MALT: Distributed Data-Parallelism
for Existing ML Applications

Hao Li*, Asim Kadav T, Erik Kruus, Cristian Ungureanu

NEC Labs, Princeton
{asim, kruus, cristian} @nec-labs.com

Abstract

Machine learning methods, such as SVM and neural net-
works, often improve their accuracy by using models with
more parameters trained on large numbers of examples.
Building such models on a single machine is often impracti-
cal because of the large amount of computation required.

We introduce MALT, a machine learning library that inte-
grates with existing machine learning software and provides
data parallel machine learning. MALT provides abstractions
for fine-grained in-memory updates using one-sided RDMA,
limiting data movement costs during incremental model up-
dates. MALT allows machine learning developers to specify
the dataflow and apply communication and representation
optimizations. Through its general-purpose API, MALT can
be used to provide data-parallelism to existing ML appli-
cations written in C++ and Lua and based on SVM, ma-
trix factorization and neural networks. In our results, we
show MALT provides fault tolerance, network efficiency and
speedup to these applications.

1. Introduction

Machine learning (ML) is becoming increasingly popular
due to a confluence of factors: an abundance of data pro-
duced and captured in digital form [31]; an abundance of
compute power and convenient access to it from various de-
vices; and advances in the ML field, making it applicable to
an ever growing number of situations [29]. The acceptance
and success of ML, from natural language processing to im-
age recognition to others, comes from the increasing accu-

* Work done as NEC Labs intern.
T Contact author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EuroSys’15, April 21—25, 2015, Bordeaux, France.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3238-5/15/04.

http://dx.doi.org/10.1145/2741948.2741965

racy achieved by ML applications. This accuracy is achieved
partly through advances in ML algorithms, but also through
using known algorithms with larger models trained on larger
datasets [29]. Building these models on a single machine is
often impractical because of the large amount of computa-
tion required, or may even be impossible for very large mod-
els such as those in state-of-the-art image recognition.
Existing data-parallel frameworks such as the map-reduce
model have proven to be tremendously useful and popular
paradigm for large-scale batch computations. However, ex-
isting frameworks are a poor fit for long running machine
learning tasks. Machine learning algorithms such as gra-
dient descent are iterative, and make multiple iterations to
refine the output before converging to an acceptable value.
Machine learning tasks have all of the following properties:

® Fine-grained and Incremental: Machine learning tasks
perform repeated model updates over new input data.
Most existing processing frameworks lack abstractions to
perform iterative computations over small modifications
efficiently. This is because in existing map-reduce imple-
mentations, jobs synchronize using the file-system [24]
or maintain in-memory copies of intermediate data [54].
For computations with large number of iterations and
small modifications, techniques such as these are sub-
optimal.

e Asynchronous: Machine learning tasks that run in parallel
may communicate asynchronously. As an example, mod-
els that train in parallel may synchronize model parame-
ters asynchronously. Enforcing determinism in the order
of parameter updates can cause unnecessary performance
overhead.

e Approximate: Machine learning tasks may perform com-
putation stochastically and often an approximation of the
trained model is sufficient. Existing general purpose sys-
tems rarely provide abstractions for trading off strong
guarantees such as consistency or accuracy for perfor-
mance (reduced job times).

® Need Rich Developer Environment: Developing ML ap-
plications require a rich set of ML libraries, developer
tools and graphing abilities which is often missing in

many highly scalable systems. Furthermore, existing ML
software such as sci-kit [2], Torch [19], RAPID [42],
R [4] provide an efficient single-system library that per-
forms well over multiple cores. However, most exist-
ing distributed learning tasks force developers to re-write
their existing libraries in a new software stack and expose
an unfamiliar environment to the developers.

To address these properties, we propose a system called
MALT (stands for distributed Machine Learning Toolset),
that allows ML developers to run their existing ML soft-
ware in a distributed fashion. MALT provides an efficient
shared memory abstraction that runs existing ML software
in parallel and allows them to communicate updates period-
ically. MALT exports a scatter—gather API, that al-
lows pushing model parameters or model parameter updates
(called gradients) to parallel model replicas. These replicas
then process the received values by invoking a user-supplied
gather function locally. Additionally, the API allows de-
velopers to specify the dataflow across these replicas and
specify representation optimizations (such as sparseness).
MALT communication is designed using one-sided RDMA
writes (no reads for faster round-trip times [33]) and pro-
vides abstractions for asynchronous model training.

Our data-parallel, peer-to-peer model communication
complements the master-slave style parameter server ap-
proach [22, 23, 36]. In MALT, parallel model replicas send
model updates to one-another instead of a central parame-
ter server. This reduces network costs because the machines
only communicate model updates back and forth instead of
full models. Furthermore, implementing MALT, does not
require writing separate master/slave code or dealing with
complex recovery protocols to deal with master failures.

The contributions of this paper are as follows:

e We describe a general data-parallel machine learning
framework that provides a simple and flexible API for
parallel learning. MALT provides APIs for sending model
parameter updates, designing the dataflow of the commu-
nication, and making this communication synchronous
or asynchronous. Furthermore, MALT abstracts RDMA
programming, and deals with system issues like recover-
ing from unresponsive or failed nodes.

e We design a shared memory abstraction for ML work-
loads, that provides sending updates with no CPU over-
heads at the receiver, allowing for fully asynchronous
model training. Furthermore, we demonstrate a network
efficient, parallel learning implementation of MALT
where we trade-off model freshness at replicas with faster
model training times, for the same final accuracy. In our
results, we show that our network efficient implemen-
tation achieves up to 1.8X speedup over asynchronous
training, for training SVM over a 250 GB Genome clas-
sification workload, at 10% of network bandwidth costs.

e MALT provides ML developers data-parallelism in their
existing ML software. We demonstrate how MALT can
transform existing ML software written in procedural
or scripting languages with reasonable developer efforts.
This allows developers to incorporate data-parallelism
in their applications in a familiar environment and use
rich developer tools provided within their ML software.
We use MALT to rewrite three applications for data-
parallelism: SVM [12], matrix factorization [46] and neu-
ral networks [42]. We demonstrate how MALT can be
used to gain speedup over a single machine for small
datasets and train models over large datasets that span
multiple machines efficiently.

We now present background on machine learning.

2. Distributed Machine Learning

Machine learning algorithms generalize from data. Machine
learning algorithms train over data to create a model repre-
sentation that can predict outcomes (regression or classifi-
cation) for new unseen data. More formally, given a train-
ing set {(x1,91), (X2,¥2), ---, (Xn, yn)}, the goal of model
training is to determine the distribution function f such that
y = f(x,w). The input x may consist of different features
and the model consists of parameters w, representing the
weights of individual features to compute y. The goal of
model training is to estimate the values of model parame-
ters w. During model testing, this model is tested using an
unseen set of x; to compare against ground truth (already
known), to determine the model accuracy. Thus, machine
learning algorithms train to minimize the loss, which rep-
resents some function that evaluates the difference between
estimated and true values for the test data.

