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ABSTRACT 
In this paper, we describe the method of learning comment topics 

against corresponding code fragments in order to generate topics 

for the source code that does not contain any documentation or 

comment. Topics are particular distributions over vocabularies that 

describe or reveal the meaning or intention of the code. The built 

system might be helpful for searching code techniques as well as 

for code classification. The major components of our system are: 1. 

topic models learned from comments that convert comments into 

topics; 2. code analyzer and encoder that extract information from 

codes; 3. recurrent neural networks that learn to predict topics from 

low-level instruction sequences. The results we obtained are 

somewhat promising, but cannot be stated as very successful. We 

spare some of our most interesting unexplored ideas in the future 

work part, which we believe could work well for the aimed task.  

General Terms 
Languages.  

Keywords 
Code understanding, code meaning, comment generation, natural 

language processing for software engineering, topic modeling, 

recurrent neural networks, low-level code.  

1. INTRODUCTION 

1.1 Motivation 
It has been increasingly important to write comments for the source 

code while programming [1]. It is claimed that documentation and 

commenting improves software quality and speeds 

implementation, which makes it extremely critical to maintain 

comments consistent and comprehensive for large software 

projects. Nowadays, large software contain millions of lines of 

code, for example Linux operating system in 2012 contained 

approximately 15 million lines of code [2]. The 1.5 million lines of 

which were written just during couple of years. Looking at this 

statistics, it is seen how quickly the size of current large codebases 

increases. Therefore, it is highly important to have well-

documented code in order to facilitate developers in building on top 

of the existing codebase and to decrease the chance of introducing 

bugs due to misunderstanding. 

However, there are still common cases that good documentations 

or comments are not accessible or even do not exist. This can be a 

common scenario in small personal or research projects when the 

developers do not pay attention to or are not skilled at extensively 

documenting their code. A more serious scenario is when, given the 

fact that open source code is becoming very popular and developers 

realized how useful it might be to share the code and knowledge 

with each other or to work collaboratively on the same code, but it 

is still not necessarily helpful for the community of programmers 

to have shared code because of the issues related to commenting it. 

Firstly, some of the current accessible online code might not have 

any comments or description at all which is still not very useful if 

other people cannot easily understand it and use it. Secondly, for 

example while working on large software collaboratively 

programmers might have inconsistent documentation and for that 

case our system might help to proof check the existing comments 

or work on its refinement to have consistency in comments 

throughout the codebase. Thirdly, even consistent documentation 

might lack usefulness because of the fact that some comments 

might describe the meaning of the smaller piece of code without 

mentioning enough about how this code fits into the general picture 

of the rest of the code. Note that the second and the third problem 

could also trouble relatively stable developer groups such as big 

software companies. 

1.2 Project Goal 
Therefore, the initial goal for us was to build a system that can 

generate comments for code pieces that helps identify the 

underlying meaning. This can serve as automatic documentation 

for code without comments or auxiliaries for code with comments. 

For now, there is no such single work that deals with automatic 

comment generation for the code. In fact, this problem is not only 

hard to solve in terms of automatic code understanding but also 

from the point of natural language processing where it would be 

necessary to generate meaningful grammatically correct sentences. 

We realized by doing research that some related work has been 

done in this field but most of them are not trying to directly address 

the exact task. Still some more-or-less relevant pieces of work have 

helped us to approach our goal in a slightly different way. 

We then switch our goal to a less ambitious one as to build a system 

that will generate some keywords or topics that still will give 

information about the underlying meaning of source code. Solving 

this problem might be considered as one of the steps in reaching 

our initial goal of automatic comment generation. We see the 

possible applications of this kind of system in code searching 

techniques as well as in code classification both of which can be in 

turn used for building smart codebases. Thus, this paper will focus 

on describing the model of our system and its implementation for 

this smaller problem.   

2. PREVIOUS WORKS 
We need to consider several areas that might be relevant to solving 

our problem. One of the parts of our problem was understanding 

code, in other words doing code analysis with identification of the 

specific features that give the information about its meaning. 

There are various works that try to find similar source code. 

