an oracle location polynomially longer than the

corresponding access that M′ makes. That is, PA machines are given more powerful oracle

access. One can argue that this asymmetry is within a polynomial factor, but it nonetheless

denies access to certain segments of the oracle to the simulated machine while affords such

access to the simulating machine. In our present study of specific polynomial bounds such as

nk of either circuit size or running time, this arbitrary polynomial stretch in oracle access is not

acceptable.

The following example will make this point clear. Hopcroft, Paul, and Valiant [HPV77]

proved that any machine with time complexity t can be simulated by some machine with space

complexity s = t
log t that is slightly less than t. In this situation where we deal with specific

bounds like t, to allow the simulating machine oracle access beyond what’s allowed for the

simulated machine will cause unacceptable consequences. We can argue as follows: For any

time complexity t, let s = t
log t be the space complexity in the simulation. Take an intermediate

bound s′ that is slightly more than s but slightly less than t (all asymptotically). Then we

can construct an oracle X such that DSPACEX(s′) ⊆ DTIMEX(t) holds, with the device of

“unequal access”. The idea is to encode all DSPACEX(s′) languages (up to a given length n)

in X at length t(n). Note that any s′-space machine has access only up to length s′(n) < t(n),

the encoding part is beyond where the s′-space machine can look. On the other hand, if the

Hopcroft-Paul-Valiant simulation were to be relativizable with this “unequal access” to the

oracles, then we have DTIMEX(t) ⊆ DSPACEX(s). Thus, DSPACEX(s′) ⊆ DTIMEX(t) ⊆
DSPACEX(s), violating the relativization of space hierarchy theorem.

We study in this paper some specific circuit size lower bound w.r.t. some specific, say nk, time

bound. Then, as the above observation suggests, we must adopt the following more “stringent”

oracle computation model. In this more “stringent” oracle access model, we require that, for
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any input, the simulating machine or circuit does not access the oracle of length longer than

the simulated machine or circuit can access on this input. We consider circuits consisting of

standard AND, OR, and NOT gates and oracle query gates. An oracle query gate takes m input

bits z = b1b2 . . . bm, and has output χ[z∈X], i.e., it outputs 1 or 0 depending on whether z ∈ X

or otherwise. Now the proviso of “stringent access to an oracle” is stated as follows: To show

that, at length n, a circuit Cn recognizes the language of machine M with running time nk, we

allow the circuit only access to those strings of length ≤ nk. For any machine M, we say that

a family of circuits {Cn}n≥0 simulates MX under a stringent access to the oracle X if at every

length n, Cn recognizes L(MX)=n by stringent access to the oracle X.

Though we defined this definition for the comparison between machines and circuits with

polynomial-time resource bounds, we believe that the notion of “stringent oracle access” is

meaningful in a more general setting. (For more general situations, it might be better to con-

sider a more robust notion of “stringent relativization”. We leave this issue and more general

investigations of “stringent relativization” for our future work; see, e.g., [CW03].)

From a more general perspective, the main utility of relativization is to show the inadequacy

of certain proof techniques. Certainly the more “stringent” a requirement we place on the type

of relativization, the stronger the result will be, and perhaps it says more about the infeasibility

of certain techniques. Imagine there are three possible claims of proving a certain lower bound,

such as Σp
2 requires superpolynomial circuit size:

1. A proof totally specific to a specific set in Σp
2 that uses specific properties of the circuit

combinatorics.

2. A proof for a general Σp
2 machine that uses properties of the circuit, but the proof can be

carried through if the machine and circuit were allowed to access any but the same segment

of any oracle, i.e., they could ask queries within the same length bound. (In our case, the

length bound is defined as the time bound of the simulated Σp
2-machine.)

3. A proof more general, for a general Σp
2 machine and circuit, and the proof can go through

even if we allowed the machine and circuit to access different segments of the oracle.

Any relativization to the contrary says nothing about the first possibility. A relativization

to the contrary with stringent access model rules out possibility 2 and 3. If we did not have the

“stringent access requirement”, then we can only rule out 3, but not 2.

In this paper we focus on specific time/size bounds. In the stringent oracle access model,

we prove that for any alternating oracle TM M with running time O(nk), there is an oracle X

and a polynomial size circuit family accepting it. Therefore we rule out possibilities 2 and 3

above.

Theorem 2 (Main Theorem) For any integer d > 0 and any real k > 1, let M be an oracle

Σp
d-machine with running time O(nk). Then we have an oracle X and a family of Boolean

circuits {Cn}n≥0 that recognizes L(MX) under a stringent access to the oracle X. For all

sufficiently large n, the size of Cn is bounded by ncdk, for some universal constant c > 0.

From this, we can conclude that, relative to the oracle X given above, every set in PH

has some polynomial-size circuits, i.e., PHX ⊆ PX/poly. Recall that Heller [He84] showed an

oracle Y such that EXPY ⊆ PY /poly, which immediately implies that PHY ⊆ PY /poly. But

this oracle Y is not used in a stringent way; that is, a circuit simulating a given Σp
d-machine
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M on inputs of length n makes queries to Y that are longer than the time bound of M on

length n inputs. (Notice that our stringency condition is for polynomial time bounds. It would

be possible to extend it to exponential time bounds, and we may claim that the oracle Y is

used in a stringent way in the relation EXPY ⊆ PY /poly, beause any polynomial bound for

circuit size is less than exponential time bounds of simulated EXP machines. In this sense, our

stringency notion is not robust, and we need more robust notion for general investigations; see,

e.g., [CW03].)

Our proof technique for the main theorem is based on the decision tree version of the

Switching Lemma for constant depth circuits and Nisan-Wigderson pseudorandom generator.

As these results crucially depend on lower bounds for constant depth circuits, we take this

opportunity to publish some unpublished older results of the first author on constant depth cir-

cuits, as it would fit the theme. These include both straight lower bounds and inapproximability

results based on decision tree type Switching Lemmas. We give some better constants in the

exponents than previously published lower bounds.

2 Proof of Theorem 1

R. Kannan [Kan82] proved that for any fixed polynomial nk, there is some set L in Σp
2 ∩Πp

2 with

circuit size > nk. However, in terms of explicit construction, he only gave a set in Σp
4 ∩ Πp

4 . An

improvement to ∆p
3 was stated in [MVW99].

In this section we give a constructive proof of Kannan’s theorem for Σp
2 .

For any n ≥ 0, a binary sequence χ of length ` ≤ 2n is called a partial characteristic sequence,

which will specify the membership of lexicographically the first ` strings of {0, 1}n. We denote

this subset of {0, 1}n by L(χ). We say that χ is consistent with a circuit C with n input gates,

iff ∀i, 1 ≤ i ≤ `, C(xi) outputs the ith bit of χ, where xi is the ith string of {0, 1}n.

We can encode every circuit C of size ≤ s as a string u of length len(s), where len(s)

is defined as len(s) = ccircbs log sc with some constant ccirc. We may consider every u with

|u| = len(s) encodes some circuit of size ≤ s; if a string u is not a proper code or the encoded

circuit has size > s, we assume that this u encodes the constant 0 circuit. The following lemma

is immediate by counting.

Lemma 3 For any s > 1, there exists a partial characteristic sequence of length ` = len(s) + 1

that is not consistent with any circuit of size ≤ s.

Our goal is to define a set L that has no nk size circuit but that is recognized by some

explicitly defined Σp
2 machine. Our construction follows essentially the same outline as the one

given in [MVW99], which in turn uses ideas given in Kannan’s original proof. The further

improvement is mainly an even more efficient use of alternation.

For a given n, let ` = len(nk) + 1. We try to construct a partial characteristic sequence

χnon of length ` that is consistent with no circuit of size ≤ nk. We will introduce an auxiliary

set PreCIRC that is in NP. With this PreCIRC, some Σp
2 machine can uniquely determine the

desired characteristic sequence χnon (on its accepting path). We would like to define our set L

(partially) consistent with this sequence χnon. But Σp
2 computation using some auxiliary NP

set cannot be implemented, in general, by any Σp
2 machine. Suppose here that PreCIRC has
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nk size circuits; then some Σp
2 machine can guess such circuits, verify them, and use them for

computing χnon and recognizing strings according to χnon. What if there are no such circuits for

PreCIRC? We will define L so that one part of L is consistent with PreCIRC (while the other

part is consistent with χnon if PreCIRC is computable by some nk size circuits). If PreCIRC has

no nk size circuit, then the part of L that is consistent with PreCIRC can guarantee the desired

hardness of L.

Now we describe our construction in detail. We fix any sufficiently large n, and let ` =

len(nk) + 1. By “v � u” we mean that u is a prefix of v. To compute the “hard” characteristic

sequence χnon, we want to determine, for a given pair of a partial characteristic sequence χ and

a string u, whether u can be extended to some description v of a circuit that is consistent with

χ. The set PreCIRC is defined for this task. More precisely, for any n > 0, and for any strings

χ of length ` and u of length ≤ len(nk), we define PreCIRC as follows.

1n0χu01len(nk)−|u| ∈ PreCIRC

⇔ (∃v � u) [ |v| = len(nk), and the circuit encoded by v is consistent with χ ].

Strings of any other form are not contained in PreCIRC. For simplifying our notation, we will

simply write (χ, u) for 1n0χu01len(nk)−|u|. Since n determines `, and the length of χ is `, χ and

u are uniquely determined from 0n1χu10len(nk)−|u|. The length of (χ, u) is ñ = n + 2` + 1. Note

that ñ is O(nk log n).