Model training algorithms are iterative, and the algo-
rithm starts with an initial guess of the model parameters
and learns incrementally over data, and refines the model
every iteration, to converge to a final acceptable value of
the model parameters. Model training time can last from
minutes to weeks and is often the most time consuming
aspect of the learning process. Model training time also
hurts model refinement process since longer training times
limit the number of times the model configuration param-
eters (called hyper-parameters) can be tuned through re-
execution.

Machine learning algorithms can benefit from a scale-out
computing platform support in multiple ways: First, these
algorithms train on large amounts of data, which improves
model accuracy [29]. Second, they can train large models
that have hundreds of billions of parameters or require large
computation such as very large neural networks for large-
scale image classification or genomic applications [16].
Training with more data is done by data parallelism, which
requires replicating the model over different machines with
each model training over a portion of data. The replicas
synchronize the model parameters after a fix number of iter-

ations. Training large models requires the model to be split
across multiple machines, and is referred to as model paral-
lelism.

The MALT API limits itself to data parallelism because
models that learn over vast amounts of training data are more
common than models with 100 billion parameters [9]. Fur-
thermore, a single machine can process models of the or-
der of 10 billion parameters in-memory (about 80 GB for
dense representation; a server with 128GB DRAM costs
about $3000). This is sufficient for most large machine learn-
ing models. Second, even though exposing a distributed,
replicated, shared array is fairly straight-forward, efficiently
providing model parallelism in existing applications is non-
trivial. It requires exposing APIs and modifying machine
learning algorithms to ensure that the model is split such that
the communication costs are limited within each iteration
(this is zero for data-parallelism). This is feasible for systems
that focus on specific algorithms that are amenable to such
splits like convolutional networks [16] or systems that write
their own algorithms [36]. MALT’s goal is to provide a sim-
ple, general purpose API that integrates easily with existing
software, with a wide-variety of algorithms with reasonable
developer efforts.

With datasets getting larger, there has been a recent fo-
cus to investigate online algorithms that can process data-
sets incrementally such as the gradient descent family of
algorithms. Gradient descent algorithms compute the gra-
dient of a loss function over the entire set of training ex-
amples. This gradient is used to update model parameters
to minimize the loss function [11]. Stochastic Gradient De-
scent (SGD) is a variant of the above algorithm that trains
over one single example at time. With each example, the pa-
rameter vector is updated until the loss function yields an
acceptable (low) value. SGD and its variants are preferred
algorithms to train over large data-sets because it can pro-
cess large training datasets in batches. Furthermore, gradient
descent can be used for a wide-range of algorithms such as
regression, k-means, SVM, matrix- factorization and neural
networks [13, 17].

In data-parallel learning, model replicas train over multi-
ple machines. Each replica trains over a subset of data. There
are several ways in which the individual model parameters
can be synchronized. We describe three such methods. First,
models may train independently and synchronize parame-
ters when all parallel models finish training by exhausting
their training data [56]. These methods are commonly used
to train over Hadoop where communication costs are pro-
hibitive. In addition, while these models may train quickly
because of limited communication between replicas, they
may require more passes over training data (each pass over
training data is called an epoch) for acceptable convergence.
Furthermore, for non-convex problems, this method may not
converge, since the parallel replicas may be trapped in a dif-

ferent local minimas, and averaging these diverging models
may return a model with low accuracy.

The second method is the parameter server approach [23,
36]. Here, individual models send their updates to a central
parameter server (or a group of parameter servers) and re-
ceive an updated model from them. A third method is the
peer-to-peer approach (used in MALT), where parameters
from model replicas train in parallel and are mixed every
(or every few) iteration [30]. The last two methods achieve
good convergence, even when the parameters are commu-
nicated asynchronously [30, 37]. With MALT, we perform
asynchronous parameter mixing with multiple parallel in-
stances of model replicas. This design allows developers to
write code once, that runs everywhere on parallel replicas
(no separate code for parameter server and client). This de-
sign also simplifies fault tolerance — a failed replica is re-
moved from the parameter mixing step and its data is redis-
tributed to other replicas. Finally, instead of performing sim-
ple gradient descent, MALT can be used to implement aver-
aging of gradients from its peers, which provides speedup in
convergence for certain workloads [13, 52].

The goal of our work is to provide distributed machine
learning over existing ML systems. MALT exposes an asyn-
chronous parameter mixing API that can be integrated into
existing ML applications to provide data-parallel learning.
Furthermore, this API is general enough to incorporate dif-
ferent communication and representation choices as desired
by the machine learning developer. MALT provides peer-to-
peer learning by interleaving gradient (changes to parame-
ters) updates with parameter values to limit network costs.
In the next section, we describe MALT design.

3. MALT Architecture

Figure 1 describes MALT architecture. Model replicas train
in parallel on different cores (or sets of cores) across differ-
ent nodes using existing ML libraries. ML libraries use the
MALT vector library to create model parameters or gradi-
ents (updates to parameters) that need to be synchronized
across machines. These vectors communicate over DiS-
Tributed One-sided Remote Memory or dstorm. Further-
more, like other data-parallel frameworks, MALT loads data
in model-replicas from a distributed file-system such as NFS
or HDFS. Developers use the MALT API to shard input data
across replicas and send/receive gradients. Furthermore, de-
velopers can also specify the dataflow across replicas and
make their algorithms fully asynchronous. We now describe
the shared memory design, the MALT API that allows devel-
opers access to shared memory, fault tolerance and network
communication mechanisms that allow developers to bal-
ance communication and computation.

3.1 Abstractions for Shared Memory with dstorm

Machine learning models train in parallel over sharded data
and periodically share model updates after few iterations.

Replica 1 Replica 2 Replica n
SGD using SGD using SGD using
V1 as primary V2 as primary Vn as primary
model param model param model param

vector object library

dstorm (distributed one-sided remote memory)

HDFS/NFS (for loading training data)

Figure 1. MALT architecture. Existing applications run with
modified gradient descent algorithms that receive model up-
date (V) from replicas training on different data. Model vectors
are created using a Vector Object Library that allows creation
of shared objects. Each replica scatters its model update af-
ter every (or every few) iteration and gathers all received up-
dates before the next iteration.

The parallel replicas may do so synchronously (referred to as
the bulk-synchronous processing [48]). However, this causes
the training to proceed at the speed of the slowest machine in
that iteration. Relaxing the synchronous requirement speeds
up model training but may affect the accuracy of the gener-
ated model. Since model weights are approximate, applica-
tions developers and researchers pick a point in this trade-off
space (accuracy vs speed) depending on their application and
system guarantees [21, 46]. Furthermore, this accuracy can
be improved by training for multiple epochs or increasing
the amount of data at for training each model replica.

