
1

Learning Comment Topics from Code

Jinman Zhao and Ainur Ainabekova

Department of Computer Science,
University of Wisconsin-Madison

{jzhao237, ainabekova}@wisc.edu

ABSTRACT
In this paper, we describe the method of learning comment topics

against corresponding code fragments in order to generate topics

for the source code that does not contain any documentation or

comment. Topics are particular distributions over vocabularies that

describe or reveal the meaning or intention of the code. The built

system might be helpful for searching code techniques as well as

for code classification. The major components of our system are: 1.

topic models learned from comments that convert comments into

topics; 2. code analyzer and encoder that extract information from

codes; 3. recurrent neural networks that learn to predict topics from

low-level instruction sequences. The results we obtained are

somewhat promising, but cannot be stated as very successful. We

spare some of our most interesting unexplored ideas in the future

work part, which we believe could work well for the aimed task.

General Terms
Languages.

Keywords
Code understanding, code meaning, comment generation, natural

language processing for software engineering, topic modeling,

recurrent neural networks, low-level code.

1. INTRODUCTION

1.1 Motivation
It has been increasingly important to write comments for the source

code while programming [1]. It is claimed that documentation and

commenting improves software quality and speeds

implementation, which makes it extremely critical to maintain

comments consistent and comprehensive for large software

projects. Nowadays, large software contain millions of lines of

code, for example Linux operating system in 2012 contained

approximately 15 million lines of code [2]. The 1.5 million lines of

which were written just during couple of years. Looking at this

statistics, it is seen how quickly the size of current large codebases

increases. Therefore, it is highly important to have well-

documented code in order to facilitate developers in building on top

of the existing codebase and to decrease the chance of introducing

bugs due to misunderstanding.

However, there are still common cases that good documentations

or comments are not accessible or even do not exist. This can be a

common scenario in small personal or research projects when the

developers do not pay attention to or are not skilled at extensively

documenting their code. A more serious scenario is when, given the

fact that open source code is becoming very popular and developers

realized how useful it might be to share the code and knowledge

with each other or to work collaboratively on the same code, but it

is still not necessarily helpful for the community of programmers

to have shared code because of the issues related to commenting it.

Firstly, some of the current accessible online code might not have

any comments or description at all which is still not very useful if

other people cannot easily understand it and use it. Secondly, for

example while working on large software collaboratively

programmers might have inconsistent documentation and for that

case our system might help to proof check the existing comments

or work on its refinement to have consistency in comments

throughout the codebase. Thirdly, even consistent documentation

might lack usefulness because of the fact that some comments

might describe the meaning of the smaller piece of code without

mentioning enough about how this code fits into the general picture

of the rest of the code. Note that the second and the third problem

could also trouble relatively stable developer groups such as big

software companies.

1.2 Project Goal
Therefore, the initial goal for us was to build a system that can

generate comments for code pieces that helps identify the

underlying meaning. This can serve as automatic documentation

for code without comments or auxiliaries for code with comments.

For now, there is no such single work that deals with automatic

comment generation for the code. In fact, this problem is not only

hard to solve in terms of automatic code understanding but also

from the point of natural language processing where it would be

necessary to generate meaningful grammatically correct sentences.

We realized by doing research that some related work has been

done in this field but most of them are not trying to directly address

the exact task. Still some more-or-less relevant pieces of work have

helped us to approach our goal in a slightly different way.

We then switch our goal to a less ambitious one as to build a system

that will generate some keywords or topics that still will give

information about the underlying meaning of source code. Solving

this problem might be considered as one of the steps in reaching

our initial goal of automatic comment generation. We see the

possible applications of this kind of system in code searching

techniques as well as in code classification both of which can be in

turn used for building smart codebases. Thus, this paper will focus

on describing the model of our system and its implementation for

this smaller problem.

2. PREVIOUS WORKS
We need to consider several areas that might be relevant to solving

our problem. One of the parts of our problem was understanding

code, in other words doing code analysis with identification of the

specific features that give the information about its meaning.

There are various works that try to find similar source code.

Previous works emphasize the role of low-level instructions in

comparing two pieces of source code. In [3] authors identify

2

programmer style from binary code features and find stylistic

similarities in the code of different programmers. Their

experiments prove that binary source code can preserve

information about programmer style. In order to capture the

property of the binary code, authors generate idioms, graphlets,

supergraphlets and call graphlets, where idioms are short sequences

of instructions and graphlets are sub-graphs of the control flow

graph capturing the program structure. After generating all the

features for the binary code authors use Support Vector Machine

(SVM) as a classifier that, firstly, learns positively correlated

features with the given programmer and then is able to predict

programmer for the unlabeled data. The second their task is

approached by using unsupervised learning method, clustering.