We now define our machine M. Informally we want M to accept an input x if and only

if either x ∈ 1{0,1}n−1 and x ∈ PreCIRC, or x ∈ 0{0,1}n−1 and x ∈ L, where L=n is a set

with no nk size circuits, for all sufficiently large n, if PreCIRC=n has nk size circuits for all

sufficiently large n. Specifically, M is designed so that L=n would be L(χnon) where χnon is

lexicographically the first χ of length ` with no nk size circuit, provided PreCIRC=ñ has a ñk

size circuit for length ñ. Note that L(χnon) ⊆ 0{0,1}n−1 since |χnon| = len(nk) + 1 < 2n−1.

More formally, for any given input x of length n, if x starts with 1, then M accepts it iff

x ∈ PreCIRC. Suppose otherwise; that is, x starts with 0. Then first M existentially guesses

a partial characteristic sequence χnon of length ` and a circuit Cpre of size ñk, more precisely, a

string vpre of length len(ñk) encoding a circuit for PreCIRC=ñ of size ≤ ñk. (Below we use Cpre

to denote the circuit that is encoded by the guessed vpre.) After that, M enters the universal

stage, where it checks the following items.

(1) Cpre makes no mistake whenever it says ‘yes’: ∀χ, |χ| = `, and ∀u, |u| ≤ len(nk), verify

that Cpre is “locally consistent” on (χ, u) if Cpre(χ, u) = 1, that is, check as follows:

Cpre(χ, u) = 1 & |u| = len(nk) =⇒ the circuit that u encodes is consistent with χ, and

Cpre(χ, u) = 1 & |u| < len(nk) =⇒ either Cpre(χ, u0) = 1 or Cpre(χ, u1) = 1.

(2) Cpre says ‘yes’ for all positive instances: ∀u, |u| = len(nk), compute the χu of length `

defined by (the circuit encoded by) u, and verify that Cpre(χu, u′) = 1 for every prefix u′ of

u.

(3) The guessed χnon is lexicographically the first string of length ` such that no circuit of size

s is consistent with it, according to Cpre: Check Cpre(χnon, ε) = 0, and ∀χ such that |χ| = `

and χ is lexicographically smaller than χnon, check Cpre(χ, ε) = 1 holds. (Here ε denotes

the empty string.)
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Finally on each universal branch, if M passes the particular test of this branch, then M accepts

the input x ∈ 0{0,1}n−1 iff χnon has bit 1 for the string x.

For all (χ, u), such that |χ| = ` and |u| ≤ len(nk), if Cpre passes (1), then

Cpre(χ, u) = 1 =⇒ (χ, u) ∈ PreCIRC,

and if Cpre passes (2), then

(χ, u) ∈ PreCIRC =⇒ Cpre(χ, u) = 1.

Of course there is no guarantee that there exists a circuit Cpre (more precisely, vpre) that will

pass the tests in items (1) and (2). But if there is such a Cpre, then some existential path leads to

such a Cpre together with the right χnon. This χnon is the lexicographically first string of length

` such that no circuit of size nk is consistent with it, which exists by Lemma 3. In particular it

is independent of the particular Cpre guessed. Hence, if there is a circuit for PreCIRC=ñ of size

ñk, then M accepts x ∈ 0{0,1}n−1 iff x is in L(χnon), where χnon is the unique lexicographically

first string of length ` with no consistent circuit of size ≤ nk.

On the other hand, if no circuit of size ñk can accept PreCIRC=ñ correctly, then no circuit

passes the tests in items (1) and (2), and hence, M simply rejects all x ∈ 0{0,1}n−1. But

since PreCIRC=ñ has no ñk size circuit, the hardness is guaranteed by the PreCIRC part of

L(M). More formally, if PreCIRC=n has no circuit of size nk infinitely often, then we are done.

Otherwise, for all sufficiently large n, and hence for all sufficiently large ñ, a circuit Cpre exists

for PreCIRC=ñ of size ñk; then the part L(M) ∩ 0{0,1}n−1 is defined so that no nk size circuit

can accept it correctly, and hence again we are done. Therefore, we can conclude that L(M)

has no nk size circuit (which by definition means that for infinitely many n this is so). This Σp
2

language proves Theorem 1. It can be easily checked that the machine M runs in O(nk2
logk+1 n)

steps.

3 Proof of Theorem 2

We first give an outline of the proof.

3.1. Proof Outline

Consider any Σp
d polynomial time bounded oracle alternating Turing machine M, with time

bound nk. We want to design an oracle X so that some family of small size circuits can simulate

MX with stringent oracle access. More specifically, fix any sufficiently large n, we want a circuit

CM that simulates MX on inputs of length n, where, since M can only query strings of length

at most nk, we require that CM can also only ask queries of length at most nk.

It is well known from [FSS81] that a Σp
d machine M bounded in time nk with oracle X, when

given an input x of length n, gives rise to a bounded depth Boolean circuit Cx of the following

type: The inputs are Boolean variables, and their negations, representing membership of a string

z ∈ {0, 1}≤nk
in the oracle X. The Boolean circuit Cx starts with an OR gate at the top, and

alternates with AND’s and OR’s with depth d + 1, where the bottom level gates have bounded

fan-in at most nk, and all other AND and OR gates are unbounded fan-in, except by the overall

circuit size, which is bounded by nk2nk
. Without loss of generality we may assume the Boolean
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circuit is tree like, except for the input level, where each Boolean variable corresponding to

χ[z∈X] is represented by a pair of complemented variables, which we will denote by z and z.

Our first idea is to use random restrictions to “kill” the circuit. Here is what we mean.

For any circuit C over Boolean variables x1, . . . , xn, a random restriction ρ (for some specified

parameter p) is a random function that assigns each xi either 0, 1, or ∗, with probability

Pr[ρ(xi) = ∗] = p and Pr[ρ(xi) = 0] = Pr[ρ(xi) = 1] = (1 − p)/2, for each i independently.

Assigning ∗ means to leave it as a variable. Let C |ρ denote a circuit obtained by this random

restriction. It is known that after a random restriction ρ (for a suitably chosen parameter p),

the circuit C |ρ is sufficiently weakened so as to have either small min-terms or small max-terms.

Results of this type are generally known as Switching Lemmas, and the strongest form known

is due to H̊astad [H̊as86a]. (See also [Ajt83, FSS81, Yao85, Cai86, H̊as86b]). However it turns

out that we need a different form, namely a decision tree type Switching Lemma [Cai86]. We

want to assign a suitably chosen random restriction ρ, after which the circuit admits a small

depth decision tree. We in fact will have to consider an aggregate of 2n such Boolean circuits

Cx simultaneously, one each for an input x of size n. We want to assign ρ, after which all these

circuits have small depth decision trees. We then will proceed to set those variables to ensure

that all these circuits are “killed”, i.e., they all have a definite value now, either 0 or 1. We

need to assign those variables consistently over all 2n small depth decision trees. For decision

trees, it is easy to achieve this by always setting “the next variable” asked by the decision tree

to 0, say; it is not clear how to maintain this consistency in terms of min-terms and max-terms.

If each decision tree has depth bounded by t, then we will have assigned at most 2nt many

variables corresponding to those strings of length nk where ρ initially assigned a ∗ (i.e., they

are left unassigned by ρ). We will argue that there are still plenty of unassigned variables left,

where we may try to encode the now-determined computational values of these 2n circuits. We

will argue that t is sufficiently small, and yet with high probability all 2n circuits admit decision

trees of depth at most t.

The problem with this idea is that after we have coded the values of all the 2n circuits in X,

there does not seem to be any easy way to recover this information. Since X had already been

“ravaged” by the random restriction ρ, it is not clear how to distinguish those “code bits” from

those “random bits”. Further complicating the matter are those bits assigned during the decision

tree settlement. All of this must be sorted out, supposedly, by a polynomial size oracle circuit

which is to accept L(MX)=n. Note that, after a random restriction ρ, it is probabilistically

almost impossible to have an easily identifiable segment of the set X all assigned ∗ by ρ, (e.g.,

all strings in {0, 1}=nk
with a certain leading bit pattern), not to mention the subsequent all 0

assignment to fix the decision trees. On the other hand, we have 2n computations to code. It

is infeasible for the final polynomial size oracle circuit to “remember” more than a polynomial

number of bits as the address of the coding region. So it appears that we must have an easily

identifiable region to code, identified with at most a polynomial number of bits for its address,

and, to accommodate 2n computations, this region must be large.

To overcome this difficulty, our idea is to use not true random restrictions, but pseudo-

random restrictions via the Nisan-Wigderson generator [Nis91a, Nis91b, NW88]. Nisan and

Wigderson designed a pseudorandom generator (which we will call a NW generator) provably

indistinguishable from true random bits by polynomial size constant depth circuits. While our

circuits are not of polynomial size, this can be scaled up easily. Our idea is then to use the
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output of some NW generator to perform the “random” restriction, and to argue that all 2n

circuits are “killed” with high probability, just as before with true random restrictions. The

basic argument is that no constant depth circuits of an appropriate size can tell the difference

under either a true random assignment or a pseudorandom assignment coming from the NW

generator. However, for our purpose in this paper, we wish to say that a certain behavior of

these 2n constant depth circuits — namely they are likely to possess small depth decision trees

after a “random” restriction with 0, 1 and ∗’s — is preserved when “pseudorandom restrictions”

are substituted for “random restrictions”. It is vitally important that whatever property we

wish to claim to have been maintained by the substitution of random bits by pseudorandom

bits, the property must be expressible as a constant depth circuit with an appropriate size upper

bound. It is not clear the property of “having a small depth decision tree” can be expressed in

this way.