The original map-reduce design communicates results
over GFS/HDFS. However, using disk for communication,
results in poor performance especially for machine learning
applications which may communicate as often as every iter-
ation. Spark [54] provides immutable objects (RDDs) for an
efficient in-memory representation across machines. Spark
provides fault tolerance using lineage of RDDs as they are
transformed across operations. However, this enforces deter-
minism in the order of operations. As a result, the immutabil-
ity and determinism makes it less suitable for fine-grained,
asynchronous operations [49, 54]. Furthermore, machine
learning applications may contain multiple updates to large
sparse matrices or may need to propagate model updates
asynchronously across machines and need first-class sup-
port for fine-grained and asynchronous operations.

MALT’s design provides efficient mechanisms to trans-
mit model updates. There has been a recent trend of wide
availability for cheap and fast infiniBand hardware and they
are being explored for applications beyond HPC environ-
ments [25, 39]. RDMA over infiniBand allows low latency
networking of the order of 1-3 micro-seconds by using user-

space networking libraries and by re-implementing a portion
of the network stack in hardware. Furthermore, the RDMA
protocol does not interrupt the remote host CPU while ac-
cessing remote memory. RDMA is also available over Ether-
net with the newer RDMA over Converged Ethernet (RoCE)
NICs that have comparable performance to infiniBand. In-
finiBand NICs are priced competitively with 10G NICs,
costing around $500 for 40 Gbps NICs and 800$ for 56 Gbps
NICs (as of mid 2014). Finally, writes are faster than reads
since they incur lower round-trip times [33]. MALT uses
one-sided RDMA writes to propagate model updates across
replicas.

We build dstorm (dstorm stands for DiSTributed One-
sided Remote Memory) to facilitate efficient shared mem-
ory for ML workloads. In MALT, every machine can create
shared memory abstractions called segments via a dstorm
object. Each dstorm segment is created by supplying the
object size and a directed dataflow graph. To facilitate one-
sided writes, when a dstorm segment is created, the nodes
in the dataflow synchronously create dstorm segments.
dstorm registers a portion of memory on every node with
the infiniBand interface to facilitate one-sided RDMA oper-
ations. When a dstorm segment is transmitted by the sender,
it appears at all its receivers (as described by the dataflow),
without interrupting any of the receiver’s CPU. We call this
operation as scatter. Hence, a dstorm segment allocates
space (a receive queue) in multiples of the object size, for
every sender in every machine to facilitate the scatter
operation. We use per-sender receive queues to avoid invok-
ing the receiver CPU for resolving any write-write conflicts
arising from multiple incoming model updates from differ-
ent senders. Hence, our design uses extra space with the
per-sender receive queues to facilitate lockless model prop-
agation using one-sided RDMA. Both these mechanisms,
the one sided RDMA and per-sender receive queues ensure
that the scatter operation does not invoke the receive-side
CPUs.

Once the received objects arrive in local per-sender re-
ceive queues, they can be read with a local gather operation.
The gather function uses a user-defined function (UDF),
such as an average, to collect the incoming updates. We also
use queues on the sender side, allowing senders to perform
writes asynchronously. Additionally, the sender-side queues
maintain a back-pressure in the network to avoid conges-
tion [47].

The receiver does not know when its per-sender receive
queues get filled unless the receiver is actively polling and
consuming these items. When the receive queue is full, the
default behavior of dstorm is to over-write previously sent
items in the queue. We discuss the consistency behavior after
we describe the vector abstraction to create shared vectors or
tensors (multi-dimensional vectors) over the dstorm object.

3.2 Vector Object Library: Programming Dstorm for
Machine Learning

We build a vector object library (VOL) over dstorm that al-
lows creating vector objects over shared memory. The goal
of VOL is to 1) expose a vector abstraction instead of shared
memory abstraction (dstorm) and 2) to provide communi-
cation and representation optimizations. ML developers can
specify gradients or parameters as a VOL vector (or tensor)
and specify its representation (sparse or dense). They also
specify a dataflow graph describing how the updates should
be propagated in the cluster which is used to create the un-
derlying dstorm segment.

Hence, creating a vector in turn creates a dstorm seg-
ment that allows this vector to be propagated to all machines
as described in the dataflow graph. This dataflow describes
which machines may send updates to one another (in the
simplest case, everyone may send their updates to every-
one). Hence, an edge in the graph from node A to nodes
B and C implies that when node A pushes a model update,
it is received by nodes B and node C. As different machines
compute model updates, they scatter these updates to other
remote nodes without acquiring any locks or invoking any
operations at the receiver. However, if a machine sends too
many updates before the previous ones are consumed, the
previous updates are over-written.

VOL inherits scatter and gather calls from dstormto
send the vector to remote machine and gather all the received
updates (from local memory). Developers can also specify
where to send the model updates within scatter calls. This
provides fine-grained access to dataflow to the developers,
allowing greater flexibility [40]. Table 1 describes the VOL
API. In Section 4, we describe how this API can be used to
easily convert serial ML algorithms to data-parallel.

Consistency guarantees: We now describe the consis-
tency guarantees that MALT provides when transmitting
model updates to other replicas. With machine learning ap-
plications, which are stochastic in nature, model updates
maybe be over-written or updated locklessly without affect-
ing overall accuracy of the model output significantly. For
example, Hogwild demonstrates that asynchronous, lock-
less model updates lead to models that ultimately converge
to acceptable accuracy [46]. Hence, MALT need not provide
strict consistency guarantees when sending model updates
over infiniBand (ex. as in key-value stores [25]). However,
since MALT is a general-purpose API, it provides mecha-
nisms to deal with following inconsistency issues:

1. Torn reads: When a model replica sends a model update
to another model replica, the sender may overwrite the
model update while the receiver is reading it in the case
where the replicas operate asynchronously and the re-
ceive queue is full. MALT provides an additional atomic
gather which reads the shared memory in an atomic
fashion.

2. Stale replicas: Model updates carry an iteration
count information in the header. When a receiver re-
alizes that a specific model update is arriving too slowly,
the receiver may stall its operations until the sender
catches up. This design is similar to the bounded-staleness
approach explored by recent work [21].

If stricter guarantees are required, the model replicas can
train synchronously in bulk-synchronous fashion and use the
barrier construct to do so. The barrier construct is a
conventional barrier which waits for all model replicas to
arrive at a specific point in the training process.

3.3 Fault tolerance

MALT has a straightforward model for fault tolerance. The
training data is present on all machines in a distributed file
system. The model replicas train in parallel and perform
one-sided writes to all peers in the communication. A fault
monitor on every node examines the return values of asyn-
chronous writes to sender-side queues. If the fault moni-
tor observes failed writes, it performs a synchronous health
check of the cluster with other monitors on other nodes. A
node is considered dead if the node is corrupt (the shared
memory or the queue has failed) and the remote fault mon-
itor reports this, or if the node is unreachable by any of the
other healthy node’s fault monitor. Furthermore, to detect
the failure cases that do not result in a machine or a process
crash, local fault monitors can detect processor exceptions
such as divide by zero, stack corruption, invalid instructions
and segmentation faults and terminate the local training pro-
cess.