Previous works emphasize the role of low-level instructions in 

comparing two pieces of source code. In [3] authors identify 
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programmer style from binary code features and find stylistic 

similarities in the code of different programmers. Their 

experiments prove that binary source code can preserve 

information about programmer style. In order to capture the 

property of the binary code, authors generate idioms, graphlets, 

supergraphlets and call graphlets, where idioms are short sequences 

of instructions and graphlets are sub-graphs of the control flow 

graph capturing the program structure. After generating all the 

features for the binary code authors use Support Vector Machine 

(SVM) as a classifier that, firstly, learns positively correlated 

features with the given programmer and then is able to predict 

programmer for the unlabeled data. The second their task is 

approached by using unsupervised learning method, clustering. 

Finally, authors obtained accuracy of 81% for their classifier for ten 

distinct programmers.  

Similar work that uses binary code as a resource for comparing 

source codes and identifying same code compiled by different 

compilers is described in [4]. Authors created a search engine called 

Rendezvous that can search for code in a binary form. Again, in this 

paper we see that as one of the means of program abstraction 

authors use n-grams of the instructions mnemonics that are the 

textual descriptions of instructions compared to opcode. Other 

abstractions of the program are represented by control-flow 

subgraphs and data constants where data constants are 32-bit 

integers and strings that are not changed during the compilation of 

the program. They achieve F2 values of 0.867 and 0.830 on two 

different data sets. 

Also, we need to mention that some of the works that we found 

were interesting to us in terms of how they view the problem of 

program analysis through the lens of natural language processing 

(NLP). These works inspired us to use similar approaches in our 

project. For example, in [5] authors suggest to reduce the problem 

of code completion to the problem of sentence completion in NLP, 

i.e. consider code as a natural language. They focus on the 

programs that use mainly APIs and they fill out the holes in the 

programs by finding the most relevant sequences of code, in other 

words by predicting probabilities of sentences. They use recurrent 

neural networks (RNN) and N-grams for these purposes. According 

to their experiments, in 90% the correct completion of the program 

appears in top 3 results that were suggested by their system.      

Another work that shows how NLP techniques can be used in 

program analysis is described in [6]. In this paper authors reduce 

the problem of semantic relatedness between codes to the problem 

of semantic relatedness between their textual descriptions. For 

example, they implemented their system for automatic association 

of Java and Python code fragments. Again they consider the 

program as a natural language text, although they do apply some 

lightweight type analysis too. NLP techniques used in their method 

for measuring the similarity between descriptions are Latent 

Semantic Analysis (LSA) and term frequency and inverse 

document frequency (tf/idf) measures. Their method gives 80% 

precision and 75% recall while identifying similar code fragments.  

Another part of our problem is comment analysis of the data that 

we have and would like to use for this project.  There is one work 

that is very relevant to our goal in these terms. It is the only paper 

that deals directly with the comments of the source code.  The tool 

iComment that identifies mismatches between code and comments 

is described in more detail in [7]. This tool is able to analyze 

comments that are divided into some topic categories like “lock-

related” or “call-related” comments. The main idea behind it is to 

extract rules from comments that are making assumption and 

extract rules from the source code. Later, they construct decision 

tree in order to look for inconsistencies between extracted rules. 

They have particular set of possible rule schemes. For machine 

learning technique they use Decision Trees. Authors conducted the 

experiments on some large projects like Linux, Mozilla or Apache 

and detected 60 comment code inconsistencies, 33 new bugs and 

27 bad comments. Some of them were reportedly already analyzed 

and confirmed by developers.      

In [8] authors built a system that translates from C# to Java by 

applying statistical methods from NLP incorporated with the 

knowledge of target language’s grammar structure. Similar to 

latter, [9] aims to give a line-to-line translation from Python code 

to its explanation. [10] uses convolutional neural networks coupled 

with attention mechanisms to automatically generate suggestions 

for Java method names. 

After considering all of the mentioned previous works and some 

other works not mentioned here we came to the conclusion that we 

can use existing approaches to program analysis but to also extend 

some of the previous works in this field. So, in our system in order 

to process source code and get features of it we can start with low-

level instructions analysis since as we saw they can give the 

information about meaning of code and for the machine learning 

approach we might use recurrent neural networks given their 

powerfulness over other learning techniques like SVM.     