Finally, authors obtained accuracy of 81% for their classifier for ten

distinct programmers.

Similar work that uses binary code as a resource for comparing

source codes and identifying same code compiled by different

compilers is described in [4]. Authors created a search engine called

Rendezvous that can search for code in a binary form. Again, in this

paper we see that as one of the means of program abstraction

authors use n-grams of the instructions mnemonics that are the

textual descriptions of instructions compared to opcode. Other

abstractions of the program are represented by control-flow

subgraphs and data constants where data constants are 32-bit

integers and strings that are not changed during the compilation of

the program. They achieve F2 values of 0.867 and 0.830 on two

different data sets.

Also, we need to mention that some of the works that we found

were interesting to us in terms of how they view the problem of

program analysis through the lens of natural language processing

(NLP). These works inspired us to use similar approaches in our

project. For example, in [5] authors suggest to reduce the problem

of code completion to the problem of sentence completion in NLP,

i.e. consider code as a natural language. They focus on the

programs that use mainly APIs and they fill out the holes in the

programs by finding the most relevant sequences of code, in other

words by predicting probabilities of sentences. They use recurrent

neural networks (RNN) and N-grams for these purposes. According

to their experiments, in 90% the correct completion of the program

appears in top 3 results that were suggested by their system.

Another work that shows how NLP techniques can be used in

program analysis is described in [6]. In this paper authors reduce

the problem of semantic relatedness between codes to the problem

of semantic relatedness between their textual descriptions. For

example, they implemented their system for automatic association

of Java and Python code fragments. Again they consider the

program as a natural language text, although they do apply some

lightweight type analysis too. NLP techniques used in their method

for measuring the similarity between descriptions are Latent

Semantic Analysis (LSA) and term frequency and inverse

document frequency (tf/idf) measures. Their method gives 80%

precision and 75% recall while identifying similar code fragments.

Another part of our problem is comment analysis of the data that

we have and would like to use for this project. There is one work

that is very relevant to our goal in these terms. It is the only paper

that deals directly with the comments of the source code. The tool

iComment that identifies mismatches between code and comments

is described in more detail in [7]. This tool is able to analyze

comments that are divided into some topic categories like “lock-

related” or “call-related” comments. The main idea behind it is to

extract rules from comments that are making assumption and

extract rules from the source code. Later, they construct decision

tree in order to look for inconsistencies between extracted rules.

They have particular set of possible rule schemes. For machine

learning technique they use Decision Trees. Authors conducted the

experiments on some large projects like Linux, Mozilla or Apache

and detected 60 comment code inconsistencies, 33 new bugs and

27 bad comments. Some of them were reportedly already analyzed

and confirmed by developers.

In [8] authors built a system that translates from C# to Java by

applying statistical methods from NLP incorporated with the

knowledge of target language’s grammar structure. Similar to

latter, [9] aims to give a line-to-line translation from Python code

to its explanation. [10] uses convolutional neural networks coupled

with attention mechanisms to automatically generate suggestions

for Java method names.

After considering all of the mentioned previous works and some

other works not mentioned here we came to the conclusion that we

can use existing approaches to program analysis but to also extend

some of the previous works in this field. So, in our system in order

to process source code and get features of it we can start with low-

level instructions analysis since as we saw they can give the

information about meaning of code and for the machine learning

approach we might use recurrent neural networks given their

powerfulness over other learning techniques like SVM.

3. APPROACH

3.1 Overview
We aim to generate some representations of comments or

documentations for each code fragment. The representation should

be related to the intension or the meaning of the accompanying code

fragment, which refers to relatively self-contained piece of code,

for example, a Python function or a Java method. We model this

representation of comments as a distribution over a certain set of

“topics”. Each topic stands for a group of related natural language

words or phrases. Thus, the problem is, given a code fragment, or

an appropriate presentation of a code fragment, to predict its

distribution over topics.

The core part of our approach is a neural network that receives the

representation of a code fragment and predicts the representation of

accompanying comments.