In case of a failure, the working fault monitors create a
group of survivor nodes to ensure that all future group oper-
ations such as barrier, skip the failed nodes. The RDMA
interface is re-registered (with old memory descriptors) and
the queues are re-built. This is to avoid a zombie situation
where a dead node may come back and attempt to write to
one of the previously registered queues. Finally, the send and
receive lists of all model replicas are rebuilt to skip the failed
nodes and the training is resumed. Since the send and receive
lists are re-built, it is possible to re-run any MALT configu-
ration on a smaller number of nodes. If there is a network
partition, training resumes on both clusters independently.
However, it is possible to halt the training if the partition
results in a cluster with very few nodes.

After recovery, if an acceptable loss value is not achieved,
the training continues on the survivor replicas with addi-
tional training examples until the models converge. This
causes a slowdown in the training process proportional to
the missing machines apart from a short delay to synchro-
nize and perform recovery (of the order of seconds). MALT
only provides fail-stop fault tolerance, i.e. it can only han-
dles failures where a fault monitor detects corruption or is
unresponsive because of the MALT process being killed or
a machine failure or a network failure. MALT cannot handle

Node 1

1 ‘
Node 6 Data Node 2

Model Parameter 1

i ‘ il ‘
Data Data

Model Parameter 6

Model Parameter 2
Node 5

1] ‘
U
&4 Data

Model Parameter 5

Node 3
Il ‘

Data

Model Parameter 3

Model Parameter 4

=] ‘ Node 4

aﬂ | Data

Model Parameter

il ‘Nodez
Data

Model Parameter 2

= ‘
Node 6 @
& Data

Model Parameter 6

Node 5 = ‘HHI‘ ‘
Data

Model Parameter 5 \

1 Model Parameter 3

Model Parameter 4
[| Node 4
= |

.| Data

Figure 2. All-reduce exchange of model updates. All ar-
rows indicate bi-directional communication. As number of
nodes (/V) grow, total number of updates transmitted increases
O(N?).

Byzantine failures such as when a machine sends corrupt
gradients or software corruption of scalar values that cannot
be detected by local fault monitors.

MALT can afford a simple fault tolerance model because
it only provides data parallelism and does not split the model
across multiple machines. Furthermore, the model training
is stochastic and does not depend on whether the training
examples are processed in a specific order, or the training
examples are processed more than once, or whether all the
training examples have been processed, as long as the model
achieves an acceptable accuracy. Furthermore, MALT im-
plements peer-to-peer learning and does not have a central
master. As a result, it does not need complex protocols like
Paxos [15] to recover from master failures.

3.4 Communication Efficiency in MALT

MALT’s flexible API can model different training configu-
rations such as the parameter server [36], mini-batching [20,
38] and peer-to-peer parameter mixing [30].

When MALT is trained using the peer-to-peer approach,
each machine can sends its update to all the other machines
to ensure that each model receives the most recent updates.
We refer to this configuration as MALT,;. As the number of
nodes (V) increases, the gradient communication overhead
in MALT,; increases O(/N?) times, in a naive all-reduce im-
plementation. Efficient all-reduce primitives such as the but-
terfly [14] or tree style all-reduce [7], reduce the communi-
cation cost by propagating the model updates in a tree style.
However, this increases the latency by a factor of the height
of the tree. Furthermore, if the intermediate nodes are af-

Figure 3. Halton-sequence exchange of model updates (N =
6). Each ith machine sends updates to log(N) (2 for N =
6) nodes. (to N/2 + i and N/4 + i). As number of nodes
N increases, the outbound nodes follows Halton sequence
(N/2,N/4,3N/4,N/8,3N/8..). All arrows are uni-direction.
As number of nodes(N) grow, total number of updates trans-
mitted increases O(N log N).

fected by stragglers or failures, an efficient all-reduce makes
recovery complex.

In MALT, we propose an efficient mechanism to prop-
agate model updates, what we refer to as indirect propa-
gation of model updates. A developer may use the MALT
API to send model updates to either all N nodes or fewer
nodes k, (1 < k < N). MALT facilitates choosing a value
k such that a MALT replica (i) disseminates the updates
across all the nodes eventually; (ii) optimizes specific goals
of the system such as freshness, and balanced communica-
tion/computation ratio in the cluster. By eventually, we mean
that over a period of time all the nodes receive model updates
from every other node directly or indirectly via an interme-
diate node. However, when choosing a value k, less than IV,
the developer needs to ensure that the communication graph
of all nodes is connected.

Hence, instead of performing an all-reduce, MALT lim-
its the reduce operation to a subset of the connected nodes.
However, naively or randomly selecting what nodes to send
updates to may either leave out certain nodes from receiving
updates from specific nodes (a partitioned graph of nodes)
or may propagate updates that may be too stale (a weakly
connected node graph). This may adversely affect the con-
vergence in parallel learning models. We now describe how
MALT can selectively distribute model updates to ensure
low communication costs and uniform dissemination of
model updates.

MALT provides a pre-existing dataflow that sends fewer
model updates and ensures that all the models send/receive
model updates in a uniform fashion. To do so, every node
picks a node in a uniform fashion to ensure that the updates
are distributed across all nodes. For example, if every node
propagates its updates to k£ nodes (kK < N), we pick the
k node IDs based on a uniform random sequence such as
the Halton sequence [1] that generates successive points
that create a k-node graph with good information dispersal
properties. We further propose that each node only send
updates to log(N) nodes and maintain a log(N) sized node
list. This node list contains the nodes to send updates to,
generated using the Halton sequence. Hence, if we mark
the individual nodes in training cluster as 1, ..., N, Node 1
sends its updates to N/2, N/4,3N/4,N/8,3N/8,5N/8, ...
and so on (the Halton sequence with base 2). Hence, in
this scheme, the total updates sent in every iteration is only
O(N log N). We refer to this configuration as MALTyjon-
The MALTy,0n Scheme ensures that the updates are sent
uniformly across the range of nodes. Figures 2 and 3 show
the all-to-all and Halton communication schemes. In case of
a failure with MALTHgj0n, the failed node is removed and
the send/receive lists are rebuilt.

Using MALT’s network-efficient parallel model training
results in faster model training times. This happens because
1) The amount of data transmitted is reduced. 2) The amount
of time to compute average of gradients is reduced since the
gradient is received from fewer nodes. 3) In a synchronized
implementation, this design reduces the number of incoming
updates that each node needs to wait for, before going on
to the next iteration. Furthermore, our solution reduces the
need for high bandwidth interfaces, reducing costs and free-
ing up the network for other applications. In Section 6, we
compare the network costs of indirect updates (MALTajton)
with MALT,; and the parameter server.