3. APPROACH 

3.1 Overview 
We aim to generate some representations of comments or 

documentations for each code fragment. The representation should 

be related to the intension or the meaning of the accompanying code 

fragment, which refers to relatively self-contained piece of code, 

for example, a Python function or a Java method. We model this 

representation of comments as a distribution over a certain set of 

“topics”. Each topic stands for a group of related natural language 

words or phrases. Thus, the problem is, given a code fragment, or 

an appropriate presentation of a code fragment, to predict its 

distribution over topics. 

The core part of our approach is a neural network that receives the 

representation of a code fragment and predicts the representation of 

accompanying comments.  

In the analysis phase, we first gather all program fragment and 

comment pairs from the training data. Then, we build a topic model 

over all comments and convert each piece of comments into a 

distribution over topics. At the same time, we build a feature 

extractor or vectorizer for all code fragments and convert each code 

fragment into a numeric representation.  

In the training phase, we train our neural networks with those 

numeric representations. 

In the predicting phase, we use the code encoder and the neural 

networks learnt above, to first convert testing code into numeric 

representations and then feed into the neural networks in order to 

obtain the prediction of the topics for the code. 

In the Figure 1, the flow graphs are shown for all analysis, training 

and predicting phases. 
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(a) Learning phase 

 

(b) Predicting phase with evaluation process 

 

(c) Analysis phase 

Figure 1: Overview of our system in different phases. 

3.2 Topic Modeling from Comments 
Topic modeling algorithms are the algorithms that help people to 

navigate through a large database of documents, understand large 

data or search within it by defining underlying themes of each 

document [11]. Topic modeling showed its power and capability in 

its applications like searching engines or social networks where it 

helps to generate the most popular posts, most popular news or the 

recommendations list of potential user friends, etc. [12].   

The intuition behind the idea of generating topics or keywords from 

the comments in our work is very similar to the idea of generating 

topics for the Twitter posts, since both of them share common 

characteristics. Some of those similar characteristics are that both 

are relatively short in length, they do not contain much of a context, 

even though some of the comments appear to be pretty long. In 

addition to that, both of them might contain grammatical errors, 

sometimes not direct sentence structures, misspellings, 

abbreviations and words that have different meaning in particular 

context, especially comments contain words that make sense only 

in the context of computer science field. Therefore, given this 

similarity we based our topic modeling on one of the existing 

methods used in topic modeling for Twitter posts.  

This method is one of the basic topic modeling techniques called 

Latent Dirichlet Allocation (LDA) [13]. The core idea of LDA is 

that each document represents a distribution over fixed number of 

topics and each topic is a distribution over some number of also 

fixed words. All documents together make a collection. Thus, if 

there are N topics in the whole collection, only some part of it is 

exhibited in a particular document with different proportions for 

each topic.  

Another algorithm that possibly can be used in the topic modeling 

is called tf-idf which stands for Term Frequency and Inverse 

Document Frequency. The purpose of tf-idf is to score the words in 

a text according to how important they are [14]. The idea behind 

this algorithm is to give higher score to the words that appear often 

in a document, but at the same time lower that score if the same 

word appears often in other documents too, because it means this 

word is not unique to the context of that particular document.  

However, in our project we combine the use of LDA keyword/topic 

extraction and tf-idf frequency regularization. Using LDA we 

generate a bag of words for each particular comment block that 

describes a function. For the first set of experiments we decided to 

focus only on the functions and their comments, ignoring classes. 

The result of the topic generation process are a set of automatically 

generated topics and a distribution over the set of topics for each 

particular comment, representing how the comment is composed by 

those topics.  

3.3 Program Representation 
Program representation is itself a nontrivial task. Widely used 

representations are code sequence, abstract syntax tree, control 

flow graph, etc. Different representations affect what our system 

can learn from it. 

