$S_2^p \subseteq \text{ZPP}^{\text{NP}}$

Jin-Yi Cai

University of Wisconsin, Madison

Research supported in part by NSF CCR-0196197 and a Guggenheim Fellowship.
The Polynomial Hierarchy

The most well known complexity classes are P and NP.

Building on top of NP, are the classes called the Polynomial Hierarchy PH.

(Stockmeyer)

Inductively, $\Sigma_1^p = \text{NP}$, and $\Pi_1^p = \text{coNP}$.

$$\Sigma_{k+1}^p = \text{NP}^\Sigma_k^p,$$

$$\Pi_{k+1}^p = \text{coNP}^\Sigma_k^p.$$

More succinctly, $L \in \Sigma_2^p$ iff there is a P-time predicate P such that:

$$x \in L \iff \exists^p y \ \forall^p z \ P(x, y, z).$$
The Class S^p_2

There is a symmetric version of the second level PH class introduced by Russell and Sundaram and by Canetti independently.

A language L is in S^p_2 iff there is a P-time predicate P such that:

If $x \in L$ then there exists a y, such that for all z, $P(x, y, z)$ holds;
If $x \notin L$ then there exists a z, such that for all y, $\neg P(x, y, z)$ holds;
where both y and z are polynomially bounded in the length of x.
An Ideal Court

Imagine two contestants Y and Z making the opposite claims.

An ideal court that can render a perfect justice:

- If whenever Y is right, he has an argument y, no matter what Z puts forward as his argument z, y defeats z;

- On the other hand, if Z is right, he has an argument z, no matter what Y puts forward as his argument y, z defeats y.
Formal Definition

Formally, $L \in S_2^p$ iff there is a P-time computable 0-1 function P on three arguments, such that

$$x \in L \Rightarrow (\exists y)(\forall z)[P(x, y, z) = 1] \quad (1)$$

$$x \notin L \Rightarrow (\exists z)(\forall y)[P(x, y, z) = 0] \quad (2)$$

where as usual "$\exists^p y$" stands for "$\exists y \in \{0, 1\}^{p(|x|)}$" for some polynomial $p(\cdot)$. Similarly for "$\forall^p z$".

By padding we can suitably extend the length of both y and z, and henceforth we can assume they both vary over the same length n which is a power of 2, and n is polynomially bounded in the length of x.
Easy Containment

Both implications “⇒” can be replaced by the if and only if relation “⇔” without changing the class S^p_2.

Suppose $(\exists^p y)(\forall^p z)[P(x, y, z) = 1]$.

Let y_0 be such a y. Then certainly $x \in L$, else we would have a z_0 such that $(\forall^p y)[P(x, y, z_0) = 0]$, which is clearly a contradiction to $P(x, y_0, z_0) = 1$. Similarly $(\exists^p z)(\forall^p y)[P(x, y, z) = 0]$ implies $x \notin L$. Thus

$$x \in L \iff (\exists^p y)(\forall^p z)[P(x, y, z) = 1]$$

$$x \notin L \iff (\exists^p z)(\forall^p y)[P(x, y, z) = 0]$$

Hence,

$$S^p_2 \subseteq \Sigma^p_2 \cap \Pi^p_2.$$
Probabilistic polynomial time Turing machines: Just like non-deterministic TM, except all moves are counted as probabilistic.

Then we say \(M \) accepts \(L \) with error probability \(< 1/3\), if for all \(x \),
\[
\text{Prob}[M \text{ accepts } x \text{ iff } x \in L] < 1/3.
\]

Such sets \(L \) are called in BPP.

(Note this is true for all \(x \). Not merely for “average \(x \”).)

BPP is a.k.a. Monte Carlo.
For ZPP (zero error), we consider probabilistic TM, where each path can end with 3 possible answers: “Y”, or “N”, or “?”.

Then we say M accepts L with zero error probability:

If $\forall x \in L$, M can only say “Y” or “?” and $\text{Prob}[M(x) \text{ says “Y” }] > 1/2$;

And $\forall x \notin L$, M can only say “N” or “?” and $\text{Prob}[M(x) \text{ says “N” }] > 1/2$.

Clearly $\text{ZPP} \subseteq \text{BPP}$.

ZPP is a.k.a. Las Vegas.
Now consider oracle probabilistic TM.