In the analysis phase, we first gather all program fragment and

comment pairs from the training data. Then, we build a topic model

over all comments and convert each piece of comments into a

distribution over topics. At the same time, we build a feature

extractor or vectorizer for all code fragments and convert each code

fragment into a numeric representation.

In the training phase, we train our neural networks with those

numeric representations.

In the predicting phase, we use the code encoder and the neural

networks learnt above, to first convert testing code into numeric

representations and then feed into the neural networks in order to

obtain the prediction of the topics for the code.

In the Figure 1, the flow graphs are shown for all analysis, training

and predicting phases.

3

(a) Learning phase

(b) Predicting phase with evaluation process

(c) Analysis phase

Figure 1: Overview of our system in different phases.

3.2 Topic Modeling from Comments
Topic modeling algorithms are the algorithms that help people to

navigate through a large database of documents, understand large

data or search within it by defining underlying themes of each

document [11]. Topic modeling showed its power and capability in

its applications like searching engines or social networks where it

helps to generate the most popular posts, most popular news or the

recommendations list of potential user friends, etc. [12].

The intuition behind the idea of generating topics or keywords from

the comments in our work is very similar to the idea of generating

topics for the Twitter posts, since both of them share common

characteristics. Some of those similar characteristics are that both

are relatively short in length, they do not contain much of a context,

even though some of the comments appear to be pretty long. In

addition to that, both of them might contain grammatical errors,

sometimes not direct sentence structures, misspellings,

abbreviations and words that have different meaning in particular

context, especially comments contain words that make sense only

in the context of computer science field. Therefore, given this

similarity we based our topic modeling on one of the existing

methods used in topic modeling for Twitter posts.

This method is one of the basic topic modeling techniques called

Latent Dirichlet Allocation (LDA) [13]. The core idea of LDA is

that each document represents a distribution over fixed number of

topics and each topic is a distribution over some number of also

fixed words. All documents together make a collection. Thus, if

there are N topics in the whole collection, only some part of it is

exhibited in a particular document with different proportions for

each topic.

Another algorithm that possibly can be used in the topic modeling

is called tf-idf which stands for Term Frequency and Inverse

Document Frequency. The purpose of tf-idf is to score the words in

a text according to how important they are [14]. The idea behind

this algorithm is to give higher score to the words that appear often

in a document, but at the same time lower that score if the same

word appears often in other documents too, because it means this

word is not unique to the context of that particular document.

However, in our project we combine the use of LDA keyword/topic

extraction and tf-idf frequency regularization. Using LDA we

generate a bag of words for each particular comment block that

describes a function. For the first set of experiments we decided to

focus only on the functions and their comments, ignoring classes.

The result of the topic generation process are a set of automatically

generated topics and a distribution over the set of topics for each

particular comment, representing how the comment is composed by

those topics.

3.3 Program Representation
Program representation is itself a nontrivial task. Widely used

representations are code sequence, abstract syntax tree, control

flow graph, etc. Different representations affect what our system

can learn from it.

3.3.1 Serialization of program
For the pre-processing part of the source code, we took inspiration

from some of the previous works that as mentioned earlier use

sequences of binary code to generate feature vectors such as [15]

and through experiments proved that sequences of binary code

contain information about the meaning of code. Working with the

sequence of binary code is easier than working with the more

complex structures like graphs, trees, etc. This idea is used in our

project, so that instead of working with the high level source code

we firstly translate source code into binary code and then work with

the sequences of it.

Other higher level representations are probably capable of

revealing more syntactic and semantic information of programs.

Thus, using them can potentially help us improve the performance

of our approach. However, we stay with the sequence

representation approach to ease the complexity of our task and it

gives us chance to try out our ideas sooner.

In our project, we will be focusing on Python programs and their

complied intermediate bytecode sequence. We will be looking at

the sequences of binary instructions and also the names of variables

and functions associated with the low-level instructions, which

contain some higher level information about the meaning of

program.

4

3.3.2 Program embedding
The way we transform the sequence of binary code to the numerical

value is by using word2vec [24]. The idea of word2vec is to learn

with neural network an autoencoder for each distinctive word

which can best predict its environment. The useful property of

word2vec is that it clusters or groups words of similar meaning or

that have some relation into a vector space. It has shown amazing

results in quantizing semantic relations for nature language words.

3.4 Deep learner - Recurrent Neural

Networks
For our task when choosing the machine learning technique, we

decided to use Recurrent Neural Networks because of its idea of

preserving context of the data. As we mentioned earlier there are

works that apply NLP techniques to do code analysis and which

consider the program as a natural language.