3.3.1 Serialization of program 
For the pre-processing part of the source code, we took inspiration 

from some of the previous works that as mentioned earlier use 

sequences of binary code to generate feature vectors such as [15] 

and through experiments proved that sequences of binary code 

contain information about the meaning of code. Working with the 

sequence of binary code is easier than working with the more 

complex structures like graphs, trees, etc. This idea is used in our 

project, so that instead of working with the high level source code 

we firstly translate source code into binary code and then work with 

the sequences of it.  

Other higher level representations are probably capable of 

revealing more syntactic and semantic information of programs. 

Thus, using them can potentially help us improve the performance 

of our approach. However, we stay with the sequence 

representation approach to ease the complexity of our task and it 

gives us chance to try out our ideas sooner. 

In our project, we will be focusing on Python programs and their 

complied intermediate bytecode sequence. We will be looking at 

the sequences of binary instructions and also the names of variables 

and functions associated with the low-level instructions, which 

contain some higher level information about the meaning of 

program.  
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3.3.2 Program embedding 
The way we transform the sequence of binary code to the numerical 

value is by using word2vec [24]. The idea of word2vec is to learn 

with neural network an autoencoder for each distinctive word 

which can best predict its environment. The useful property of 

word2vec is that it clusters or groups words of similar meaning or 

that have some relation into a vector space. It has shown amazing 

results in quantizing semantic relations for nature language words. 

3.4 Deep learner - Recurrent Neural 

Networks  
For our task when choosing the machine learning technique, we 

decided to use Recurrent Neural Networks because of its idea of 

preserving context of the data. As we mentioned earlier there are 

works that apply NLP techniques to do code analysis and which 

consider the program as a natural language.  

Then, after generating those vectors we can use them easily to feed 

into the recurrent neural network, where the same unit of neural 

network recur again and again for all elements in a sequence while 

keeping track of “contextual” information. There is a special type 

of RNN called Long Short Term Memory networks (LSTMs) [17]. 

The largest advantage of this RNN is that it is able to learn long 

term dependencies. On a figure 2 there is a structure of the simple 

LSTM. The difference between LSTM and usual RNN is that in 

LSTM the repeating module has four neural network layers each of 

which decides different parameters, like which information should 

be thrown away, or which information should be passed further, or 

decide what to output [17].    

 

Figure 2: The structure of the repeating module in LSTM. 

In our project we use slightly different version of LSTM called 

Gated Recurrent Unit (GRU) because it is faster and has simpler 

structure. The difference is that it merges “forget” and “input” gates 

and makes some other changes [16]. 

4. EXPERIMENTS 

4.1  Data 
In our project, we focus on Python programs. Python is now a 

popular language in virtually all fields of programming. It would 

be beneficial to a large range of people if we can help gain insight 

of Python code. Also, Python itself tries to have you put descriptive 

comments at the first line of a function, class or even module itself, 

which we call “documentation string”. We use this string as the 

most meaningful and then only comments to help us identify the 

intention of the Python entity.  

We gathered our code data from the source code of major Python 

libraries: numpy 1.11.0, scipy 0.17.0 and scikit-learn 0.17.1. We 

choose them because  

1. They are all about scientific computing. This can help us 

narrow down the field to get more specific topics. 

2. They have good documentation string for each function, 

class and submodules. This essentially allows us to 

extract useful information from them. 

3. They are popular among various users. It would be 

effective if we can help understand programs related to 

the libraries. 

We use Python standard library to parse through libraries to collect 

all pairs for functions and their documentation strings, filter out 

functions without documentation string and get 3979 valid pairs for 

our dataset. We split them randomly into training and testing 

dataset, where 80% (3183 pairs) goes to training and 20% (796 

pairs) goes to testing. 

4.2  Implementation 
Major tools and libraries we used are listed below. 

 Python 3.4.4 with standard library [19] 

o dis: disassembler 

o inspect: inspect live object 

 gensim [20]: Python library for topic modeling. Supports 

word2vec, LDA and tf-idf. 

 Keras [21]: Python library providing API for neural networks. 

 Theano [22]: Python library support fast tensor operation. 

Used as backend of Keras. 