Just like $\Sigma_2^p = \text{NP}^\text{NP}$ denotes oracle non-deterministic TM with access to NP, we can equip a probabilistic TM with access to an oracle set, say SAT of NP. Thus queries to a satisfiability query $f \in \text{SAT}$ is answered in one step, we ask what can be done probabilistically in P-time with zero error?

This is the class ZPP^NP.
Easy Containment for ZPP^{NP}

It is easy to show that

$$ZPP^{NP} \subseteq \Sigma_2^p \cap \Pi_2^p.$$

Our main theorem is:

Theorem

$S_2^p \subseteq ZPP^{NP}.$

The proof uses universal hashing, approximate counting and witness sampling. We also discuss the problem of finding irrefutable proofs in ZPP^{NP}.
Universal Hashing

Recall a family of hash functions

\[\{h_s : \{0,1\}^n \rightarrow \{0,1\}^k \}_{s \in S} \]

is 2-universal if for every pair of distinct \(x \neq y \) in \(\{0,1\}^n \), and for every \(\alpha, \beta \in \{0,1\}^k \),

\[\Pr_{s \in S}[h_s(x) = \alpha \land h_s(y) = \beta] = \frac{1}{2^{2k}}. \]

\(h_s(x) \) and \(h_s(y) \) are pair-wise independent and uniformly distributed when \(s \in_R S \).

It is well known such universal hash functions can be easily constructed:

\(\text{e.g., } h_{a,b}(x) = ax + b \) and then truncate to \(k \) bits, where \(a, b \) and \(x \) range over a finite field \(\text{GF}[2^n] \).
A Lemma

Lemma

For every set S in \mathcal{P}, there is a probabilistic sampling procedure A using a SAT oracle, such that for every n, and for every $0 < \varepsilon < 1$, $A(n, \varepsilon)$ samples at most $O(n/\varepsilon)$ elements $S' \subseteq S^{=n} = S \cap \{0, 1\}^n$ in such a way that, for every subset $T \subseteq S^{=n}$, with $|T| > \varepsilon|S^{=n}|$,

$$\Pr[S' \cap T = \emptyset] \leq \frac{1}{2^{2n}}.$$

The algorithm runs in time $(n/\varepsilon)^{O(1)}$.
Proof of Theorem

Let \(x \) be given. Let \(\{0, 1\}^n \) be the witness sets for both provers \(Y \) and \(Z \). Here \(n \) is polynomially bounded by \(|x|\), and is a power of 2.

We will grow a list \(Y_k \subset \{0, 1\}^n \) of \(y \)'s, where \(|Y_k| = k \), and \(k = 1, 2, \ldots, n^{O(1)} \).

Initially, \(Y_1 = \{0^n\} \). In the \(k \)-th stage, with \(Y_k \) in hand, we ask the \(SAT \) oracle whether there exists a \(z \in \{0, 1\}^n \) such that \(P(x, y, z) = 0 \) for every \(y \in Y_k \), i.e., a \(z \) that beats every \(y \in Y_k \).
Proof, Cont.

If the answer is No, we can already conclude that $x \in L$ and halt.

Even though we may not have found a witness y_0 which beats every z as promised in the definition when $x \in L$, we can conclude that $x \in L$, since otherwise $x \notin L$ would have guaranteed a z_0 which beats all y, which certainly include all $y \in Y_k$.
Proof, Cont.

Suppose the answer is Yes,

Let

\[Z(Y_k) = \{ z \in \{0, 1\}^n \mid (\forall y \in Y_k)[P(x, y, z) = 0] \}. \]

Next we grow \(Y_k \).

Our goal is, either to find conclusively that \(x \not\in L \), or to find a new \(y^* \) to be appended to the list \(Y_k \) so that the corresponding \(Z(Y_{k+1}) \) is shrunk significantly.

We will use the sampling lemma with universal hashing.
Proof, Cont.