We overcome this difficulty by using a weaker property which is a consequence of “having

a small depth decision tree”, which nonetheless is sufficient for our purpose. Namely, we take

directly the property that, after a restriction with 0, 1 and ∗’s, every one of the 2n circuits can be

determined by assigning additionally 0’s to a small number of variables, which had been assigned

∗’s. This property is expressible in a constant depth way. Then we will mimic the probability

distribution of the 0, 1 and ∗’s under the random restrictions by uniform random bits 0’s and

1’s, so that we can come up with a constant depth circuit D with the following property: It

takes only boolean inputs Ω of 0’s and 1’s, and D evaluates to 1 iff when a restriction ρΩ with

0, 1 and ∗’s defined by Ω is applied to all 2n circuits Cx, every Cx can be set to either 0 or 1

after a small number of additional variables are set to 0. We will design D in such a way that

under a uniform bit sequence Ω, D will almost certainly evaluate to 1.

In fact we need more than that. We also need to have the property that a certain segment

of the oracle is untouched by the additional setting of 0’s in all 2n decision tree settlements. We

will argue by the pigeonhole principle, that our bounds guarantee a suitable region unspoiled by

all these decision tree settlement variables. It is not reasonable to expect that any such region

is entirely assigned with ∗’s, but at least there should be many ∗’s.
Assume now we have designed such a D satisfying all these requirements. For this D we

apply the NW generator, substituting pseudorandom bits for true random bits Ω given to D

as inputs. We conclude that D still evaluates to 1 with high probability. In particular, there

must be some setting of the source bits ω for the generator, such that D is evaluated to 1.

This implies that we can assign the oracle set X first according to the pseudorandom restriction

described by the pseudorandom bits, then according to the 2n small depth decision trees, which

are guaranteed by the evaluation of D, and set these additional variables all to 0. This settles all

the decision trees and thus the values of all 2n circuits Cx are determined. Furthermore, there

is a significant segment Ty0 of X free from any variables used in any decision tree settlement,

where we will code these 2n results of Cx.

Even though this segment Ty0 is free from any variables used in any decision tree settlement,

in order to code the computation results of Cx, there must be plenty of ∗ left, and they must

be recoverable by polynomial size circuits. We will show that with high probability over a

uniformly chosen random seed ω, the pseudorandom restriction defined by ω will leave plenty

of ∗ in each segment such as Ty0 . We then in fact choose a sequence of bits ω that satisfies both

the requirement D = 1 and this additional requirement.
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Finally, we will show that with a suitable choice of parameters in the combinatorial design

used in the NW generator, we will be able to recover in polynomial time the location where we

assigned ∗’s in X, in particular from within the coding segment of X given the address of this

segment. Now our polynomial size circuit CM is designed as follows: It remembers (is hardwired

with) y0, i.e., the address of Ty0 , and remember the seed ω for the NW generator, which is of

polynomial length. Then on any input x, it performs the polynomial time computation over a

finite field to extract the coded result of Cx from the appropriate location in X.

3.2. Proof Detail

Now we specify the parameters and state our proof precisely.

Fix any Σp
d polynomial time bounded oracle alternating Turing machine M, with time

bound nk. For notational convenience we will assume k > 2 and d ≥ 7. We assume that n is

sufficiently large. On input of length n, M can only query strings of length at most nk. We will

use m to denote nk and M to denote 2m throughout this proof.

Assume that membership in the oracle set has already been decided for all strings of length

less than m. Our task is to fix the membership for “z ∈ X?” of length exactly m in X, so

that for each input x of length n, membership “x ∈ L(MX)?” can be decided by a polynomial

size circuit CM with oracle gates that can access X=m. Since X<m has already been fixed,

membership “x ∈ L(MX)?” is determined by the set X=m. Here we specifically require that

the circuit CM can access only those strings that can be possibly accessed by the simulated

machine M on input of length n.

There are 2n inputs x of length n, each computation of M on x gives rise to a depth d + 1

Boolean circuit Cx with bottom fan-in at most m. The inputs to each circuit Cx are the 2M

literals z and z, where z ∈ {0, 1}m corresponds to the truth value of χ[z∈X]. (To simplify

our notation, we will denote by z both a string in {0, 1}m as well as the Boolean variable

corresponding to χ[z∈X].) As stated earlier, we assume that each circuit Cx is a tree, starting

with an OR gate at the top, and alternating with AND’s and OR’s until inputs z’s and z’s,

where these inputs are duplicated to keep the tree structure. That is, each circuit Cx is a depth

d + 1 tree with size at most mM and bottom fan-in at most m.

A Switching Lemma shows that such a constant depth circuit is sufficiently weakened, after

a suitably chosen random restriction ρ, so as to have either small min-terms or small max-terms.

The strongest form known is due to H̊astad [H̊as86a]. For our purpose in this paper, however,

we will require something more.

The decision tree complexity of a Boolean function f , denoted by DC(f), is the smallest

depth of a Boolean decision tree computing the function. It can be shown easily that if DC(f) ≤
t, then f can be expressed both as an AND of OR’s as well as an OR of AND’s, with bottom

fan-in at most t. Moreover, clearly, there is a subset of no more than t variables, if one assigns

all of them to 0, the function f will be determined. This is an important advantage as we will

have to assign many non-disjoint subsets of variables for multiple Boolean functions, and all

these assignments need to be consistent.

Adapting H̊astad’s proof to the decision tree model, one can prove the following lemma. In

Section 4 we will discuss these lemmas more thoroughly.
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Lemma 4 For any depth d + 1 Boolean circuit C on M inputs z1, z2, . . . , zM , of size at most s

and bottom fan-in at most t, we have

Prρ[DC(C |ρ) ≥ t] ≤ s

2t
,

where the random restriction ρ is defined for p = 1
(10t)d

.

To reduce all circuits Cx, x ∈ {0, 1}n, to small depth decision trees, we apply a random

restriction with p = 1/(20m)d to these circuits. Then by the union bound we have,

Claim 1

Prρ[
∨

x∈{0,1}n

[DC(Cx |ρ) ≥ 2m] ] ≤ 2n · mM

22m
=

m

2m−n
.

That is, with probability close to 1, a random restriction reduces every circuit Cx to a decision

tree of depth < 2m.

Below we will carry out a sequence of transformations on the circuits Cx, x ∈ {0, 1}n, with

the ultimate goal of constructing the circuit D which, in some sense, is a test for the success of

a “random restriction”.

Step 1 (C1
x): C1

x takes 2M Boolean inputs (az, bz), for z ∈ {0, 1}m. The pair (az, bz) will

represent the status of the Boolean variable z to Cx as follows: az = 1 iff the value of z is set

(to either 0 or 1, i.e., not set to ∗), and az = 0 otherwise. If az = 1, then the 0-1 value of z is

represented by bz. If the pair (az, bz) represents the value of z, then the pair (az , bz) represents

that of zi. Clearly, if z is set 0 (resp., 1), then z must be set 1 (resp., 0).

C1
x is constructed from Cx as follows. Each gate g in Cx will be represented by a pair of

gates (gs, gv). gs = 1 iff g is set to either 0 or 1, i.e., it is determined; gs = 0 otherwise. If

gs = 1 then g = gv. Thus, (gs, gv) = (0, 0) or (0, 1) represent the situation where g has not been

determined, and (gs, gv) = (1, 0), or (1, 1) respectively, represent the case where g is set to 0, or

1 respectively.

Suppose g is an OR gate, g =
∨s

i=1 g(i), where g(i) is an input literal or an internal gate. Sup-

pose g(i) is represented by the pair (g
(i)
s , g

(i)
v ). This representation is already defined inductively.

Then we let

gs =
s∨

i=1

(
(g(i)

s ∧ g(i)
v )
)
∨
(

s∧

i=1

(g(i)
s ∧ g

(i)
v )

)
.

That is, g is set iff either some gi is set to 1, or else all gi are set to 0. Note that the formula

given for gs is a depth 2 circuit of size O(s). Also let

gv =
s∨

i=1

g(i)
v .

Note that gv is only a “valid” value for g when gs = 1. Also gv is depth 1 and has size s.

The case g =
∧s

i=1 g(i) is dual. In this case, g is set iff either some gi is set to 0, or else all

gi are set to 1. Thus
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gs =
s∨

i=1

(
(g(i)

s ∧ g
(i)
v )

)
∨
(

s∧

i=1

(g(i)
s ∧ g(i)

v )

)
, and gv =

s∧

i=1

g(i)
v .

Again they are depth 2, size O(s), and depth 1, size s, respectively.

In order to maintain alternating form of AND’s and OR’s in the circuit C1
x, with all negations

pushed to the input level, we can represent each gate g by both g and its negated value g. This

can introduce at most a factor of 2 in the size. (In fact we will define only three gates gs, gv, and

gv in our construction; we do not need (g)s. But we will omit the detailed analysis of constant

factors.) C1
x has two output gates gs and gv for the output gate g of Cx. It follows that

size(C1
x) = O(size(Cx)), and depth(C1

x) = 2 depth(Cx).

We can take the constant in O(size(Cx)) to be 10, say.

Step 2 (C2
x): Let p = 1

(2m)d
. Let L = dlog2

1
pe ≈ dk log2(20n). C2

x takes Boolean inputs

(az,1, . . . , az,L, bz), for z ∈ {0, 1}m. The circuit C2
x is identical to C1

x, except instead of taking

inputs az, it has az =
∨L

j=1 az,j .