4.2.1 Comment processing 
For the comment part, or namely documentation strings, we extract 

only the first paragraph, tokenize and stem the words. We then 

ignore words that appear only once and convert the passage into 

bag of words. Next we apply tf-idf to regularize the word frequency 

and apply LDA using gensim in order to obtain a set of topics and 

a model that can generate distribution over topics for a bag of word 

tokens. 

4.2.2 Code processing 
We use Python standard library dis to disassemble functions into 

the sequence of instructions along with the names of referred 

variables and functions. Due to the lack of time, we only generate 

numeric values from sequences of binary instructions using 

word2vec with the help of gensim. Each instruction is learned to 

be converted into an 8-dimensional vector 𝑣𝑖𝑛𝑠𝑡𝑟 ∈ [0, 1]8 in order 

to predict in a best way the surrounding window of 10 successive 

instruction sequences. 

4.2.3 Neural networks 
For the learning part in order to use recurrent neural networks we 

used the Python library Keras which provides handy APIs to help 

build various neural network structures.  

The neural network structure we use is shown in the table 1. We 

have first a GRU layer with 64 output neurons, then a fully 

connected hidden layer with 128 neurons and tanh activation, 

finally a full connected output layer with 20 neurons corresponding 

to each topic and softmax activation to help normalize the output 

into a distribution. The notion of activations we used follow the 

standard. Namely, 

tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
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and 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥⃗)𝑖 =
𝑥𝑖

∑ 𝑒𝑥𝑖𝑥𝑖∈𝑥⃗
 

 

We train the neural network using categorical cross entropy [18] as 

objective loss function and Adam [23] as optimizer. In addition, we 

also utilized drop-out to help prevent overfitting and train more 

robust weights in the GRU and the penultimate fully-connected 

layer. 

4.3 Evaluation method 
We will use cross entropy, which is a popular method for measuring 

the difference between distributions, to compare the predicted topic 

distribution and the truth distribution generated from comment in 

the test dataset. Note this is also used as the objective of our NN. 

Another possible idea of evaluating results is to use comparison of 

top 3 topics generated for the given source code with top 3 topics 

from the comments of test set. This gives another sense of the 

accuracy of our predictions.   

One of the challenges we are facing right now is coming up with 

the evaluation procedure for our topic generator: answering a 

question how reasonable topics are generated from given 

comments. Currently, it seems like it might be evaluated only by 

human. e.g. see if each or most of the topics actually appear to 

capture some of closely related group of keywords, and if two 

pieces of comments which are similar in meanings are actually 

assigned with similar distribution over topics.  

Also, it is necessary to evaluate our code vectorizer: answering a 

question of how reasonable and meaningful is a vector 

representation for the given piece of code. We probably might look 

closer into how word2vec tool evaluates its results. 

4.4 Results 
Due to the lack of time, unfortunately, we did not fulfill all the 

experiments that we planned to conduct. In this part we would like 

to present some of our results for code and comment processing. 

4.4.1 Topic model for comments 
We generate 40 topics for all the comments in our dataset. In Table 

2 you can see the first 10 out of 40 topics generated by topic model. 

In Table 3 you can see the similarity score between the first 

function with id 3301 and other top similar functions according to 

their comments. 

4.4.2 Vectorization for bytecode instructions 
There are 84 unique Python bytecode instructions appeared in a 

total number of ~400k instructions we get from all functions in our 

dataset. The mean length of bytecode instruction sequence is 83.1 

for our whole dataset, with a minimum 2 and a maximum 1761. 

Table 4 gives information about some of the binary instructions and 

their vector representation as well as similarity measures for the 

instruction BINARY_ADD and other top similar in the meaning 

instructions.   

4.4.3 Neural network 
We trained our NN on training dataset for 200 epochs. The training 

and testing loss curves over the number of epochs are shown in 

Figure 3. The training time is approximately 140 seconds per 

epoch. 