Then, after generating those vectors we can use them easily to feed

into the recurrent neural network, where the same unit of neural

network recur again and again for all elements in a sequence while

keeping track of “contextual” information. There is a special type

of RNN called Long Short Term Memory networks (LSTMs) [17].

The largest advantage of this RNN is that it is able to learn long

term dependencies. On a figure 2 there is a structure of the simple

LSTM. The difference between LSTM and usual RNN is that in

LSTM the repeating module has four neural network layers each of

which decides different parameters, like which information should

be thrown away, or which information should be passed further, or

decide what to output [17].

Figure 2: The structure of the repeating module in LSTM.

In our project we use slightly different version of LSTM called

Gated Recurrent Unit (GRU) because it is faster and has simpler

structure. The difference is that it merges “forget” and “input” gates

and makes some other changes [16].

4. EXPERIMENTS

4.1 Data
In our project, we focus on Python programs. Python is now a

popular language in virtually all fields of programming. It would

be beneficial to a large range of people if we can help gain insight

of Python code. Also, Python itself tries to have you put descriptive

comments at the first line of a function, class or even module itself,

which we call “documentation string”. We use this string as the

most meaningful and then only comments to help us identify the

intention of the Python entity.

We gathered our code data from the source code of major Python

libraries: numpy 1.11.0, scipy 0.17.0 and scikit-learn 0.17.1. We

choose them because

1. They are all about scientific computing. This can help us

narrow down the field to get more specific topics.

2. They have good documentation string for each function,

class and submodules. This essentially allows us to

extract useful information from them.

3. They are popular among various users. It would be

effective if we can help understand programs related to

the libraries.

We use Python standard library to parse through libraries to collect

all pairs for functions and their documentation strings, filter out

functions without documentation string and get 3979 valid pairs for

our dataset. We split them randomly into training and testing

dataset, where 80% (3183 pairs) goes to training and 20% (796

pairs) goes to testing.

4.2 Implementation
Major tools and libraries we used are listed below.

 Python 3.4.4 with standard library [19]

o dis: disassembler

o inspect: inspect live object

 gensim [20]: Python library for topic modeling. Supports

word2vec, LDA and tf-idf.

 Keras [21]: Python library providing API for neural networks.

 Theano [22]: Python library support fast tensor operation.

Used as backend of Keras.

4.2.1 Comment processing
For the comment part, or namely documentation strings, we extract

only the first paragraph, tokenize and stem the words. We then

ignore words that appear only once and convert the passage into

bag of words. Next we apply tf-idf to regularize the word frequency

and apply LDA using gensim in order to obtain a set of topics and

a model that can generate distribution over topics for a bag of word

tokens.

4.2.2 Code processing
We use Python standard library dis to disassemble functions into

the sequence of instructions along with the names of referred

variables and functions. Due to the lack of time, we only generate

numeric values from sequences of binary instructions using

word2vec with the help of gensim. Each instruction is learned to

be converted into an 8-dimensional vector 𝑣𝑖𝑛𝑠𝑡𝑟 ∈ [0, 1]8 in order

to predict in a best way the surrounding window of 10 successive

instruction sequences.

4.2.3 Neural networks
For the learning part in order to use recurrent neural networks we

used the Python library Keras which provides handy APIs to help

build various neural network structures.

The neural network structure we use is shown in the table 1. We

have first a GRU layer with 64 output neurons, then a fully

connected hidden layer with 128 neurons and tanh activation,

finally a full connected output layer with 20 neurons corresponding

to each topic and softmax activation to help normalize the output

into a distribution. The notion of activations we used follow the

standard. Namely,

tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

5

and

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥⃗)𝑖 =
𝑥𝑖

∑ 𝑒𝑥𝑖𝑥𝑖∈𝑥⃗

We train the neural network using categorical cross entropy [18] as

objective loss function and Adam [23] as optimizer. In addition, we

also utilized drop-out to help prevent overfitting and train more

robust weights in the GRU and the penultimate fully-connected

layer.

4.3 Evaluation method
We will use cross entropy, which is a popular method for measuring

the difference between distributions, to compare the predicted topic

distribution and the truth distribution generated from comment in

the test dataset. Note this is also used as the objective of our NN.

Another possible idea of evaluating results is to use comparison of

top 3 topics generated for the given source code with top 3 topics

from the comments of test set. This gives another sense of the

accuracy of our predictions.