Note that, a random restriction ρ with parameter Pr[ρ(z) = ∗] = 1/2L on Cx is simulated

by uniformly and independently assigning all the bits (az,1, . . . , az,L, bz) to 0 or 1, in C2
x, for

z ∈ {0, 1}m. The behavior of Cx is represented in C2
x exactly. Here we have

size(C2
x) = size(C1

x) + O(ML), and depth(C2
x) = depth(C1

x) + 1.

Note also that 2−L ≤ p. The same upper bound in Lemma 4 and Claim 1 still applies when ρ

has parameter 2−L.

Step 3 (C3
x): In C3

x we will check for the existence of a subset S ⊂ [M ] of cardinality |S| = 2m

such that, first they are assigned ∗ by the ρ, and second if we further set them all to 0, it would

determine the circuit Cx. We know from Claim 1 that this is almost certainly true for our

random restriction.

Thus, we let

C3
x =

∨

S

[
∧

z∈S

az ∧ [(C2
x)s]S

]
,

where
∨

S ranges over all subsets S ⊂ [M ] of cardinality |S| = 2m, and (C2
x)s is the “set bit

output” for C2
x, and [(C2

x)s]S is obtained from (C2
x)s by setting all bz = 0 for z ∈ S. Recall that

az =
∨L

j=1 az,j . Then we have

size(C3
x) ≤

(
M

2m

)
(size(C2

x) + O(m)), and depth(C3
x) = depth(C2

x) + 2.

Step 4 (D): Finally, define D by

D =
∧

x∈{0,1}n

C3
x.
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Then we have

size(D) = 2n(size(C3
x)), and depth(D) = depth(C3

x) + 1.

This completes the construction of D, with

size(D) < 23m2
, and depth(D) ≤ 2d + 6 ≤ 3d − 1.

Below we will denote 3d − 1 by d̂.

From our construction, it follows that (i) the uniform independent distribution on the input

bits of D simulates the random restriction ρ with p = 2−L ≈ 1/(20m)d, and that (ii) D becomes

true if every Cx|ρ has decision tree depth at most 2m. Hence, the following claim follows from

Claim 1.

Claim 2

Pr[D = 1] ≥ 1 − m

2m−n
,

where the probability is over uniform input bits of D.

Now we apply a NW generator to this circuit D. First we recall some basic notions on NW

generators from [NW94].

Let U , M , m and q be positive integers. Let [U ] be some set of cardinality U , e.g.,

{1, 2, . . . , U}. A collection of subsets S = {S1, . . . , SM} of some domain [U ] is called a (m, q)-

design if it satisfies the following conditions.

(1) ∀i, 1 ≤ i ≤ M [ |Si| = q ], and

(2) ∀i, ∀j, 1 ≤ i 6= j ≤ M [ |Si ∩ Sj| ≤ m ].

Based on a given (m, q)-design S = {S1, . . . , SM} with domain [U ], we define the following

function gS : {0, 1}U → {0, 1}M , which we call a (parity based) NW generator.

gS(x1 · · · xU) = y1 · · · yM ,

where each yi, 1 ≤ i ≤ M , is defined

by yi = xs1 ⊕ · · · ⊕ xsq (where Si = {s1, . . . , sq} ⊆ [U ]).

For the pseudorandomness of this generator, we have the following lemma [NW94].

Lemma 5 For any positive integers U,M,m, q, s and e, and positive real ε, let gS be the NW

generator defined using an (m, q)-design {S1, . . . , SM} with domain [U ], and suppose for any

depth e + 1 circuit C on q input bits and of size at most s + cnw2mM (where cnw is some

constant), the q bit parity function has the following bias:

∣∣∣∣Pr(u1,...,uq)∈{0,1}q [C(u1, . . . , uq) = u1 ⊕ · · · ⊕ uq] −
1

2

∣∣∣∣ ≤ ε

M
.

Then gS has the following pseudorandomness against any depth e circuit E on M input bits and

of size at most s.

∣∣∣Pry∈{0,1}M [E(y) = 1] − Prx∈{0,1}U [E(gS(x)) = 1]
∣∣∣ ≤ ε.
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To apply the NW generator to our depth d̂ circuit D constructed above, we set our parame-

ters and define our (m, q)-design, as follows. For the parameters m and M , we will use the same

ones that have been used so far, namely m = nk and M = 2m. We will take a finite field F, and

set q = |F| and U = q2. We will take a specific finite field F = Z2[X]/(X2·3u
+ X3u

+ 1) [vL91],

where each element α ∈ F takes K = 2 · 3u bits, and q = |F| = 2K . We choose u so that

q ≥ (3m2 + 1)d̂+2. Then q1/(d̂+2) ≥ log2(2
3m2

+ cnw2mM), where cnw is the constant in the

above lemma. Clearly q ≤ nckd will do, for some universal constant c, for example c = 7.

Then K = O(dk log n). Thus, this field has polynomial size and each element is represented by

O(log n) bits. All arithmetic operations in this field F are easy.

We will consider precisely M = 2m polynomials fz(ξ) ∈ F[ξ], each of degree at most m,

where each fz is indexed by its coefficients, concatenated as a bit sequence of length exactly m.

The precise manner in which this is done is not very important, but for definiteness, we can

take the following. We take polynomials of degree δ = bm/Kc = Ω(nk/(dk log n)) � n2, with

exactly δ + 1 coefficients,

fz(ξ) = cδξ
δ + . . . + c1ξ + c0,

where all cj varies over F, except cδ is restricted to exactly 2m−K·δ many values. Note that 0 ≤
m − K · δ < K. The concatenation z = 〈cδ · · · c0〉 has exactly m bits. Each fz defines a subset

of F × F of cardinality q, {(α, fz(α)) | α ∈ F}, which we denote by Sz. A (m, q)-design that

we will use is defined as S = {S1, . . . , SM}, indexed by z ∈ {0, 1}m, which we identify with the

index set {1, . . . ,M}. Note that F × F is a domain [U ] with U = q2. The first condition of a

(m, q)-design is immediate, and the second condition, i.e., |Sz ∩ Sz′ | ≤ m, for all z 6= z′, is also

easy to see by noting that deg(fz) < m and deg(fz′) < m. Note that our NW generator gS
generates a pseudo random sequence of length M = 2m from a seed of length U = q2.

For showing the pseudorandomness of gS , we use the following lemma which follows from

the decision tree version of the Switching Lemma.

Lemma 6 For any depth e, and for all sufficiently large q, any circuit C on q inputs and of

size at most 2q1/(e+1)
, satisfies

∣∣∣∣Pr(u1,...,uq)∈{0,1}q [C(u1, . . . , uq) = u1 ⊕ · · · ⊕ uq] −
1

2

∣∣∣∣ ≤ 2−q1/(e+1)
.

Then the following claim is immediate from Lemma 5 and Lemma 6.

Claim 3 Our NW generator gS has the following pseudorandomness against any circuit E of

size at most 23m2
and depth d̂:

∣∣∣Pry∈{0,1}M [E(y) = 1] − Prx∈{0,1}U [E(gS(x)) = 1]
∣∣∣ ≤ 2m−3m2

.

Recall that the circuit D takes (L + 1)M Boolean inputs, i.e., (az,1, . . . , az,L, bz), for z ∈
{0, 1}m, where M = 2m and L = dlog2

1
pe. We provide these input values by our NW generator

that produces a M bit pseudorandom string from a q2 bit random seed. Hence, for the seed

to the generator, a random string of length (L + 1)q2 is needed, and we use a sequence of

independently and uniformly distributed bits {u(0)
α,β , u

(1)
α,β, . . . , u

(L)
α,β}, for each α, β ∈ F. That is,
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for each j = 1, . . . , L, we use q2 bits {u(j)
α,β | α, β ∈ F} to generate the M Boolean values of

az,j , for z ∈ {0, 1}m. Similarly, the set {u(0)
α,β | α, β ∈ F} of q2 bits is used to generate the M

Boolean values of bz, for z ∈ {0, 1}m. More specifically, for each z ∈ {0, 1}m and j = 1, . . . , L,

we define az,j and bz as follows.

az,j =
⊕

α∈F

u
(j)
α,fz(α), and bz =

⊕

α∈F

u
(0)
α,fz(α).

Then we have the following claim.

Claim 4 Let g
(i)
S denote the pseudorandom output sequence of gS on random seed bits {u(i)

α,β |
α, β ∈ F}, for 0 ≤ i ≤ L. Then

Pr[D(g
(1)
S , . . . ,g

(L)
S ,g

(0)
S ) = 1] ≥ 1 − o(1),

where the probability is over independently and uniformly distributed bits {u(0)
α,β , u

(1)
α,β, . . . , u

(L)
α,β},

for α, β ∈ F.

Proof. Let us denote by ai and b respectively a sequence of M true random bits assigned to D’s

input variables az,i and bz, for z ∈ {0, 1}m. Then our goal is to show that Pr[D(g
(1)
S , . . . ,g

(L)
S ,g

(0)
S )

= 1] is close to 1. We claim Pr[D(g
(1)
S , . . . ,g

(L)
S ,g

(0)
S ) 6= 1] ≤ 1/2n−1. For a contradiction suppose

it is > 1/2n−1.

Recall that from Claim 2 Pr[D(a1, . . . ,aL, b) 6= 1] ≤ m/2m−n.

Then we have

∣∣∣Pr[D(a1, . . . ,aL, b) 6= 1] − Pr[D(g
(1)
S , . . . ,g

(L)
S ,g

(0)
S ) 6= 1]

∣∣∣ >
1

2n−1
− m

2m−n
>

1

2n
.