  

layer0 layer1 layer2 layer3 

I(200) GRU(64, W=0.25, u=0.25) F(128, tanh, d=0.5) F(20, softmax) 

Table 2: The detailed structure of our neural network. I(n) stands for an input layer with input length n. GRU(n, W, u) stands for a 

GRU layer with output dimension n, drop rate W for input gates and drop rate u for recurrent connections. F(n, f, d) stands for fully 

connected layer with n neurons and with output activation function f and drop rate d. Note dropping is only effective in training phase 

and is transparent during prediction. 

 
Topic ID 10 top words of the topics and their weights 

1 
0.088* 

seri 

0.047* 

legendr 

0.045* 

hermit 

0.029* 

histogram 

0.024* 

evalu 

0.022* 

frequenc 

0.021* 

polynomi 

0.020* 

divid 

0.019* 

point 

0.018* 

hermite 

2 
0.040* 

degre 

0.040* 

vandermond 

0.039* 

matrix 

0.034* 

pseudo 

0.032* 

sequenc 

0.032* 

fill 

0.025* 

discret 

0.021* 

transform 

0.021* 

document 

0.017* 

eigenvalu 

3 
0.045* 

space 

0.035* 

charact 

0.024* 

divid 

0.022* 

append 

0.022* 

true 

0.020* 

integr 

0.018* 

fals 

0.018* 

error 

0.016* 

pad_amt 

0.015* 

string 

4 
0.048* 

represent 

0.046* 

string 

0.043* 

helper 

0.042* 

varianc 

0.039* 

wishart 

0.035* 

distribut 

0.030* 

case 

0.027* 

spline 

0.020* 

function 

0.020* 

comput 

5 
0.082* 

predict 

0.071* 

class 

0.059* 

probabl 

0.040* 

target 

0.029* 

label 

0.021* 

dictionari 

0.021* 

companion 

0.019* 

regress 

0.019* 

data 

0.017* 

posterior 

6 
0.047* 

evalu 

0.031* 

repeat 

0.029* 

execut 

0.027* 

behavior 

0.024* 

call 

0.021* 

multivari 

0.019* 

normal 

0.014* 

result 

0.012* 

equival 

0.012* 

axi 

7 
0.036* 

chebyshev 

0.028* 

decis 

0.026* 

final 

0.025* 

implement 

0.025* 

estim 

0.023* 

integr 

0.023* 

method 

0.022* 

singl 

0.022* 

seri 

0.021* 

transform 

8 
0.049* 

test 

0.035* 

normal 

0.027* 

perform 

0.024* 

system 

0.023* 

vector 

0.023* 

classif 

0.020* 

represent 

0.019* 

function 

0.018* 

probabl 

0.018* 

transfer 

9 
0.029* 

map 

0.028* 

appli 

0.025* 

model 

0.025* 

reduct 

0.022* 

project 

0.022* 

data 

0.021* 

gener 

0.021* 

learn 

0.020* 

random 

0.019* 

fit 

10 
0.034* 

standard 

0.034* 

dimens 

0.027* 

input 

0.026* 

maximum 

0.026* 

arrai 

0.026* 

axi 

0.025* 

statist 

0.021* 

updat 

0.020* 

comput 

0.020* 

deviat 

Table 1: 10 topics out of 40 generated from training data. 
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4.5 Discussion 
For the learned topic model, we can see some of the topics clearly 

try to capture discriminative signatures in distribution over all 

possible words. One example is Topic 2, where the presence of 

“vandermond” and “eigenvalue” indicates that the topic is probably 

related to matrix operations over polynomial equation systems. 

Although it may still remain a tricky task to come up with a proper 

short name or description for each of the topics it generated. 

For the vector representation of bytecode instructions, we can see 

our learned representation is rather reasonable in the sense that it 

assigned similar vectors to instructions with similar functionality. 

It can be seen that the instruction BINARY_ADD is projected 

closely to other binary arithmetic operations, among which 

BINARY_SUBSTRACT is identified as the most similar one. 

Our NN seems to converge with training loss above 2.3 and testing 

loss above 2.5 according to the loss curve in Figure 3. We regard 

this not a very good result. The reason could simply be that we lose 

too much useful information from variables and the 

function/method called from the object, as well as the structure and 

control flow of the object. Besides we also cut off instruction 

sequences at certain length and ignore the rest due to the limitation 

in the implementation of our RNN. Thus, a good-enough prediction 

may not be probable based on insufficient inputs. Another possible 

reason could be that the true output of comment topic distributions 

are themselves inaccurate or erroneous. If our learner can get bad 

learning example it could then learn bad.  