For any $y' \in \{0, 1\}^n$, define

$$T_{y'} := Z(Y_k \cup \{y'\}) = \{z \in Z(Y_k) \mid P(x, y', z) = 0\}.$$

We say that a $y' \in \{0, 1\}^n$ is a “bad witness” with respect to $Z(Y_k)$ if

$$|T_{y'}| > \frac{|Z(Y_k)|}{2}.$$

Then for a fixed bad witness y', the subset $T_{y'}$ has cardinality greater than $|Z(Y_k)|/2$. In this case, by Lemma with $\varepsilon = 1/2$, we can sample a polynomial number of $z \in Z(Y_k)$, call the set Z', such that the probability

$$\Pr[Z' \cap T_{y'} = \emptyset] \leq \frac{1}{2^{2n}}.$$
Proof, Cont.

Since there are at most 2^n bad witnesses,

$$\Pr[(\exists \text{ a bad } y' \in \{0,1\}^n)[Z' \cap T_{y'} = \emptyset]] \leq \frac{1}{2^n}.$$

Suppose now for every bad witness $y' \in \{0,1\}^n$, the sample set Z' has a non-empty intersection with $T_{y'} = Z(Y_k \cup \{y'\})$.

That means that for every bad witness y', y' cannot beat all of Z'.

With the polynomial sized set Z' in hand, we ask the SAT oracle once again whether there is a y which beats all these $z \in Z'$.
Proof, Cont.

If the answer is No, then we know $x \notin L$ since otherwise there is a y which beats all $z \in \{0, 1\}^n$, and certainly y beats all these $z \in Z'$.

If the answer is Yes, we use self-reducibility of the SAT oracle to obtain one such y^*.

Notice that by now there is no bad witness y' which can beat all of Z'. Thus this y^* is not a bad witness. This is true with probability $\geq 1 - 1/2^n$.

We then define $Y_{k+1} = Y_k \cup \{y^*\}$. Then with high probability we have

$$|Z(Y_{k+1})| \leq \frac{|Z(Y_k)|}{2}.$$

So in polynomial time we converge.
Outline of Proof of Lemma

First we will use hash functions and the \(SAT \) oracle to get an approximate count of the subset \(S^{\equiv n} \).

If this set is polynomially small, then we can handle it trivially. Suppose it is large.

Then we use a sampling strategy based on an estimate of points with unique inverse images from \(S^{\equiv n} \) under a random hash function.
Sampling Procedure

For a set $E \subseteq \{0,1\}^n$, first we can get U,

$$\frac{U}{16n} < |E| \leq U.$$

Let $R = O(U/\varepsilon)$.

1. Get estimate U
2. For $i = 1, \ldots, 3n$
3. Randomly pick $h_{s_i} : \{0,1\}^n \rightarrow R$
4. Repeat $2^{10r^2n^2}$ times
5. Randomly pick $\alpha \in R$
6. Try to find an $x \in E$
 s.t. $h_{s_i}(x) = \alpha$ using **SAT**
7. if found $4rn$ points, Goto 3
 with $i := i + 1$.
Irrefutable Proofs

Let $L \in S^p_2$ be defined as before.

If $x \in L$, there exists y that beats all z:

$$P(x, y, z) = 1.$$

We call such a y an irrefutable proof w.r.t. P.

Similarly when $x \notin L$.

Can we find irrefutable proofs in ZPP^{NP}?

Theorem

For every $L \in S^p_2$, there is a P-time predicate Q defining L, such that irrefutable proof w.r.t. Q can be found in ZPP^{NP}.

21
Definition of Q

Given L defined via P, define Q as follows:

$$Q(x; y_1, \ldots, y_m; z_1, \ldots, z_m) = 1$$

$$\iff$$

$$|\{(i, j) | 1 \leq i, j \leq m, P(x, y_i, z_j) = 1\}| > \frac{m^2}{2},$$

where x is the input to L, $y_i, z_j \in \{0, 1\}^n$, the length $n = |x|^{O(1)}$ is determined by P, and $m = 7n$ or $7n + 1$, whichever is odd.
What We Look For

It is clear that Q is defined symmetrically. Also Q defines L: if $x \in L$, one can take all y_i to be an irrefutable proof y w.r.t. P. The case $x \notin L$ is symmetric.

We can find in ZPP^{NP} irrefutable proof w.r.t. Q in the following strong sense: Suppose $x \in L$, Find y_1, \ldots, y_m such that $\forall z \in \{0,1\}^n$, $|\{i \mid P(x, y_i, z) = 1, 1 \leq i \leq m\}| > \frac{m}{2}$, (3) and symmetrically if $x \notin L$.
By symmetry, we assume \(x \in L \), and have found out this is so in \(ZPP^{NP} \).