One of the challenges we are facing right now is coming up with

the evaluation procedure for our topic generator: answering a

question how reasonable topics are generated from given

comments. Currently, it seems like it might be evaluated only by

human. e.g. see if each or most of the topics actually appear to

capture some of closely related group of keywords, and if two

pieces of comments which are similar in meanings are actually

assigned with similar distribution over topics.

Also, it is necessary to evaluate our code vectorizer: answering a

question of how reasonable and meaningful is a vector

representation for the given piece of code. We probably might look

closer into how word2vec tool evaluates its results.

4.4 Results
Due to the lack of time, unfortunately, we did not fulfill all the

experiments that we planned to conduct. In this part we would like

to present some of our results for code and comment processing.

4.4.1 Topic model for comments
We generate 40 topics for all the comments in our dataset. In Table

2 you can see the first 10 out of 40 topics generated by topic model.

In Table 3 you can see the similarity score between the first

function with id 3301 and other top similar functions according to

their comments.

4.4.2 Vectorization for bytecode instructions
There are 84 unique Python bytecode instructions appeared in a

total number of ~400k instructions we get from all functions in our

dataset. The mean length of bytecode instruction sequence is 83.1

for our whole dataset, with a minimum 2 and a maximum 1761.

Table 4 gives information about some of the binary instructions and

their vector representation as well as similarity measures for the

instruction BINARY_ADD and other top similar in the meaning

instructions.

4.4.3 Neural network
We trained our NN on training dataset for 200 epochs. The training

and testing loss curves over the number of epochs are shown in

Figure 3. The training time is approximately 140 seconds per

epoch.

layer0 layer1 layer2 layer3

I(200) GRU(64, W=0.25, u=0.25) F(128, tanh, d=0.5) F(20, softmax)

Table 2: The detailed structure of our neural network. I(n) stands for an input layer with input length n. GRU(n, W, u) stands for a

GRU layer with output dimension n, drop rate W for input gates and drop rate u for recurrent connections. F(n, f, d) stands for fully

connected layer with n neurons and with output activation function f and drop rate d. Note dropping is only effective in training phase

and is transparent during prediction.

Topic ID 10 top words of the topics and their weights

1
0.088*

seri

0.047*

legendr

0.045*

hermit

0.029*

histogram

0.024*

evalu

0.022*

frequenc

0.021*

polynomi

0.020*

divid

0.019*

point

0.018*

hermite

2
0.040*

degre

0.040*

vandermond

0.039*

matrix

0.034*

pseudo

0.032*

sequenc

0.032*

fill

0.025*

discret

0.021*

transform

0.021*

document

0.017*

eigenvalu

3
0.045*

space

0.035*

charact

0.024*

divid

0.022*

append

0.022*

true

0.020*

integr

0.018*

fals

0.018*

error

0.016*

pad_amt

0.015*

string

4
0.048*

represent

0.046*

string

0.043*

helper

0.042*

varianc

0.039*

wishart

0.035*

distribut

0.030*

case

0.027*

spline

0.020*

function

0.020*

comput

5
0.082*

predict

0.071*

class

0.059*

probabl

0.040*

target

0.029*

label

0.021*

dictionari

0.021*

companion

0.019*

regress

0.019*

data

0.017*

posterior

6
0.047*

evalu

0.031*

repeat

0.029*

execut

0.027*

behavior

0.024*

call

0.021*

multivari

0.019*

normal

0.014*

result

0.012*

equival

0.012*

axi

7
0.036*

chebyshev

0.028*

decis

0.026*

final

0.025*

implement

0.025*

estim

0.023*

integr

0.023*

method

0.022*

singl

0.022*

seri

0.021*

transform

8
0.049*

test

0.035*

normal

0.027*

perform

0.024*

system

0.023*

vector

0.023*

classif

0.020*

represent

0.019*

function

0.018*

probabl

0.018*

transfer

9
0.029*

map

0.028*

appli

0.025*

model

0.025*

reduct

0.022*

project

0.022*

data

0.021*

gener

0.021*

learn

0.020*

random

0.019*

fit

10
0.034*

standard

0.034*

dimens

0.027*

input

0.026*

maximum

0.026*

arrai

0.026*

axi

0.025*

statist

0.021*

updat

0.020*

comput

0.020*

deviat

Table 1: 10 topics out of 40 generated from training data.