5. FUTURE WORK 
There is definitely a lot of experiments that can still be done related 

to the idea of our project. Here we list some of the promising ideas 

that unfortunately were not explored by us more due to lack of time. 

But we believe they have high potential to generate even more 

meaningful results than we currently obtained. 

5.1 Data 
We should say that our data is not sufficient (around 4000 python 

functions). Major methods we use during this project, including 

topic modeling, word2vec and deep neural networks, fulfill their 

powerfulness only upon abundance of accessible data. We can see 

our bytecode instruction vectorizer generates 

5.2 Comment processing 
We should be more careful on data cleaning, which is critical to text 

learning task. 

5.3 Code processing 
We didn't implement our idea of taking variable and function names 

alone with the instruction sequence. This undoubtedly can harm the 

final performance of our system. 

3301 scipy.cluster.hierarchy linkage 1 Performs hierarchical/agglomerative clustering on the condensed distance matrix y. 

2618 sklearn.decomposition.online_lda _update_doc_distribution 1 E-step: update document-topic distribution. 

1359 sklearn.cluster.k_means_ _labels_inertia_minibatch 0.999 Compute labels and inertia using mini batches. 

2677 sklearn.neural_network.rbm gibbs 0.983 Perform one Gibbs sampling step. 

3 scipy.cluster.hierarchy cophenet 0.982 

Calculates the cophenetic distances between each observation in the hierarchical clustering 

defined by the linkage ``Z``. 

3030 scipy.io.matlab.mio5_params _convert_codecs 0.907 Convert codec template mapping to byte order 

2822 numpy._import_tools get_pkgdocs 0.723 Return documentation summary of subpackages. 

1300 sklearn.cluster.k_means_ fit 0.722 Compute k-means clustering. 

445 scipy.io.netcdf itemsize 0.722 Return the itemsize of the variable. 

393 scipy.stats.stats f_oneway 0.722 Performs a 1-way ANOVA. 

Table 4: The similarity score between first function and the rest according to comments.    

 

Instruction Similarity Vector 

BINARY_ADD  (-0.58, 1.44, 2.59, 1.45, -3.26, 3.50, -1.04, 6.47) 

BINARY_SUBTRACT 0.9796327353 (0.23, 2.31, 3.36, 1.12, -2.90, 2.85, -0.58, 7.54) 

BINARY_MULTIPLY 0.9578515887 (0.44, 2.09, 2.36, 0.39, -2.34, 2.97, -1.14, 8.94) 

BINARY_POWER 0.9076402187 (-1.16, 2.90, 2.60, -0.90, -1.08, 3.64, -2.92, 8.05) 

BINARY_TRUE_DIVIDE 0.9009826183 (0.05, 3.70, 2.34, -0.68, -1.19, 2.61, -1.53, 7.86) 

UNARY_NEGATIVE 0.835010767 (1.45, -0.95, 0.55, 0.21, -1.79, 1.49, 0.25, 6.41) 

LOAD_FAST 0.7789117694 (0.93, 0.20, 0.50, 0.52, -1.17, 0.69, 1.01, 1.89) 

STORE_FAST 0.685264051 (2.01, 0.48, -0.46, -0.20, -2.15, 1.86, -1.01, 1.92) 

INPLACE_MULTIPLY 0.6432930231 (1.52, 0.85, 4.73, 0.14, -0.04, -1.18, 1.14, 5.49) 

LOAD_CONST 0.6002776027 (-0.29, -0.20, -1.39, 2.25, -1.15, 1.36, -0.47, 1.63) 

INPLACE_TRUE_DIVIDE 0.5996887088 (0.12, 1.09, 4.18, 1.13, 1.23, -1.69, 0.56, 5.49) 

Table 3: Vector representation of some of the binary instructions and similarity scores between first instruction and the rest. 