The sequence \(y_1, \ldots, y_m \) is defined inductively.

\(y_1, \ldots, y_k \) defines \(\{Z_k\}_{k \geq 0} \), a sequence of partitions of \(Z = \{0, 1\}^n \).

\(Z_k = \{Z_{k0}, Z_{k1}, \ldots, Z_{kk}\} \) consists of \(k + 1 \) disjoint subsets of \(Z \), where \(Z_{ki} \) consists of those \(z \) for which exactly \(i \) of \(y_1, \ldots, y_k \) beat it.
The Partitions \(\{Z_k\} \)

\(\forall z \in Z, \text{ let} \)

\[c_k(z) = |\{ j \mid P(x, y_j, z) = 1, 1 \leq j \leq k\}|; \]

\(\text{then for } 0 \leq i \leq k, \)

\[Z_{k,i} = \{ z \in Z \mid c_k(z) = i \}. \]

Suppose \(Z_k \) is defined. For any \(y \), it divides \(Z_{k,i} \) into two parts,

\[Z_{k,i}^\epsilon = \{ z \in Z_{k,i} \mid P(x, y, z) = \epsilon \}, \]

for \(\epsilon = 0, 1 \). We want to choose \(y = y_{k+1} \), so that \(|Z_{k,i}^1| \geq \frac{3}{4}|Z_{k,i}| \), for all \(0 \leq i \leq k \).

Our \(y_{k+1} \) will be chosen probabilistically.
The Vanishing Lemma

Let \(p_{k,i} = \frac{|Z_{k,i}^1|}{|Z_{k,i}|} \), we require that

\[p_{k,i} \geq 3/4 \quad (4) \]

Lemma

Let \(\{Z_k\}_{k \geq 0} \) be any sequence of partitions of \(Z \), where each \(Z_{k,i} \) is divided into a disjoint union \(Z_{k,i} = Z_{k,i}^0 \cup Z_{k,i}^1 \) and

\[Z_{k+1,i+1} = Z_{k,i}^1 \cup Z_{k,i+1}^0. \]

Suppose \(p_{k,i} \) as defined above satisfy (4), then

\[Z_{m,0} = Z_{m,1} = \ldots = Z_{m,\left\lfloor \frac{m}{2} \right\rfloor} = \emptyset, \]

where \(m = 7n \) or \(7n + 1 \), whichever is odd.
A Probabilistic Construction

Assume the Lemma.

With \(Z_k \) defined and \(y_1, \ldots, y_k \in \{0, 1\}^n \) in hand, we apply sampling lemma to each \(Z_{k,i}, 0 \leq i \leq k \), and probabilistically produce samples \(Z'_{k,i} \subseteq Z_{k,i} \), where each \(|Z'_{k,i}| \) is polynomially bounded. Let \(E \) denote the event:

\[
\exists y \in \{0, 1\}^n \text{ } y \text{ beats all } Z'_{k,i}, 0 \leq i \leq k, \text{ yet } \exists i, y \text{ beats at most } \frac{3}{4} \text{ of } Z_{k,i}.
\]

Then

\[
\Pr[E] \leq 2^n \cdot (k + 1) \cdot \frac{1}{22n}.
\]
Apply the Vanishing Lemma

Assume such bad y does not exist, then we can ask our SAT oracle to find a y_{k+1}, via self-reducibility, that beats all $Z'_{k,i}$, $0 \leq i \leq k$.

Such y_{k+1} certainly exists since $x \in L$ and $p_{k,i} \geq 3/4$ are all satisfied.

The Vanishing Lemma then shows that y_1, \ldots, y_m is an irrefutable proof w.r.t. Q.

28
Proof of Vanishing Lemma

Our proof of the Vanishing Lemma will be probabilistic in nature.

Note: This use of probability has nothing to do with the probabilistic construction of Z_k in the proof of Theorem. The statement of Lemma is completely deterministic.