6

4.5 Discussion
For the learned topic model, we can see some of the topics clearly

try to capture discriminative signatures in distribution over all

possible words. One example is Topic 2, where the presence of

“vandermond” and “eigenvalue” indicates that the topic is probably

related to matrix operations over polynomial equation systems.

Although it may still remain a tricky task to come up with a proper

short name or description for each of the topics it generated.

For the vector representation of bytecode instructions, we can see

our learned representation is rather reasonable in the sense that it

assigned similar vectors to instructions with similar functionality.

It can be seen that the instruction BINARY_ADD is projected

closely to other binary arithmetic operations, among which

BINARY_SUBSTRACT is identified as the most similar one.

Our NN seems to converge with training loss above 2.3 and testing

loss above 2.5 according to the loss curve in Figure 3. We regard

this not a very good result. The reason could simply be that we lose

too much useful information from variables and the

function/method called from the object, as well as the structure and

control flow of the object. Besides we also cut off instruction

sequences at certain length and ignore the rest due to the limitation

in the implementation of our RNN. Thus, a good-enough prediction

may not be probable based on insufficient inputs. Another possible

reason could be that the true output of comment topic distributions

are themselves inaccurate or erroneous. If our learner can get bad

learning example it could then learn bad.

5. FUTURE WORK
There is definitely a lot of experiments that can still be done related

to the idea of our project. Here we list some of the promising ideas

that unfortunately were not explored by us more due to lack of time.

But we believe they have high potential to generate even more

meaningful results than we currently obtained.

5.1 Data
We should say that our data is not sufficient (around 4000 python

functions). Major methods we use during this project, including

topic modeling, word2vec and deep neural networks, fulfill their

powerfulness only upon abundance of accessible data. We can see

our bytecode instruction vectorizer generates

5.2 Comment processing
We should be more careful on data cleaning, which is critical to text

learning task.

5.3 Code processing
We didn't implement our idea of taking variable and function names

alone with the instruction sequence. This undoubtedly can harm the

final performance of our system.

3301 scipy.cluster.hierarchy linkage 1 Performs hierarchical/agglomerative clustering on the condensed distance matrix y.

2618 sklearn.decomposition.online_lda _update_doc_distribution 1 E-step: update document-topic distribution.

1359 sklearn.cluster.k_means_ _labels_inertia_minibatch 0.999 Compute labels and inertia using mini batches.

2677 sklearn.neural_network.rbm gibbs 0.983 Perform one Gibbs sampling step.

3 scipy.cluster.hierarchy cophenet 0.982

Calculates the cophenetic distances between each observation in the hierarchical clustering

defined by the linkage ``Z``.

3030 scipy.io.matlab.mio5_params _convert_codecs 0.907 Convert codec template mapping to byte order

2822 numpy._import_tools get_pkgdocs 0.723 Return documentation summary of subpackages.

1300 sklearn.cluster.k_means_ fit 0.722 Compute k-means clustering.

445 scipy.io.netcdf itemsize 0.722 Return the itemsize of the variable.

393 scipy.stats.stats f_oneway 0.722 Performs a 1-way ANOVA.

Table 4: The similarity score between first function and the rest according to comments.

Instruction Similarity Vector

BINARY_ADD (-0.58, 1.44, 2.59, 1.45, -3.26, 3.50, -1.04, 6.47)

BINARY_SUBTRACT 0.9796327353 (0.23, 2.31, 3.36, 1.12, -2.90, 2.85, -0.58, 7.54)

BINARY_MULTIPLY 0.9578515887 (0.44, 2.09, 2.36, 0.39, -2.34, 2.97, -1.14, 8.94)

BINARY_POWER 0.9076402187 (-1.16, 2.90, 2.60, -0.90, -1.08, 3.64, -2.92, 8.05)

BINARY_TRUE_DIVIDE 0.9009826183 (0.05, 3.70, 2.34, -0.68, -1.19, 2.61, -1.53, 7.86)

UNARY_NEGATIVE 0.835010767 (1.45, -0.95, 0.55, 0.21, -1.79, 1.49, 0.25, 6.41)

LOAD_FAST 0.7789117694 (0.93, 0.20, 0.50, 0.52, -1.17, 0.69, 1.01, 1.89)

STORE_FAST 0.685264051 (2.01, 0.48, -0.46, -0.20, -2.15, 1.86, -1.01, 1.92)

INPLACE_MULTIPLY 0.6432930231 (1.52, 0.85, 4.73, 0.14, -0.04, -1.18, 1.14, 5.49)

LOAD_CONST 0.6002776027 (-0.29, -0.20, -1.39, 2.25, -1.15, 1.36, -0.47, 1.63)

INPLACE_TRUE_DIVIDE 0.5996887088 (0.12, 1.09, 4.18, 1.13, 1.23, -1.69, 0.56, 5.49)

Table 3: Vector representation of some of the binary instructions and similarity scores between first instruction and the rest.