7 

 

5.4 Neural network structures  
We can try various combinations of structures and parameters, and 

experiment how they affect the behavior of the system in different 

aspects such as prediction accuracy, training and predicting time. 

One thing worth trying is to add an additional convolutional layer, 

or layers, upon the input sequence before it gets fed into the 

recurrent layer. The rationale is that the verbose length of the input 

low-level instruction sequence weakens the contextual connection 

between codes, also harming the training efficiency of the recurrent 

neural net. Convolutional neural networks are shown to be capable 

of summarizing over low-level representations (such as pixel 

images) and can generally be trained faster than recurrent neural 

nets. With the help of convolutional layer(s), our structure could be 

better at capturing critical effects of successive instructions and 

how they are meaningfully connected to the whole program 

fragment, as well as reducing the training effort by feeding less 

lengthy sequences to recurrent layer. 

5.5 Recursive analysis  
Recursive nature of program structures. Programs are in natural 

recursive structures. Python as an example, package contains 

modules, module contains definition of classes and functions, 

function contains definition of other functions or, more commonly, 

calls to other functions. We can lose valuable information if we 

ignore this fact and just flatten them into series. 

Two kinds of very helpful information underlying the structure 

could be: 

1. Context of Higher-level entity. Higher-level entities are 

entities in the upper level of the static syntax tree, such as a 

class to its member functions or a module to the classes and 

functions reside in it. They are sometimes critical in 

understanding the different meanings of the lower entities 

which could otherwise look very similar or even identical. One 

example could be that one function which computes the 

Euclidean distance of two input arguments could mean an 

equation for a sphere in a class dealing with graphics, or 

otherwise mean the mean least square error in a machining 

learning module. 

2. Meaning of lower-level entity. In almost all the cases, we 

need to know the meaning of subsequent entities (E.g. function 

calls) to help know better about the entity itself we are 

analyzing. However, knowing the meaning of a lower-level 

entity can involve understanding lower-level entities to it 

recursively. Note that in this scenario, we are to deal with 

dynamic behavior of the program, namely function calls, 

which is almost always trickier than the static property. 

Difficulties arise with the introduction of polymorphisms, 

overloading and etc. In future, we could start with static 

analysis of function call hierarchies to see to what extent this 

idea can help with the task. 

Recursive neural networks (RvNN). Make use of recursive neural 

networks which fits perfectly for this propose. RvNN has shown its 

proficiency in learning and predicting for recursive structures, for 

example parsing natural language sentence and understanding 

natural scene images [25].  

Different from recurrent  neural networks (RNN) where the same 

NN unit recurs again and again along the coming sequence, RvNNs 

use the same unit again and again at all nodes in an input that is 

inherently tree structure. This nature makes it able to be easier 

adapted and faster trained for recursive structures like trees. 

In future, we could analyze the code statically and build recursive 

tree structure capturing encapsulation and calling hierarchies for 

given libraries. Then we could use refined ways to vectorize each 

entity in the tree structure and feed it to a RvNN system. The system 

will first propagate from bottom to top over the whole tree in order 

to capture context of higher-level entities. Then our system could 

apply a same RNN structure from bottom to top again to predict for 

each entity with the information of its both higher-level entity and 

all lower-level entity. The system can be trained using similar 

scheme for other RvNNs and RNNs. 

6. CONCLUSION 
In this project, we try to shed some light on the interesting and 

intricate task of automatic comment generation by starting with 

predicting topics that are related to the meaning or intension for a 

code fragment. We build topic models for Python function 

documentation strings, the place to put principle comments 

encouraged by the language, and treat the topic composition of the 

string as the indicator of the function's intension. We then make use 

of only instruction names in the function's compiled bytecode 

sequence and vectorize instructions in a way to best reveal their 

surroundings. Finally, we build a RNN with additional fully 

connected layers and trained it against our code dataset collected 

from major Python library. The result is moderate but we believe it 

can be greatly improved with more data, more careful text 

processing of comments, consideration of lexical and syntactic 

information of the code and more informative recursive model 

combined with recursive neural networks. 
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