This implies, by the telescoping argument,

1

2n
< |Pr[D(a1, . . . ,aL, b) 6= 1] − Pr[D(g

(1)
S , . . . ,g

(L)
S ,g

(0)
S ) 6= 1]|

≤ |Pr[D(a1, . . . ,aL, b) 6= 1] − Pr[D(g
(1)
S ,a2, . . . ,aL, b) 6= 1]|

+|Pr[D(g
(1)
S ,a2, . . . ,aL, b) 6= 1] − Pr[D(g

(1)
S ,g

(2)
S ,a3, . . . ,aL, b) 6= 1]|

· · ·
+|Pr[D(g

(1)
S , . . . ,g

(L)
S , b) 6= 1] − Pr[D(g

(1)
S , . . . ,g

(L)
S ,g

(0)
S ) 6= 1]|,

that there exists some i such that

∣∣∣Pr[D(g
(1)
S , . . . ,g

(i−1)
S ,ai, . . . ,aL, b) 6= 1] − Pr[D(g

(1)
S , . . . ,g

(i−1)
S ,g

(i)
S ,ai+1, . . . ,aL, b) 6= 1]

∣∣∣ >
1

L2n
.

By an averaging argument, this bound still holds by appropriately fixing random bits other

than ai and the source bits for g
(i)
S . In other words, for some circuit D′ with M input variables

of size at most size(D) = 23m2
and depth depth(D) = d̂, we have

∣∣∣Pr[D′(ai) = 1] − Pr[D′(g(i)
S ) = 1]

∣∣∣ >
1

L2n
.

This is a contradiction to Claim 3, the pseudorandomness of the generator gS , since L =

O(d log m). tu (Claim 4)
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This claim states that with high probability, a pseudorandom sequence satisfies D, meaning

that the random restriction induced from the pseudorandom sequence reduces every Cx to a

simple function (e.g., a small decision tree) whose value can be fixed by fixing t = 2m additional

variables (for each Cx) to 0. Next we will argue that, for such a pseudorandom restriction, one

can find some space to encode the determined value of each Cx.

Consider a restriction induced by a pseudorandom sequence satisfying D. Apply this restric-

tion to all variables z of circuits Cx, and fix further the value of some set Y of variables to 0 in

order to determine the value of circuits Cx for all x ∈ {0, 1}n. We may assume that the size of Y

is at most 2m2n, which is guaranteed by the fact that D = 1 with our pseudorandom sequence.

Then there exists y0 of length n2/2 such that a segment Ty0 = {z ∈ {0, 1}m | y0 is a prefix of z}
has no intersection with Y ; that is, all variables in Ty0 are free from any variables used to fix

the value of circuits Cx . This is simply because 2m2n � 2n2/2. Our plan is to code the results

of Cx by a Boolean variable z of the form z = y0xw, for some w. The key requirements are

that (i) the variable z is assigned ∗ by the pseudorandom restriction, and (ii) it is easy to find

such z (i.e., w) from a given x. (We may assume that the string y0 and the seed for the chosen

pseudorandom sequence are remembered by being encoded in the target polynomial size circuit

CM.)

Let uα,β be a column vector of 0-1 uniform bits (u
(1)
α,β , u

(2)
α,β, . . . , u

(L)
α,β)T. Recall that in D’s

simulation of circuits Cx, a Boolean variable z (of Cx) is assigned ∗ if and only if az,j = 0 for all j

= 1, . . . , L. Hence, z is assigned ∗ by a pseudorandom restriction if and only if
∑

α∈F
uα,fz(α) = 0

in ZL
2 . y0 is determined by the pigeonhole principle, and depends on the source bits uα,β. We

also need to have plenty of ∗’s in the segment Ty0 . Since we cannot predetermine y0, we demand

all segments Ty have plenty of ∗’s. So, we want our source bits uα,β to satisfy the following

condition.

∀y ∈ {0, 1}n2/2, ∀x ∈ {0, 1}n, ∃z = yxw ∈ {0, 1}m


 ∑

α∈F

uα,fz(α) = 0


 . (1)

Furthermore, such a w should be easy to compute from the source bits uα,β, and the given y,

and x.

Recall that for any z ∈ {0, 1}m, fz is defined by the sequence of the coefficients 〈cδ · · · c0〉
which concatenates to z. Let γ be the largest index such that the binary concatenation 〈cδ · · · cγ〉
becomes longer than n2/2 + n bits, so n2/2 + n < |〈cδ · · · cγ〉| ≤ n2/2 + n + K. Then for any

y ∈ {0, 1}n2/2 and x ∈ {0, 1}n, we have some subsequence of coefficients cδ, . . . , cγ such that

yx0v = 〈cδ · · · cγ〉, with some v for padding. Note that γ > 0, since m = nk and k > 2. We

will show (see Claim 5 below) that with high probability a sequence of random source bits uα,β

satisfies the following.

∀cδ ∈ F, . . . , ∀cγ ∈ F, ∃c0 ∈ F


 ∑

α∈F

uα,fz∗(α) = 0


 , (2)

where z∗ is a string in {0, 1}m that is the concatenation 〈cδ · · · cγ0 · · · 0c0〉. Observe that this

condition (2) is sufficient for our requirement (1). Consider any y ∈ {0, 1}n2/2 and x ∈ {0, 1}n,
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and let cδ, . . . , cγ be the coefficients corresponding to yx0v. Then from (2), there exists some c0

by which we can define z∗ = 〈cδ · · · cγ0 · · · 0c0〉 satisfying the condition of (1). Furthermore, we

will show that we can easily find such c0 (thus z∗) given uα,β, and cδ , . . . , cγ . by checking all q

elements of F.

We now summarize our oracle construction. Choose any setting of the random bits ω = uα,β,

such that it generates (L + 1)M pseudorandom bits Ω satisfying both D = 1 and (2); let ρΩ

be the restriction induced by this pseudorandom sequence. We construct the segment X=m of

our oracle by ρΩ as follows. Below z denotes a string in {0, 1}m whose membership to X has

not been determined yet in the construction. Let Xfixed (resp., Xfixed) be the set of strings

in {0, 1}m whose membership to X (resp., X) has been determined. Initially, both Xfixed and

Xfixed are empty. First fix the membership according to ρΩ; that is, z is put into Xfixed (resp.,

Xfixed) if and only if ρΩ sets 1 (resp., 0) to the corresponding variable. Secondly, choose a set

Y ⊆ {0, 1}m − (Xfixed ∪Xfixed) of at most 2m2n strings such that adding Y to Xfixed determines

the value of circuits Cx for all x ∈ {0, 1}n. This set Y is guaranteed by D = 1. Add Y to Xfixed.

Fix one y0 such that Ty0 ∩ Y = ∅. This y0 exists by the pigeonhole principle. Then for any

x ∈ {0, 1}n, put any z of the form y0xw for some w into Xfixed (resp., Xfixed) if and only if the

(already determined) value of Cx is 1 (resp., 0). Then put all remaining z into Xfixed.

Now we explain how to design a polynomial size circuit CM simulating MX . We may assume

that the information on the seed ω (of length (L + 1)q2 = nO(kd)) and y0 are hardwired into the

circuit and they can be used in the computation. For a given input x, the circuit exhaustively

searches for c0 ∈ F satisfying the condition of (2) for the coefficients cδ, . . . , cγ corresponding to

y0x0v. Since the seed is given, for any z∗ = 〈cδ · · · cγ0 · · · 0c0〉, one can compute
∑

α∈F uα,fz∗(α)

within polynomial time in n. Also the size of F is q = nO(kd). Thus, the desired c0 (and

hence, z∗) is computable in polynomial time. When z∗ is obtained, the circuit queries the oracle

whether “z∗ ∈ X?” and accepts the input if and only if z∗ ∈ X. It is easy to check that the

whole computation can be implemented by some circuit of size nckd for some constant c > 0.

We complete the proof by proving the following claim.

Claim 5 Over q2L independent and uniform random bits {u(1)
α,β , ..., u

(L)
α,β | α, β ∈ F}, the condi-

tion (2) holds with probability 1 − o(1).

Proof. For any fixed cδ, . . . , cγ , let z∗(c) denote 〈cδ · · · cγ0 · · · 0c〉. Then fz∗(c)(ξ) is expressed as

fz∗(c)(ξ) = g(ξ) + c, where the polynomial g(ξ) = cδξ
δ + · · · + cγξγ is independent of c.

Define u∗
α,c = uα,g(α)+c. Then since u∗

α,c = uα,fz∗(c)(α), the condition (2) can be stated as

∀cδ, . . . , ∀cγ , ∃c0



∑

α∈F

u∗
α,c0 = 0


 .

Notice that for any fixed cδ, . . . , cγ , for any α, α′, c, and c′, the vectors u∗
α,c and u∗

α′,c′ consist

of disjoint sets of bits, unless α = α′ and c = c′. Hence, if c 6= c′, they are (probabilistically)

independent, from which the following bound follows: ∀cδ, . . . , cγ ,

Pr


 ∀c0 [

∑

α∈F

u∗
α,c0 6= 0 ]


 =

∏

c∈F

Pr



∑

α∈F

u∗
α,c 6= 0


 =

(
1 − 1

2L

)q

< e−Ω(q/(20m)d),
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where the probability is taken uniformly over all the bits u
(1)
α,β, . . . , u

(L)
α,β , for all α, β ∈ F. Then

the claim is proved as follows:

Pr


 ∀cδ, . . . , ∀cγ , ∃c0 [

∑

α∈F

u∗
α,c0(α) = 0 ]


 ≥ 1 − 2n2/2+n+Ke−Ω(q/(20m)d) = 1 − o(1).

tu (Claim 5)

Remark 1: For convenience we assumed in the proof that k > 2 and d ≥ 7. This is only

to simplify notations. Clearly d ≥ 7 is unnecessary. We only need to forgo the estimate of

2d + 6 ≤ 3d− 1, and use 2d + 6. Also any machine M in Σp
d for d < 7 can always be considered

in a higher level. Similarly, k > 2 is not necessary. If one traces through the proof, with slight

modification, any real number k > 1 is sufficient.

