A. Let \(f(x) = \sqrt{x} + 1 \). What is the maximum error we would expect when using \(T_2^3 \{ f(x) \} \) to estimate \(\sqrt{4.1} \)?

B. Let \(f(x) = \cos x \). What is the maximum error we would expect when using \(T_4 \{ f(x) \} \) to estimate \(\cos(1) \)?

C. Let \(f(x) = e^{\sin x} \). What is the maximum error we would expect when using \(T_2 \{ f(x) \} \) to estimate \(e^{\sin 0.5} \)?

D. Let \(f(x) = e^x \). Find an \(n \), such that \(R_n \{ f(x) \} \) is less than 0.001 when \(x = 1 \).

E. Let \(f(x) = \sin x \). Find an \(n \), such that \(R_n \{ f(x) \} \) is less than 0.0005 when \(x = 0.5 \).

F. Let \(f(x) = \ln(x + 1) \). Find an \(n \), such that \(R_n \{ f(x) \} \) is less than \(10^{-3} \) when approximating \(\ln(2) \).