We define an ensemble of r.v. $\{\tilde{c}_k(z) : z \in Z\}_{k \geq 0}$ where for each $k \geq 0$, the family $\{\tilde{c}_k(z) : z \in Z\}$ is i.i.d. and defined as follows: $\forall z \in Z$, $\tilde{c}_0(z) = 0$, and if $\tilde{c}_k(z) = i$ then $\tilde{c}_{k+1}(z) = i + 1$ or i with probability $p_{k, i}$ and $1 - p_{k, i}$ respectively.
A Random Cousin of \mathcal{Z}_k.

Let $\mathcal{Z}_k = \{\mathcal{Z}_{k0}, \mathcal{Z}_{k1}, \ldots, \mathcal{Z}_{kk}\}$ be defined as follows: For $0 \leq i \leq k$,

$$\mathcal{Z}_{ki} = \{z \in \mathbb{Z} \mid \tilde{c}_k(z) = i\}.$$

We can show that

Claim: $\mathbb{E}|\mathcal{Z}_{ki}| = |\mathcal{Z}_{ki}|$, for all $k \geq 0$ and $0 \leq i \leq k$.

A Second Random Cousin of Z_k

Define a second ensemble of r.v. $\{c_k(z) : z \in Z\}_{k \geq 0}$, for fixed $k \geq 0$, the family $\{c_k(z) : z \in Z\}$ is i.i.d. and defined simply as the sum of k Bernoulli independent 0-1 variables with $p = 3/4$.

Formally, $c_k(z) = \sum_{j=1}^{k} I_j(z)$, where $I_j(z)$ are i.i.d. 0-1 variables with $\Pr[I_j(z) = 1] = 3/4$. Then $Z_k = \{Z_{k,0}, \ldots, Z_{k,k}\}$ is defined:

$$Z_{k,i} = \{z \in Z \mid c_k(z) = i\}.$$

We can “realize” \tilde{Z}_k via Z_k by a “nibbling” process.
The Nibble

Define a third ensemble \(\{c_k^*(z) : z \in Z\}_{k \geq 0} \) via \(c_k(z) \) as follows: \(c_0^*(z) = 0 \), and

\[
c_k^*(z) = c_k^*(z) + I_k(z) + \Delta,
\]

where the “nibble” \(\Delta \) is a 0-1 r.v. dependent on \(c_k^*(z) \) and \(I_k(z) \): If \(I_k(z) = 1 \) then \(\Delta = 0 \), if \(I_k(z) = 0 \), and \(i = c_k^*(z) \), then \(\Delta = 1 \) with probability \(4p_{k,i} - 3 \), and \(\Delta = 0 \) with probability \(4(1 - p_{k,i}) \).

The combined effect of \(I_k(z) + \Delta \) is a Bernoulli 0-1 variable taking value 1 with probability exactly \(p_{k,i} \), independent for every \(z \).
Thus $c_k^*(z)$ has exactly the same distribution as $\tilde{c}_k(z)$, and $c_k^*(z)$ is highly correlated with $c_k(z)$: $\forall z, \forall k$,

$$c_k(z) \leq c_k^*(z).$$

Thus, $\forall z, k, \ell$,

$$\Pr[\tilde{c}_k(z) \leq \ell] = \Pr[c_k^*(z) \leq \ell] \leq \Pr[c_k(z) \leq \ell].$$

Hence by Chernoff bound,

$$(\forall z) \Pr[c_m(z) \leq \left\lfloor \frac{m}{2} \right\rfloor] \leq 2e^{-\frac{7}{6}n}.$$
A Reverse Erdős Type Proof

Thus,

\[\sum_{i=0}^{\lfloor \frac{m}{2} \rfloor} |Z_{m,i}| = \sum_{i=0}^{\lfloor \frac{m}{2} \rfloor} E|\tilde{Z}_{m,i}| \]

\[= \sum_{z \in Z} \sum_{i=0}^{\lfloor \frac{m}{2} \rfloor} \Pr[z \in \tilde{Z}_{m,i}] \]

\[= \sum_{z \in Z} \Pr[\tilde{c}_m(z) \leq \lfloor \frac{m}{2} \rfloor] \]

\[\leq 2^{n+1}e^{-\frac{7}{6}n} < 1. \]

But the cardinalities of the sets \(Z_{m,i} \) are all non-negative integers, we must conclude that

\[Z_{m,0} = Z_{m,1} = \ldots = Z_{m,\lfloor \frac{m}{2} \rfloor} = \emptyset. \]

A wholly non-probabilistic statement!