Remark 2: The final computation by the polynomial size circuit can be done in NC1. We only

need to evaluate some arithmetic operations in the finite field F. It turns out that since elements

in F are represented by O(log n) bits, the only step that really requires NC1 is the parity sum

of nO(1) terms, when we evaluate the polynomial fz.

Remark 3: Though the proof is stated for simulating one machine M, it is also possible to

construct a single oracle X such that for every d and k, and every Σp
d-machine M running in

time O(nk), the language L(MX) can be recognized by some polynomial size circuit family with

stringent access to oracle X.

4 Some results on constant depth circuits

As lower bound results on constant depth circuits play a crucial role in this work, we take

this opportunity to present some unpublshed older results of the first author on these circuits.

In particular we emphasize the decision tree viewpoint, and give some better constants in the

exponents than previously published lower bounds. We give a historical account at the end of

the section.

The decision tree perspective was first proposed in [Cai86] where a weaker version of the

following Lemma 7 was proved. The following proof essentially adapts the techniques from

[H̊as86a].

We say a boolean function G on variables {x1, . . . , xn} is a t-And-Or if G = G1∧G2∧. . .∧Gw,

where each Gi is the Or of at most t literals, (a literals is a variable or its complement). Similarly,

we say G is a t-Or-And if G = G1 ∨G2∨ . . .∨Gw, where each Gi is the And of at most t literals.

A restriction is a partial assignment of some of the variables to {0, 1}. More formally, it is

a map ρ from the set {1, 2, . . . , n} to the set {0, 1, ∗}. The restriction of G by ρ, denoted by

G|ρ, is the boolean function obtained by setting xi to be ρ(i) if ρ(i) ∈ {0, 1} and leaving xi as a

variable otherwise. A random p-restriction is a restriction ρ picked by independently assigning

ρ(i) = ∗ with probability p and either 0 or 1 with probability (1 − p)/2.

Lemma 7 Let G be a t-And-Or formula G1 ∧ G2 ∧ . . . ∧ Gw. Let ρ be a random p-restriction.

Then, for all ∆ ≥ 0,

Pr[ DC(G|ρ) ≥ ∆ ] ≤ (5pt)∆. (3)
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Proof. The Lemma is proved by an induction on w. Concerning G1, immediately there are 2

cases, either G1|ρ ≡ 1 or G1|ρ 6≡ 1. By renaming literals, we may assume G1 =
∨

i∈T xi. Then

G1|ρ ≡ 1 is equivalent to ρ(i) = 1 for some i ∈ T . If G1|ρ ≡ 1, we want to prove that the

conditional probability that the rest of G has DC(G|ρ) ≥ ∆ is no larger. If however G1|ρ 6≡ 1,

we want to carefully analyze what happens to the variables in T . All of this will accumulate

as some prior condition on ρ. It will be seen that the inductive step will carry a condition that

refers to some collection of subsets of variables on each of which ρ has assigned some variable of

it in some definite way. In the earlier proof of Yao [Yao85], as well as in the proof of Cai [Cai86],

these conditions are explicitly carried along in the proof. The following device used in H̊astad’s

proof [H̊as86a] is more elegant.

One makes the stronger claim, that for any boolean function F , we have

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ] ≤ α∆, (4)

where α will be set to 5pt, and we agree that the conditional probability is 0 if the condition is

not satisfied. The Lemma follows from (4) by taking F to be the constant function 1.

The statement (4) is trivially true for ∆ = 0, since the RHS becomes 1 in this case. Similarly,

if α ≥ 1, then the statement is true. Thus, we may assume ∆ > 0 and α < 1.

We prove (4) by induction on w. If w = 0, then G ≡ 1 by definition and the statement

holds since the LHS is 0. Let w > 0. Put G = G1 ∧ G′, where G′ = G2 ∧ . . . ∧ Gw. Now, either

G1|ρ ≡ 1 or G1|ρ 6≡ 1. If G1|ρ ≡ 1, then we have, by induction

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1,G1|ρ ≡ 1 ]

= Pr[ DC(G′|ρ) ≥ ∆ | (F ∧ G1)|ρ ≡ 1 ] ≤ α∆.

Now consider the case G1|ρ 6≡ 1. We want to prove

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1,G1|ρ 6≡ 1 ] ≤ α∆ (5)

as well. We have renamed the variables so that G1 =
∨

i∈T xi. Then G1|ρ 6≡ 1 means that for

each i ∈ T , ρ(i) = 0 or ∗. Moreover, since ∆ > 0, it cannot be that ρ(i) = 0 for all i ∈ T , or

else G1|ρ ≡ 0, and DC(G|ρ) = 0. Thus, the set of restrictions ρ such that F |ρ ≡ 1,G1|ρ 6≡ 1 and

DC(G|ρ) ≥ ∆ is contained in

⋃

∅6=Y ⊆T

{ρ : ρ(Y ) = ∗, ρ(T − Y ) = 0, F |ρ ≡ 1,DC(G|ρ) ≥ ∆ }.

Suppose ρ(Y ) = ∗ and ρ(T − Y ) = 0, for some ∅ 6= Y ⊆ T .

First we assume |Y | < ∆. Then there must be some assignment σY : Y → {0, 1}, and

σY 6= 0Y , where we denote by 0Y the all 0 assignment on Y , such that DC(G|ρ|σY
) ≥ ∆ − |Y |.

For otherwise, one could obtain some decision tree of depth < ∆ for G|ρ by first asking all the

variables in Y . Note that such a σY 6= 0Y because the all 0 assignment leads to G1|ρ|0Y ≡ 0.

For σY 6= 0Y , G1|ρ|σY
≡ 1, so that G|ρ|σY

≡ G′|ρ|σY
. Then

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 ]

≤
∑

σY :Y →{0,1}

σY 6=0Y

Pr[ DC(G′|ρ|σY
) ≥ ∆ − |Y | | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0) ]. (6)
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Set

0T−Y = the all 0 assignment on T − Y ,

F̃ =
∧

τY :Y →{0,1} F |0T−Y |τY
and

ρ̃ = ρ restricted to the complement of T ,

then under the condition ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 we have

F |ρ ≡ 1 ⇐⇒ F̃ |ρ̃ ≡ 1.

Hence, the sum in (6) has the upper bound

∑

σY :Y →{0,1}

σY 6=0Y

Pr[ DC(G′|0T−Y |σY
|ρ̃) ≥ ∆ − |Y | | F̃ |ρ̃ ≡ 1 ] ≤ (2|Y | − 1)α∆−|Y |, (7)

by induction.

The upper bound (7) holds for

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 ] (8)

for all Y 6= ∅ with |Y | < ∆. However, for |Y | ≥ ∆, the bound in (7) holds trivially for a

probability (8), since in this case the bound in (7) is ≥ 1, as |Y | ≥ ∆ > 0 and α < 1. Hence in

fact it holds for all Y 6= ∅.
Let

aY = Pr[ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 | F |ρ ≡ 1 ∧ G1|ρ 6≡ 1 ],

bY = Pr[ ρ(Y ) = ∗ | F |ρ ≡ 1 ∧ G1|ρ 6≡ 1 ].

Then

bY =
∑

Y ⊆Z⊆T

aZ ,

and by the Möbius Inversion Formula,

aY =
∑

Y ⊆Z⊆T

(−1)|Z−Y |bZ .

It follows that

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1,G1|ρ 6≡ 1 ]

≤
∑

∅6=Y ⊆T

aY · (2|Y | − 1)α∆−|Y |

=
∑

Y ⊆T

aY · (2|Y | − 1)α∆−|Y |.
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Substituting bZ for aY , we have

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1,G1|ρ 6≡ 1 ]

≤
∑

Y ⊆T

∑

Y ⊆Z⊆T

(−1)|Z−Y |bZ · (2|Y | − 1)α∆−|Y |

=
∑

Z⊆T

bZ

∑

Y ⊆Z

(−1)|Z−Y |(2|Y | − 1)α∆−|Y |

=
∑

Z⊆T

bZ(−1)|Z|α∆
∑

Y ⊆Z

[(−2

α

)|Y |
−
(−1

α

)|Y |]

= α∆
∑

Z⊆T

bZ(−1)|Z|
[(

1 − 2

α

)|Z|
−
(

1 − 1

α

)|Z|]

= α∆
∑

Z⊆T

bZ

[(
2

α
− 1

)|Z|
−
(

1

α
− 1

)|Z|]
.