Instead of having each node communicate with log(V)
other nodes, developers can program MALT to commu-
nicate with higher (or lower) number of nodes. The key
idea is to balance the communication (sending updates) with
computation (computing gradients, applying received gradi-
ents). Hence, MALT accepts a dataflow graph as an input
while creating vectors for the model parameters. However,
the graph of nodes needs to be connected otherwise the in-
dividual model updates from a node may not propagate to
remaining nodes, and the models may diverge significantly
from one another.

4. Programming Interface

The goal of MALT is to provide data-parallelism to any
existing machine learning software or algorithm. Given the
MALT library and a list of machines, developers launch
multiple replicas of their existing software that perform data-
parallel learning.

MALT exposes an API as shown in Table 1. This API
can be used to create (and port existing) ML applications for
data-parallelism. To do so, the developer creates a parameter
or a gradient object using MALT APIL The dense object is
stored as a float array and the sparse object is stored as
key-value pairs.

Figure 4 shows a serial SGD algorithm (Algorithm 1)
and a parallel SGD written using MALT (Algorithm 2). In
the serial algorithm, the training algorithm goes over entire
data and for each training sample, it calculates the associated
gradient value. It then updates the model parameters, based
on this gradient value.

In order to perform this training in a data-parallel fash-
ion, this algorithm can be re-written using MALT API (as
shown in Algorithm 2). The programmer specifies the repre-
sentation (sparse vs dense) and the dataflow (ALL — which
represents all machines communicate model updates to one-
another, HALTON — which represents the network efficient
API from previous section or the developer may specify
an arbitrary graph — which represents the dataflow graph).
When a job is launched using MALT it runs this code on
each machine. Each machine creates a gradient vector object
using the MALT API, with the required representation prop-
erties (sparse vs dense), and creates communication queues
with other machines based on the dataflow specified, and
creates receiving queues for incoming gradients.

Algorithm 1 Serial SGD

1: procedure SERIALSGD

2 Gradient g,

3 Parameter w;

4 for epoch = 1 : maxFEpochs do
5: fori=1: maxData do
6

7

8

g = cal_gradient(datali]);
W =W+ g,

return w

Algorithm 2 Data-Parallel SGD with MALT
1: procedure PARALLELSGD
2: maltGradient g(SPARSE, ALL);
Parameter w;
for epoch =1 : maxEpochs do
for i =1 : mazData/totalMachines do
g = cal_gradient(datali]);
g.scatter(ALL);
g.gather(AVG);
wW=w+g;

0 DR

10: return w

Figure 4: Data-parallel machine learning using MALT. The se-
rial code (in Algorithm 1) is converted to data-parallel using
MALT. All machines run the above code (in Algorithm 2). In-
stead of average, user may specify a function to combine in-
coming gradients/parameters. Optionally, g.barrier () may
be used to run the algorithm in a synchronous fashion.

MALT API call

Purpose of the call

g = createVector (Type)

Creates a globally accessible shared model parameter or gradient
(model update) vector. Type signifies sparse or dense.

g.scatter (Dataflow Graph
optional)

Send model (or just model updates) to machines as described in graph
(default sends to all machines).

g.gather (func)

Apply user-defined function func (like average) over model updates
that have arrived (locally) and return a result.

g.barrier ()

Distributed barrier operation to force synchronization.

load_data (f)

Shard and load data from HDFS/NFS from file f.

Table 1. MALT interface. g.scatter () performs one-sided RDMA writes of gradient g to other machines. g.gather (), alocal
operation, applies average to the received gradients. g.barrier () makes the algorithm synchronous

Each machine trains over a subset of training data and
computes the gradient value for each example. After train-
ing over each example (or bunch of examples), this gradient
value is sent using the one-sided RDMA operation. The al-
gorithm then computes an average of the received gradients
using the gather function. Instead of an average, one can
specify a user-defined function (UDF) to compute the re-
sulting gradient from all incoming gradients. This is useful
for algorithms where a simple averaging may not work, such
as SVM may require an additional re-scaling function apart
from performing an average over the incoming parameters.
The training finishes when all machines in the cluster finish
training over local examples. The final parameter value w is
identical across all machines in the synchronous, all-all case.
In other cases, w may differ slightly across machines but is
within an acceptable loss value. In such cases, the parame-
ters from any machines may be used as the final model or
an additional reduce can be performed over w to obtain final
parameter values.

For more complex algorithms, such as neural networks,
which require synchronizing parameters at every layer of
neural network, each layer of parameters is represented
using a separate maltGradient and can have its own
dataflow, representation and synchronous/asynchronous be-
havior.

Finally, it may be difficult to use the maltGradient al-
location for certain legacy applications that use their own
data-structures for parameters or gradients. For such opaque
representations, where MALT cannot perform optimizations
such as sparseness, developers directly use dstorm. dstorm
provides low-level shared memory access with scatter and
gather operations, allows managing the dataflow and con-
trolling the synchronization. Furthermore, the opaque data-
structures need to provide a serialization/de-serialization
methods to copy-in/out from dstorm. Developers can also
implement model-parallelism by carefully sharding their
model parameters over multiple dstorm objects.

4.1 Applications

We use the MALT API to make the following algorithms
data-parallel. Currently, MALT allows programmers to ex-
tend or write programs in C++ and Lua.

4.1.1 Support Vector Machines

We explore distributed stochastic gradient descent algo-
rithms over linear and convex problems using Support Vec-
tor Machines(SVM). We use Leon Bottou’s SVM-SGD [12].
Each machine calculates the partial gradient and sends it to
other machines. Each machine averages the received gradi-
ents and updates its model weight vector (w) locally.

4.1.2 Matrix Factorization

Matrix factorization involves partitioning a large matrix into
its two smaller matrices. This is useful for data composed
of two sets of objects, and their interactions needs to be
quantified. As an example, movie ratings data contains in-
teractions between users and movies. By understanding their
interactions and calculating the underlying features for ev-
ery user, one can determine how a user may rate an unseen
movie. To scale better, large-scale matrix factorization is not
exact, and algorithms approximate the factorizations [27].
SGD gives good performance for matrix factorizations on
a single machine [34], and we perform matrix factorization
using SGD across multiple machines. We implement Hog-
wild [46] and extend it from a multi-core implementation to
a multi-node using MALT. With Hogwild, the gather func-
tion is a replace operation that overwrites parameters.

4.1.3 Neural Networks

We train neural networks for text learning. The computa-
tion in a neural network occurs over multiple layers forming
a network. The training happens in forward and backward
passes. In the forward pass, the input samples are processed
at each layer and fed forward into the network, finally return-
ing a predicted result at the end of the network. The differ-
ence in the ground truth and this predicted result is used in
the back-propagation phase to update model weights using
the gradient descent algorithm. Parallel training over neural
networks is more difficult than SVM for two reasons. First,
a data-parallel neural network requires synchronizing pa-
rameters for every layer. Second, finding the model weights
for neural networks is a non-convex problem. Hence, just
sending the gradients is not sufficient as the parallel model
replicas maybe stuck in different local minimas. Hence, gra-
dient synchronization needs to be interleaved with whole

model synchronization. We use RAPID [42], and extend its
neural-network library with MALT. RAPID is similar in ar-
chitecture to Torch [19], and provides a C++ library with
Lua front-end for scripting. MALT exports its calls with Lua
bindings and integrates with RAPID.