7

5.4 Neural network structures
We can try various combinations of structures and parameters, and

experiment how they affect the behavior of the system in different

aspects such as prediction accuracy, training and predicting time.

One thing worth trying is to add an additional convolutional layer,

or layers, upon the input sequence before it gets fed into the

recurrent layer. The rationale is that the verbose length of the input

low-level instruction sequence weakens the contextual connection

between codes, also harming the training efficiency of the recurrent

neural net. Convolutional neural networks are shown to be capable

of summarizing over low-level representations (such as pixel

images) and can generally be trained faster than recurrent neural

nets. With the help of convolutional layer(s), our structure could be

better at capturing critical effects of successive instructions and

how they are meaningfully connected to the whole program

fragment, as well as reducing the training effort by feeding less

lengthy sequences to recurrent layer.

5.5 Recursive analysis
Recursive nature of program structures. Programs are in natural

recursive structures. Python as an example, package contains

modules, module contains definition of classes and functions,

function contains definition of other functions or, more commonly,

calls to other functions. We can lose valuable information if we

ignore this fact and just flatten them into series.

Two kinds of very helpful information underlying the structure

could be:

1. Context of Higher-level entity. Higher-level entities are

entities in the upper level of the static syntax tree, such as a

class to its member functions or a module to the classes and

functions reside in it. They are sometimes critical in

understanding the different meanings of the lower entities

which could otherwise look very similar or even identical. One

example could be that one function which computes the

Euclidean distance of two input arguments could mean an

equation for a sphere in a class dealing with graphics, or

otherwise mean the mean least square error in a machining

learning module.

2. Meaning of lower-level entity. In almost all the cases, we

need to know the meaning of subsequent entities (E.g. function

calls) to help know better about the entity itself we are

analyzing. However, knowing the meaning of a lower-level

entity can involve understanding lower-level entities to it

recursively. Note that in this scenario, we are to deal with

dynamic behavior of the program, namely function calls,

which is almost always trickier than the static property.

Difficulties arise with the introduction of polymorphisms,

overloading and etc. In future, we could start with static

analysis of function call hierarchies to see to what extent this

idea can help with the task.

Recursive neural networks (RvNN). Make use of recursive neural

networks which fits perfectly for this propose. RvNN has shown its

proficiency in learning and predicting for recursive structures, for

example parsing natural language sentence and understanding

natural scene images [25].

Different from recurrent neural networks (RNN) where the same

NN unit recurs again and again along the coming sequence, RvNNs

use the same unit again and again at all nodes in an input that is

inherently tree structure. This nature makes it able to be easier

adapted and faster trained for recursive structures like trees.

In future, we could analyze the code statically and build recursive

tree structure capturing encapsulation and calling hierarchies for

given libraries. Then we could use refined ways to vectorize each

entity in the tree structure and feed it to a RvNN system. The system

will first propagate from bottom to top over the whole tree in order

to capture context of higher-level entities. Then our system could

apply a same RNN structure from bottom to top again to predict for

each entity with the information of its both higher-level entity and

all lower-level entity. The system can be trained using similar

scheme for other RvNNs and RNNs.

6. CONCLUSION
In this project, we try to shed some light on the interesting and

intricate task of automatic comment generation by starting with

predicting topics that are related to the meaning or intension for a

code fragment. We build topic models for Python function

documentation strings, the place to put principle comments

encouraged by the language, and treat the topic composition of the

string as the indicator of the function's intension. We then make use

of only instruction names in the function's compiled bytecode

sequence and vectorize instructions in a way to best reveal their

surroundings. Finally, we build a RNN with additional fully

connected layers and trained it against our code dataset collected

from major Python library. The result is moderate but we believe it

can be greatly improved with more data, more careful text

processing of comments, consideration of lexical and syntactic

information of the code and more informative recursive model

combined with recursive neural networks.