Concerning bZ , intuitively, under the condition that F |ρ ≡ 1 ∧ G1|ρ 6≡ 1, the probability of

ρ(Z) = ∗ is at most q|Z|, where q = p/(p + 1−p
2 ) ≈ 2p, i.e., bZ ≤ q|Z|. We already saw that

G1|ρ 6≡ 1 means that each variable in Z is assigned either 0 or ∗. The additional condition that

F |ρ ≡ 1 can only decrease the probability that some variable is assigned a ∗. We will argue this

point more carefully. For the moment, we accept the upper bound bZ ≤ q|Z|.
Then, since the coefficients of bZ are non-negative, we have

α∆
∑

Z⊆T

bZ

[(
2

α
− 1

)|Z|
−
(

1

α
− 1

)|Z|]

≤ α∆
∑

Z⊆T

q|Z|
[(

2

α
− 1

)|Z|
−
(

1

α
− 1

)|Z|]

= α∆

{[
1 + q

(
2

α
− 1

)]|T |
−
[
1 + q

(
1

α
− 1

)]|T |}

≤ α∆

{[
1 − q +

2q

α

]t
−
[
1 − q +

q

α

]t}
. (9)

At this point, we can recover the bound (5pt)∆ as follows [H̊as86a]. Observe that

[
1 − q +

2q

α

]t
−
[
1 − q +

q

α

]t
≤

(
1 +

2q

α

)t

−
(

1 +
q

α

)t

. (10)

If we set c = 1/ log φ ≈ 2.078, where φ = 1+
√

5
2 ≈ 1.618 is the golden ratio, then we have

e2/c − e1/c = 1. Then set α = cqt < 5pt, we get

(
1 +

2q

α

)t

−
(

1 +
q

α

)t

=

(
1 +

2

ct

)t

−
(

1 +
1

ct

)t

< e2/c − e1/c = 1.

Then

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1,G1|ρ 6≡ 1 ] < α∆.
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This completes the proof of

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ] < (5pt)∆.

Finally, we show that bZ ≤ q|Z|. Note that for Z ⊆ T , we have

Pr[ ρ(Z) = ∗ | G1|ρ 6≡ 1 ] = q|Z|,

This is because G1|ρ 6≡ 1 is the same as ρ assigns only ∗ or 0 on T .

We show that F |ρ ≡ 1 cannot increase the probability of ρ(Z) = ∗. This is trivial if Z = ∅.
Suppose Z 6= ∅. Consider any fixed restriction ρ′ on the complement of Z, ρ′ : Zc → {0, 1, ∗}.
Then, there is a unique extension of ρ′ over Z, call it ρ∗, that satisfies ρ∗(Z) = ∗.

We claim that

Pr[ ρ(Z) = ∗ | F |ρ ≡ 1,G1|ρ 6≡ 1, ρ|Zc = ρ′ ] ≤ q|Z|.

The event ρ(Z) = ∗ refers to the unique ρ∗, under the condition ρ|Zc = ρ′. If F |ρ∗ 6≡ 1, then

the above conditional probability is 0 and the claim trivially holds. Otherwise, F |ρ ≡ 1 for all

extensions ρ of ρ′ to Z. Hence F |ρ ≡ 1,G1|ρ 6≡ 1, ρ|Zc = ρ′ refers to exactly 2|Z| assignments ρ,

such that ρ(i) ∈ {0, ∗} for all i ∈ Z. The claim follows. Lemma 7 is proved. tu

If we take p = 1
10t , then we get the following bound: For any G as in Lemma 7, and for all

∆ ≥ 0,

Pr[ DC(G|ρ) ≥ ∆ ] ≤ 2−∆. (11)

Using this bound as the base case, we can inductively prove Lemma 4.

On the other hand, it is possible to obtain a slightly stronger bound from (9). In fact the

use of the inclusion-exclusion formula has been ignored in (10). In the following, we will show

this slightly stronger bound.

We will set q = β/t for some constant β > 0, to be determined later. Set

α = β / ln

[
1 +

√
1 + 4eβ

2

]
.

Then

e2β/α − eβ/α = eβ.

It follows that

[
1 − q +

2q

α

]t
−
[
1 − q +

q

α

]

=

[
1 +

(
2β

α
− β

)
1

t

]t
−
[
1 +

(
β

α
− β

)
1

t

]t

< e
2β
α
−β − e

β
α
−β = 1.

Replacing the analysis after (9) in the above proof, we obtain the following lemma.
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Lemma 8 Let G be a t-And-Or formula G1 ∧ G2 ∧ . . . ∧ Gw. For any β, 0 < β < t, let ρ be

a random p-restriction, where p = β
t−β , and let α = β/ ln

[
1+
√

1+4eβ

2

]
. Then for all ∆ ≥ 0, we

have

Pr[ DC(G|ρ) ≥ ∆ ] ≤ α∆.

Minimizing α we find at β0 = 0.227537, α0 = α(β0) ≈ 2−1.2638031 ≈ 0.4164447. Let γ0 =

β0/2 ≈ 0.1137685. Then we have the following bound. This is a strengthening of (11).

Lemma 9 Let G be a t-And-Or formula G1∧G2∧. . .∧Gw, and let ρ is a random γ0/t-restriction.

Then for all ∆ ≥ 0, we have

Pr[ DC(G|ρ) ≥ ∆ ] ≤ α∆
0 .

Proof. Let q = β0/t and p = q
2−q . Then q = 2p

1+p is the probability of getting a 0 or a ∗ in a

random p-restriction.

We have shown that

Pr[ DC(G|ρ′) ≥ ∆ ] ≤ α∆
0 ,

where ρ′ is a random p-restriction.

Since p > q/2 = γ0/t, a random γ0/t-restriction ρ can be realized by first applying a random

p-restriction ρ′, followed by a γ0/(pt)-restriction. Note that if DC(G|ρ′) < ∆ then DC(G|ρ) < ∆.

The Lemma follows. tu

Now consider general constant depth circuits. Denote by Cd(s, t) the class of depth d circuits

with bfi2 ≤ t, and the number of gates above the first level ≤ s. Denote by Cd(s) the class

of depth d circuits without a bfi condition but with total size ≤ s. By extending one level

with fan-in 1, clearly Cd(s) = Cd+1(s, 1). (Here in this notation we suppress the number n of

variables and the depth d, where s and t are understood to be functions of one or both of them.)

Lemma 10 For all C ∈ Cd(s, γ0n
1/d), we have

Pr[ DC(G|ρ) ≥ γ0n
1/d ] ≤ s · αγ0n1/d

0 ≈ s · 2−0.143781·n1/d
,

where ρ is a random 1/n
d−1

d -restriction.

Proof. Apply Lemma 9 repeatedly d−1 times, each time with a random 1/n
1
d -restriction. Note

that any function with decision tree depth ≤ ∆ can be expressed both as a ∆-And-Or as well as

a ∆-Or-And. After switching bottom level And-Or formulas to Or-And’s, or vice versa, one can

merge two successive levels of gates and reduce the depth by 1. Then the lemma follows. tu

Let C ∈ Cd(s) with no bfi requirement. By considering C ∈ Cd+1(s, 1) we may first apply

Lemma 9 to each of the bottom depth 2 subcircuit with bfi 1, with a random γ0-restriction. But

we can actually do slightly better by looking at it directly.

2bfi is the abbreviation of bottom fan-in, the maximum fan-in of the bottom level gates. By a “bfi condition”

we mean a bound of the form bfi ≤ t that is given in each context.
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Fix any 1-Or-And formula S. (The case with any 1-And-Or is dual.) S is just a simple Or,

by renaming variables, we may assume S =
∨m

i=1 xi. Fix any ∆ > 0. If we apply a random

p-restriction ρ, and if ρ assigns any xi = 1, or if ρ assigns all xi to 0 or ∗ but fewer than ∆ of

them are assigned ∗, then DC(S|ρ) < ∆. Thus

Pr[ DC(S|ρ) ≥ ∆ ] ≤
∑

J⊆{1,...,m}

|J |≥∆

Pr[ ρ(J) = ∗, ρ(Jc) = 0 ]

=

(
1 + p

2

)m m∑

j=∆

(
m

j

)
qj(1 − q)m−j ,

where Pr[ ρ(i) 6= 1 ] = p + 1−p
2 = 1+p

2 , and q = Pr[ ρ(i) = ∗ | ρ(i) 6= 1 ] = 2p
1+p . Hence

Pr[ DC(S|ρ) ≥ ∆ ] ≤ q∆
(

1 + p

2

)m m∑

i=0

(
m

i

)
(1 − q)m−i = q∆ < (2p)∆.

So if we first apply a random restriction with p = α0
2 ≈ 0.2082223, with probability >

1 − s1α
γ0n1/d

0 , all bottom level 1-Or-And subcircuits are switched to γ0n
1/d-And-Or (or all 1-

And-Or switched to γ0n
1/d-Or-And), where s1 is the total number of level 1 gates in the depth

d circuit C, which are the depth 2 gates in the depth d+1 circuit with bfi 1. After the switching

we get a circuit of depth d + 1 with bfi ≤ γ0n
1/d, but with the same type of gates on the 2

levels just above the bottom level gates. After merging these two levels, we get a circuit in

Cd(s′, γ0n
1/d), where s′ = s − s1. Now we apply Lemma 10. This gives the following bound.

Lemma 11 For all C ∈ Cd(s), we have

Pr[ DC(G|ρ) ≥ γ0n
1/d ] < s · αγ0n1/d

0 ≈ s · 2−0.143781·n1/d
,

where ρ is a random α0/(2n
d−1

d )-restriction.

These results can be used to prove circuit lower bounds for such circuits. Consider any circuit

C in Cd(s, γ0n
1/(d−1)). Apply d − 2 rounds of random 1/n1/(d−1)-restrictions, with probability

> 1−s ·2−0.143781·n1/(d−1)
, we get a circuit in C2(1, γ0n

1/(d−1)) after switching and merging. The

number of variables N left has expectation Exp[N ] = n1/(d−1). By Chernoff bound, we have

Pr[ N ≤ γ0n
1

d−1 ] = Pr[ N − n
1

d−1 ≤ −(1 − γ0)n
1

d−1 ] < e−
(1−γ0)2

2
·n

1
d−1

< e−0.3927n
1

d−1
.