5. Implementation

MALT is implemented as a library, and is provided as a pack-
age to SVM-SGD, Hogwild and RAPID [42], allowing de-
velopers to use and extend MALT. dstorm is implemented
over GASPI [8], that allows programming shared memory
over infiniBand. GASPI exposes shared memory segments
and supports one-sided RDMA operations. dstorm imple-
ments object creation, scatter, gather and other operations.
dstorm hides all GASPI memory management from the
user and provides APIs for object creation, scatter/gather
and dataflow. GASPI is similar to MPI, and MALT can be
implemented over MPI. However, GASPI has superior per-
formance to certain MPI implementations [28].

We implement the vector object library over dstorm
that provides vector abstractions, and provides other APIs
for loading data, sparse and dense representations. Overall,
MALT library is only 2366 LOC. To integrate with Lua, we
have written Lua bindings (in Lua and C++) consisting of
1722 LOC. In Section 6.3, we evaluate the costs of integrat-
ing individual applications to MALT.

6. Evaluation
We evaluate MALT along the following criteria:

1. Speedup with MALT: What is the speedup provided by
using MALT ?

2. Network Optimizations: How do the MALT network op-
timizations benefit training time?

3. Developer Effort: What is the developer effort required to
port existing ML applications?

4. Fault Resilience: How does MALT behave in the pres-
ence of failures?

We use MALT to modify SVM-SGD, Hogwild (matrix
factorization) and RAPID (neural networks). Table 2 lists
the application and the datasets used. We perform all exper-
iments on a 8 machine research cluster connected via an in-
finiBand backplane. We run multiple processes, across these
8 machines, and we refer to each process as a rank (from the
HPC terminology). We run multiple ranks on each machine,
especially for models with less than 1M parameters, where
a single model replica is unable to saturate the network and
CPU. Each machine has an Intel Xeon 8-core, 2.2 GHz Ivy-
Bridge processor with support for SSE 4.2/AVX instruc-
tions, and 64 GB DDR3 DRAM. Each machine is connected
via a Mellanox Connect-V3 56 Gbps infiniBand card and all
machines are connected using a Mellanox managed-switch
with copper cables. Our 56 Gbps infiniBand network archi-

Application | Model Dataset Training| Testing | Params
Document SVM RCV1 781K 23K | 47,152
classification

Image SVM Alpha 250K | 250K | 500
classification

DNA SVM DNA 23M 250K 800
Webspam SVM | Webspam 250K | 100K | 16.6M
detection

Genome SVM | Splice-site 10M | 11K | 1IM
detection

Collaborative |y Netflix 100M | 2.8M | 14.9M
filtering

CTR. . SSI KDD12 150M 100K 12.8M
prediction

Table 2. MALT applications and dataset properties.

tecture provides a peak throughput of slightly over 40 Gbps
after accounting for the bit-encoding overhead for reliable
transmission. All machines share storage using a 10 TB NFS
partition that we use for loading input data. Each process
loads a portion of data depending on the number of pro-
cesses. For all our experiments, we randomize the input data
and assign random subsets to each node. All reported times
do not account the initial one-time cost for the loading the
data-sets in memory. All times are reported in seconds.

We perform our experiments on applications as described
in Table 2. We perform data-parallel learning for SVM, ma-
trix factorization and neural networks. We use small and
large datasets. The small datasets have well understood con-
vergence behavior and allow us to verify correctness. Fur-
thermore, they allow us to measure the speedup over sin-
gle machine performance. The large datasets help us eval-
uate scalability of our design. To evaluate SVM, we use
RCV1, PASCAL suite (alpha, webspam, DNA) and splice-
site datasets [6]. The compressed training set sizes are RCV1
— 333 MB (477 MB uncompressed), PASCAL alpha — 651
MB (1 GB uncompressed), webspam — 2.6 GB (10 GB
uncompressed), DNA 2.5 GB (10 GB uncompressed) and
splice-site — 110 GB (250 GB uncompressed). The splice-
site dataset does not fit in a single machine and requires
majority of the dataset for an accurate model. For matrix
factorization, we use the Netflix dataset (1.6 GB uncom-
pressed). For neural networks, we perform click-through
rate (CTR) prediction based on the Tencent data released
with KDD Cup 2012 challenge [3]. The neural network is
a three-layer fully-connected neural network that performs
supervised-semantic indexing (SSI) [10]. The SSI model
trains on 3.1 GB of processed training data. We report per-
formance compared to a single process SGD except for the
splice-site dataset which cannot run in one machine. The
baseline for splice-site dataset is bulk-synchronous process-
ing over MALT.

6.1 Speedup

In this section, we compare the speedup of different datasets
over a single machine and existing methods. We also evalu-
ate the time spent across different processing tasks and the

RCV1, all, BSP, gradavg, ranks=10 RCV1, all, BSP, gradavg, ranks=10
‘\ — = goal 0.145 N
== single rank SGD| 0.18 N
g cb=5000 7.3X »

== goal 0.145
== single rank SGD|
cb=5000 6.7X

10°

10 10°
iterations (10000) time (0.01 sec)

Figure 4. This figure shows convergence for RCV1 workload
for MALT, with a single machine workload. We find that
MALTg; converges quicker to achieve the desired accuracy.

300;
alpha, all, BSP, modelavg, ranks=10
250t
MALT-SVM
200t
150t

1007 MR-SVM

50t

Speedup over single SGD for fix loss

Runtime configurations

Figure 5. This figure shows speedup by iterations with PAS-
CAL alpha workload for MALT,; SVM with MR-SVM. MR-
SVM algorithm is implemented using the MALT library over
infiniBand. We achieve super-linear speedup for some work-
loads because of the averaging effect from parallel replicas [52].
benefit of different synchronization methods. We compare
speedup of the systems under test by running them until
they reach the same loss value and compare the total time
and number of iterations (passes) over data per machine.
Distributed training requires fewer iterations per machine
since examples are processed in parallel. For each of our
experiments, we pick the desired final optimization goal as
achieved by running a single-rank SGD [6, 12]. Figure 4
compares the speedup of MALT,; with a single machine for
the RCV1 dataset [12], for a communication batch size or cb
size of 5000, for 10 ranks. By c¢b size of 5000, we mean that
every model processes 5000 examples from the dataset and
then propagates the model updates to other machines. By 10
ranks, we mean 10 processes, that span our eight machine
cluster. For RCV1 and other smaller workloads, we find that
we are unable to saturate the network and CPU with a single
replica, and run multiple replicas on a single machine.