7. ACKNOWLEDGMENTS
We thank Prof. Aws Albarghouthi for his instruction and

suggestions during this course project. We thank David Brown for

the inspiring discussion on program classification and Sidharth

Mudgal for his discussion and suggestion on technologies and

implementations of neural networks.

8. REFERENCES
[1] Raskin J. Comments are more important than code. ACM

Queue. 2005 Mar 18;3(2).

[2] Linux Foundation. http://www.linuxfoundation.org/news-

media/infographics

[3] Rosenblum N, Zhu X, Miller BP. Who wrote this code?

identifying the authors of program binaries. InComputer Security–

Figure 3: The change in training loss and testing loss over 200

epochs.

8

ESORICS 2011 2011 Sep 12 (pp. 172-189). Springer Berlin

Heidelberg.

[4] Khoo WM, Mycroft A, Anderson R. Rendezvous: a search

engine for binary code. InProceedings of the 10th Working

Conference on Mining Software Repositories 2013 May 18 (pp.

329-338). IEEE Press.

[5] Raychev V, Vechev M, Yahav E. Code completion with

statistical language models. InACM SIGPLAN Notices 2014 Jun 9

(Vol. 49, No. 6, pp. 419-428). ACM.

[6] Sinai MB, Yahav E. Code similarity via natural language

descriptions. POPL Off the Beaten Track, OBT. 2014;15.

[7] Tan L, Yuan D, Krishna G, Zhou Y. /* iComment: Bugs or bad

comments?*/. InACM SIGOPS Operating Systems Review 2007

Oct 14 (Vol. 41, No. 6, pp. 145-158). ACM.

[8] Karaivanov S, Raychev V, Vechev M. Phrase-based statistical

translation of programming languages. InProceedings of the 2014

ACM International Symposium on New Ideas, New Paradigms,

and Reflections on Programming & Software 2014 Oct 20 (pp. 173-

184). ACM.

[9] Oda Y, Fudaba H, Neubig G, Hata H, Sakti S, Toda T,

Nakamura S. Learning to Generate Pseudo-Code from Source Code

Using Statistical Machine Translation (T). InAutomated Software

Engineering (ASE), 2015 30th IEEE/ACM International

Conference on 2015 Nov 9 (pp. 574-584). IEEE.

[10] Allamanis M, Peng H, Sutton C. A Convolutional Attention

Network for Extreme Summarization of Source Code. arXiv

preprint arXiv:1602.03001. 2016 Feb 9.

[11] Blei DM. Probabilistic topic models. Communications of the

ACM. 2012 Apr 1;55(4):77-84.

[12] Hong L, Davison BD. Empirical study of topic modeling in

twitter. InProceedings of the first workshop on social media

analytics 2010 Jul 25 (pp. 80-88). ACM.

[13] Blei DM, Lafferty JD. Topic models. Text mining:

classification, clustering, and applications. 2009 Jun 15;10(71):34.

[14] Lott B. Survey of Keyword Extraction Techniques. UNM

Education. 2012 Dec 4.

[15] Morris, A., and D. B. Brown. Identifying Program Subject

from Binary Code. University of Wisconsin, Madison. DOI=

http://pages.cs.wisc.edu/~jerryzhu/hack/761/CS761_Alexander_M

orris.pdf

[16] Jozefowicz R, Zaremba W, Sutskever I. An empirical

exploration of recurrent network architectures. InProceedings of

the 32nd International Conference on Machine Learning (ICML-

15) 2015 (pp. 2342-2350).

[17] Hochreiter S, Schmidhuber J. Long short-term memory.

Neural computation. 1997 Nov 15;9(8):1735-80.

[18] Cross entropy https://en.wikipedia.org/wiki/Cross_entropy

[19] Python standard library. https://docs.python.org/3/library/

[20] Gensim - topic modeling for humans.

https://radimrehurek.com/gensim/

[21] Keras - deep learning library. http://keras.io/

[22] Theano - python library to optimize mathematical expressions.

http://deeplearning.net/software/theano/

[23] Kingma D, Ba J. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980. 2014 Dec 22.

[24] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation

of word representations in vector space. arXiv preprint

arXiv:1301.3781. 2013 Jan 16.

[25] Socher R, Lin CC, Manning C, Ng AY. Parsing natural scenes

and natural language with recursive neural networks.

InProceedings of the 28th international conference on machine

learning (ICML-11) 2011 (pp. 129-136).