Hence, if s < 20.143781·n1/(d−1)
, the probability is approaching 1 that both C is reduced to a

circuit in C2(1, γ0n
1/(d−1)) and N > γ0n

1/(d−1). Therefore C does not compute the parity.

Lemma 12 For all C ∈ Cd(s, γ0n
1/(d−1)), if C computes the parity function, then its size s

must satisfy

s ≥ 20.143781·n1/(d−1)
.

24



Let C ∈ Cd(s) with no bfi requirements. As in the proof of Lemma 11 we will separate

the bottom level gates from the rest. Thus we first apply a random α0/2-restriction followed

by d − 2 rounds of random (n1/(d−1))−1-restrictions. Thus altogether we applied a random

α0 · (2n
d−2
d−1 )−1-restriction, and with probability > 1− (s−1) ·2−0.143781·n1/(d−1)

we end up with a

circuit in C2(1, γ0n
1/(d−1)). By Chernoff bound again, if N is the number of variables left, then

Exp[N ] = α0n
1/(d−1)/2, and therefore

Pr[ N ≤ γ0n
1

d−1 ] = Pr

[
N − α0n

1/(d−1)

2
≤ −

(
α0

2
− γ0

)
n

1
d−1

]
< e−0.021423n

1
d−1

.

Hence, if s < 20.143781·n1/(d−1)
, C does not compute the parity.

Theorem 13 For all C ∈ Cd(s), if C computes the parity function, then its size s must satisfy

s ≥ 20.143781·n1/(d−1)
.

Now we consider the inapproximability type lower bound. The decision tree depth lower

bound is ideally suited for deriving the inapproximability type lower bound, and the decision

tree perspective was introduced precisely for this reason.

Denote for the rest of this section m = n1/d. Let C be a depth d circuit. Note that after

some restriction ρ, if C is reduced to a decision tree of depth smaller than the number of variables

left, then for exactly half of the 0-1 extensions of ρ, C agrees with parity. This is because at

every leaf of the decision tree, the circuit C is completely determined. (This property was called

monochromaticity in [Cai86].)

Consider Pr[ C(x1, . . . , xn) = ⊕(x1, . . . , xn) ], where ⊕(x1, . . . , xn) denotes the parity func-

tion, and the probability is over all 2n assignments. This can be evaluated by first assigning

any random restriction, followed by an unbiased 0-1 assignment for all the remaining variables.

Let E = E1 ∧ E2, where E1 denotes the event that after the random restriction, we end up

with a decision tree of depth t, and E2 denotes the event that the number of variables N

assigned to ∗ is more than t, where t will be specified later as O(m). Let [C = ⊕ ] denote

[C(x1, . . . , xn) = ⊕(x1, . . . , xn) ] as a short hand.

Note first

Pr[ C = ⊕ ] = Pr[E] · Pr[ C = ⊕ |E ] + Pr[¬E] · Pr[ C = ⊕ |¬E ]

= Pr[ C = ⊕ |E ] + Pr[¬E]( Pr[ C = ⊕ |¬E ] − Pr[ C = ⊕ |E ] ).

As we noted Pr[ C = ⊕ |E ] = 1/2. Then
∣∣∣∣Pr[ C = ⊕ ] − 1

2

∣∣∣∣ ≤ 1

2
Pr[¬E].

Also since Pr[ C = ⊕ ] − Pr[ C 6= ⊕ ] = 2(Pr[C = ⊕ ] − 1
2), we have

|Pr[ C = ⊕ ] − Pr[ C 6= ⊕ ]| ≤ Pr[¬E].

Now we specify the parameter of the random restrictions.

First consider any C ∈ Cd(s, γ0m). Then let t = γ0m, and we apply Lemma 10. With a

random (n
d−1

d )−1-restriction, we have
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Pr[¬E1] ≤ sαt
0 ≈ s · 2−0.143781·m.

Then again by using the Chernoff bound, we estimate Pr[¬E2] = Pr[ N ≤ γ0m ] as follows.

Pr[¬E2] ≤ e−
(1−γ0)2

2
m < e−0.3927m.

Thus Pr[¬E2] is dominated by Pr[¬E1]. This analysis gives the following bound.

Lemma 14 For all C ∈ Cd(20.07189n1/d
, γ0n

1/d), we have

|Pr[ C = ⊕ ] − Pr[ C 6= ⊕ ]| ≤ 2−0.07189n1/d
.

Finally we consider C ∈ Cd(s) with no bfi condition. This time we have to work harder to

optimize the exponents. Our strategy is as follows. We will first assign a α0
2 -restriction, and this

will give us a depth d circuit with bfi ≤ γ0m. Then we assign d − 2 rounds of 1/m-restrictions,

each time using Lemma 9 with the same parameters p = 1/m, and t = ∆ = γ0m. This will give

us a depth 2 circuit with bfi ≤ γ0m. So far the failure probability is (s − 1)αγ0m
0 . Finally we

assign another 1/m-restriction, but this time use the parameters t = γ0m and ∆ = xγ0m, where

0 < x < 1 is to be determined later. The overall failure probability is < sαγ0m
0 +α∆

0 +Pr[ N ≤ ∆ ],

where N is the number of variables left.

It turns out that if we used the same values for t and ∆ for the estimate in the last round,

the bound for Pr[ N ≤ ∆ ] would be too weak. We will use a more exacting form of the Chernoff

bound, and then optimize the overall bound by balancing the last two terms with a judicious

choice of x.

We use the following version of the Chernoff bound. (See, for example, p. 70 of [MR95].)

Pr[ N < (1 − δ)Exp[N ] ] < exp [−Exp[N ] · (δ + (1 − δ) · ln(1 − δ))] .

Here we have

Exp[N ] =
α0

2
m, and δ = 1 − 2γ0x

α0
.

We balance the two bounds by setting x such that

xγ0 ln
1

α0
=

α0

2
[ δ + (1 − δ) · ln(1 − δ) ] .

This leads to choosing x = 0.617945, and we get both

α∆
0 < 2−0.0888488·m and Pr[ N ≤ ∆ ] < 2−0.0888488·m.

Then by setting s = 20.07189·m we get a balanced discrepancy lower bound.

Theorem 15 For all C ∈ Cd(20.07189n1/d
), we have

|Pr[ C = ⊕ ] − Pr[ C 6= ⊕ ]| ≤ 2−0.07189n1/d
.
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Note that the bound in Theorem 15 is the same as that of lemma 14 with the bfi condition.

Lemma 6 follows from Theorem 15 for large input size.

Remark: The original motivation for Furst-Saxe-Sipser [FSS81] where super polynomial lower

bounds were proved for parity against constant depth circuits, was to provide an oracle separa-

tion of PH and PSPACE. This was achieved in a breakthrough result by Yao [Yao85] who proved

a lower bound of the form 2nΩ(1/d)
for parity on n bits for depth d circuits. Yao’s bound was

further improved by H̊astad[H̊as86a] from 2−nΩ(1/d)
to 2−

1
10

n
1

d−1
, and his proof has become the

standard proof. Independently, Yao’s work was improved upon in another direction. Cai inves-

tigated in [Cai86] whether constant depth circuits of size 2nΩ(1/d)
must err on an asymptotically

50 % of inputs against parity. This was motivated by another long standing open problem, that

of random oracle separation of PH and PSPACE (see also [Bab87]). To attack this problem, the

decision tree point of view was first adopted in [Cai86], although a different but completely syn-

onymous terminology (Master-Player Game and t-monochromaticity) was used. It was proved

in [Cai86] that after a suitable random restriction ρ, with high probability, the constant depth

circuit C |ρ has decision tree depth smaller than the number of unassigned Boolean variables.

In such cases, Pr[C = ⊕] is exactly 1
2 . Thus the discrepancy

|Pr[C = ⊕] − Pr[C 6= ⊕]| (12)

was shown to be o(1) for circuits of depth d and size 2nΩ(1/d)
. Implicitly a bound of the form

2−nΩ(1/d)
for the discrepancy (12) was proved there as well [Cai86]. The o(1) upper bound for

the discrepancy was sufficient for the random oracle separation result which was the purpose of

[Cai86], but one needs H̊astad’s technique to improve the bound from 2−nΩ(1/d)
to 2−cn

1
d as in

Lemma 15. However, the weaker bound 2−nΩ(1/d)
would have sufficed for our Theorem 2. Ko

[Ko89a] also used circuit lower bounds to establish the following: For any k, one can construct

an oracle with which the Polynomial Hierarchy collapses to exactly k levels.

It was a marvelous application by Nisan and Wigderson [Nis91a, Nis91b, NW88] who turned

the inapproximability type of lower bounds based on decision trees on its head, and produced

an explicit construction—usually considered an upper bound—of a pseudorandom generator

provably indistinguishable from true random bits by polynomial size constant depth circuits. A

central ingredient in [Nis91a, Nis91b, NW88] is a suitable combinatorial design. Seen in this

way, our proof of Theorem 2 can be viewed as using a lower bound (Switching Lemma), to get

an upper bound (the NW pseudorandom generator), to prove a lower bound (to kill all 2n circuits

Cx simultaneously with the pseudorandom assignments), to finally prove an upper bound (to be

able to code all the computations). And all this, is to show that it is impossible to prove super

polynomial circuit lower bound for any fixed language in the Polynomial-time Hierarchy, with a

relativizable proof with stringent access to an oracle.
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