We now compare MALT-SVM performance with an ex-
isting algorithm designed for map-reduce (MR-SVM). MR-
SVM algorithm is based on common Hadoop implemen-

KDD2012, all, BSP, modelavg, ranks=8
0.71 4

O D T v W —
fN“W P
7z g fy v
0.69 Lt e Iy
0.68

0.67 -

AUC

086 yfy desired goal 0.7

- = = single rank SGD
cb=15000 1.13X
cb=20000 1.5X

cb=25000 1.24X

0.65

0.64 —

0.63 -

0.62

T T T T T T
500 1000 1500 2000 2500 3000
time (1 sec)

Figure 6. This figure shows the AUC (Area Under Curve)
vs time (in seconds) for a three layer neural network for text
learning (click prediction).

tations and communicates gradients after every partition-
epoch [56]. We implement MR-SVM algorithms over the
MALT library and run it over our infiniBand cluster. MR-
SVM uses one-shot averaging at the end of every epoch to
communicate parameters (cb size = 25K). MALT is designed
for low-latency communication and communicated parame-
ters more often (cb size = 1K). Figure 5 shows speedup by it-
erations for the PASCAL alpha workload for MR-SVM (im-
plemented over MALT) and MALT,;. We find that both the
workloads achieve super-linear speedup over a single ma-
chine SGD on the PASCAL alpha dataset. This happens be-
cause the averaging effect of gradients provides super-linear
speedup for certain datasets [52]. In addition, we find that
MALT provides 3x speedup (by iterations, about 1.5x by
time) over MR-SVM. MALT converges faster since it is de-
signed over low latency communication, and sends gradients
more frequently. This result shows that existing algorithms
designed for map-reduce may not provide the most optimal
speedup for low latency frameworks such as MALT.

Figure 6 shows the speedup with time for convergence
for ad-click prediction implemented using a fully connected,
three layer neural network. This three layer network needs
to synchronize parameters at each layer. Furthermore, these
networks have dense parameters and there is computa-
tion in the forward and the reverse direction. Hence, fully-
connected neural networks are harder to scale than convolu-
tion networks [23]. We show the speedup by using MALT
an to train over KDD-2012 data on 8 processes over single
machine. We obtain up to 1.5x speedup with 8 ranks. The
speedup is limited as compared to SVM because 1) SSI is
non-convex and requires high-dimensional model commu-
nication as opposed to gradient and 2) text processing in a
neural network requires limited computation and communi-
cation costs dominate.

Figure 7 shows speedup by iterations over single ma-
chine SGD with matrix factorization. We show convergence
for two different learning rate strategies — byiter, where we
start with a learning rate and decrease every certain num-
ber of iterations and fixed, where we keep a fixed learning

Netflix, all, ASYNC, cb=1000, ranks=2

D - goal 0.94
115 U R SGD fixed

. MALT—fixed 1.9X
MALT-byiter 1.5X

114 N

1.05+

test RMSE

0.95

09 T T T T T T T T T T
200 400 600 800 1000 1200 1400 1600 1800 2000

iterations (1000000)

RCV1, BSP, gradavg, cb=5000, ranks=20

3 -—
I Total
I Gradient
257 [Scatter
[Gather
2 I Barrier
o
)
‘G‘; 1.5
E
1 -
0.5

all Halton

Figure 7. This figure shows iterations vs test RMSE (Root
Mean Square Error) for matrix factorization with the Netflix
dataset. We train asynchronously over two machines, and use
replace as the gather function.

rate during the entire training process [53]. Each rank pro-
cesses part of the training data and communicate updates
asynchronously across different machines, where updates
refers to changed rows and columns of the factorized ma-
trix. We use replace as the gather () function that em-
ulates Hogwild [46] in a distributed environment. We show
iterations and error rate for different communication batch
sizes. We find that our distributed Hogwild implementation
generates lots of network traffic for small batch sizes (cb size
< 500) and hurts performance. For larger batch sizes, there
is lots of wasted work over similar (user, movie) since the
Hogwild approach overwrites parameter values across ranks.
To avoid wasted work, we sort the input data by movie
and split across ranks (for all runs including baseline), to
avoid conflicts and achieve convergence in about 574 sec-
onds. We find that MALT performs one pass over the data
(epoch) in 26 seconds. For one epoch, Sparkler takes 96
seconds and Spark takes 594 seconds, for 25 ranks, over
non-infiniBand hardware (the paper does not report the total
time for convergence) [35]. A clever partitioning algorithm
for data pre-processing that partitions non-conflicting (user,
mouvie) pairs across different ranks may provide additional
performance gains [44].

We now evaluate the time spent by MALT in different
training steps such as calculating the gradient, sending up-
dates, etc. Figure 8 shows the time spent for different dis-
tributed synchronous training steps for 20 ranks. We find
that MALT balances computation with communication and
nodes spend most of their time computing gradients and
pushing them (as opposed to blocking). In async workloads,
MALT configurations do not wait while parameter server
clients need to wait for updated models to arrive after send-
ing their gradients as shown in Figure 9. Figure 9 also shows
the efficiency of using gradient updates instead of sending
whole models over the network. The slaves in the parameter
server may send gradients but need to receive full model pa-
rameters. Furthermore, the parameter server has wait times
for model-averaging even in the asynchronous case because

Figure 8. This figure shows the time consumed by different
steps in distributed SVM for RCV1 workload for synchronous
training.

the workers need to wait for model parameters to arrive from
the server before proceeding to the next iteration. Hence,
it suffers from higher network costs for high-dimensional
models such as the webspam workload.

Figure 10 shows the speedup with MALT bulk syn-
chronous (BSP), asynchronous (ASP) and bounded stale-
ness (SSP) models for the splice-site dataset over 8 ma-
chines. This training dataset consists of 10M examples (250
GB) and does not fit in a single machine. Each machine
loads a portion of the training data (about 30 GB). SSP was
proposed using the parameter server approach [21] and we
implement it for MALT. Our implementation of bounded
staleness (SSP) only merges the updates if they are within
a specific range of iteration counts of its neighbor. Further-
more, if a specific rank lags too far behind, other ranks stall
their training for a fixed time, waiting for the straggler to
catch up. Our ASP implementation skips merging of updates
from the stragglers to avoid incorporating stale updates. For
the splice-site dataset, we find that SSP converges to the
desired value first, followed by ASP and BSP.

To summarize, we find that MALT achieves reasonable
a speedup over a single machine despite the additional costs
of distributed computing for SVM and neural networks. Fur-
thermore, MALT can process large datasets and models with
large parameter values in a reasonable amount of time. We
also find that the convergence of distributed algorithms is
less smooth when compared to a single rank SGD. This vari-
ance can be reduced by using a better gather function than
simple averaging [38, 55].

6.2 Network Optimizations

We now evaluate the benefit of our network optimizations.
Figure 11 shows the model convergence graph for MALT
and MALTyyen to reach the required loss value for the
RCV1 dataset. We find that MALTy,,, converges more
slowly than MALTyj, in terms of convergence per iteration.
However, the overall time to converge is less because: First,
parallel nodes (N) only communicate with fewer (log(N))
machines. Second, each node performs model averaging

200
% loss=0.05

o

a

< 160

2

5

< loss=0.03
2 120

¥

o

a

GJ

o =

8 80 loss=0.05

- loss=0.03

>

2

o 40

2

qé Compute
[Wait

Halton-model avg Halton-grad-avg PS-model-avg PS-grad-avg

Figure 9. This figure compares MALTyaiton With parameter
server (PS) for distributed SVM for webspam workload for
asynchronous training, with achieved loss values for 20 ranks.

Splice-site, all, modelavg, cb=5000, ranks=8

0.028 =1 goal 0.01245
-- - BSP
ASYNC 6X

SSP 7.2X

0.026

0.024

0.022
o.oz:l
0018

0.016

loss

0.014

0.012

0 50 100 150 200 250
time (1 sec)

Figure 10. This figure shows the convergence for bulk-
synchronous (BSP), asynchronous processing (ASP) and
bounded staleness processing (SSP) for splice-site workload.

RCV1, all, BSP, gradavg, ranks=10 RCV1, Halton, BSP, gradavg, ranks=10
- 0.1857

0.185 N 5 <\
N == goal 0.145 ~ == goal 0.145
018 -~ single rank SGD oasd > -~ single rank SGD|
N cb=1000 5.2X N cb=1000 5.9X
' cb=5000 6.7X . cb=5000 8.1X
0175 \ cb=10000 5.5X 01759 \ b=10000 5.7X
\ \
017 \ 0.17]
Ve Ve
« 0165 \ & 0165 !
] N 7] ‘
o i o i
0.16 0.16
vy A
v V.
0.155 \‘\: ¥ 0.155 \‘\1 1
Wi, Wy
l“\ \.'
0.15) n 0.15+ N U 1‘
s X,
y
0145 =+ =mim s = -i‘»\iﬁ,y RV [P ———]

10° 10°

10! 10° 10! 10°
time (0.01 sec) time (0.01 sec)

Figure 11. This figure shows convergence (loss vs time in
seconds) for RCV1 dataset for MALT .y (left) and MALTHaiton
(right) for different communication batch sizes. We find that
MALTHaiton converges faster than MALT ..

Splice-site, modelavg, cb=5000, ranks=8

0.028

——————— goal 0.01245

-- - BSPall

ASYNC all 6X
ASYNC Halton 11X

0.024

1

1

1
0.026 ¢
1

1
0.022—}!
1

loss

0.02

0.018

0.016

0.014

0.012

T T
0 50 100 150 200 250
time (1 sec)

Figure 12. This figure shows convergence (loss vs time in
seconds) for splice-site dataset for MALT.y and MALTHaiton.
We find that MALTHaion converges faster than MALT .

of fewer (log(V)) incoming models. Hence, even though
MALTyyon may require more iterations than MALT,y, the
overall time required for every iteration is less, and over-
all convergence time to reach the desired accuracy is less.
Finally, since MALTyai0n Spreads out its updates across all
nodes, that aids faster convergence.

Figure 12 shows the model convergence for the splice-
site dataset and the speedup over BSP-all in reaching the
desired goal with 8 nodes. From the figure, we see that
MALTya0n converges faster than MALT,;. Furthermore,
we find that that until the model converges to the desired
goal, each node in MALT,; sends out 370 GB of updates
for every machine, while MALTy,0n Only sends 34 GB of
data for every machine. As the number of nodes increase,
the logarithmic fan-out of MALTy,jt0n should result in lower
amounts of data transferred and faster convergence.

MALT yapon trades-off freshness of updates at peer repli-
cas with savings in network communication time. For work-
loads where the model is dense and network communication
costs are small compared to the update costs, MALT,; con-
figuration may provide similar or better results over MALT
Halton- FOr example, for the SSI workload, which is a fully
connected neural network, we only see a 1.1x speedup for
MALTHaion over MALT ;. However, as the number of nodes
and model sizes increase, the cost of communication begins
to dominate, and using MALTy,jeon 1s beneficial.

Figure 13 shows the data sent by MALT;, MALTHaiton,
and the parameter server over the entire network, for the
webspam workload. We find that MALTyyy0n 1S the most net-
work efficient. Webspam is a high-dimensional workload.
MALTyuon only sends updates to log(N) nodes. The pa-
rameter server sends gradients but needs to receive the whole
model from the central server. We note that other optimiza-
tions such as compression, and other filters can further re-
duce the network costs as noted in [36]. Furthermore, when
the parameter server is replicated for high-availability, there
is more network traffic for additional N (asynchronous)
messages for NV — way chain replication of the parameters.

X 10* Webspam, BSP, gradavg, cb=5000

I Al
[Halton
[parameter server

12

10

total network traffic (MBs)

ranks

Figure 13. This figure shows the data sent by MALT,y,
MALTHaiton and the parameter server for the webspam work-
load. MALT sends and receives gradients while parameter
server sends gradients but needs to receive whole models.

To summarize, we find that MALT provides sending gra-
dients (instead of sending the model) that saves network
costs. Furthermore, MALT paion 1S network efficient and
achieves speedup over MALT .

Network saturation tests: 'We perform infiniBand network
throughput tests, and measure the time to scatter updates
in MALTy; case with the SVM workload. In the synchronous
case, we find that all ranks operate in a log step fashion,
and during the scatter phase, all machines send models at
the line rate (about 5 GB/s). Specifically, for the webspam
workload, we see about 5.1 GB/s (about 40 Gb/s) during
scatter. In the asynchronous case, to saturate the network,
we run multiple replicas on every machine. When running
three ranks on every machine, we find that each machine
sends model updates at 4.2 GB/s (about 33 Gb/s) for the
webspam dataset. These tests demonstrate that using a large
bandwidth network is beneficial for training models with
large number of parameters. Furthermore, using network-
efficient techniques such as MALT 00 can improve perfor-
mance.

6.3 Developer Effort

We evaluate the ease of implementing parallel learning in
MALT by adding support to the four applications listed in
Table 3. For each application we show the amount of code
we modified as well as the number of new lines added.
In Section 4, we described the specific changes required.
The new code adds support for creating MALT objects, to
scatter—gather the model updates. In comparison, im-
plementing a whole new algorithm takes hundreds of lines
new code assuming underlying data parsing and arithmetic
libraries are provided by the processing framework. On av-
erage, we moved 87 lines of code and added 106 lines, rep-
resenting about 15% of overall code.

6.4 Fault Tolerance

We evaluate the time required for convergence when a node
fails. When the MALT fault monitor in a specific node re-

MALT annotations
Application Dataset LQC LOC Added
Modified
SVM RCVI 105 107
Matrlx.) Netflix 76 82
Factorization
SSIT KDD2012 82 130

Table 3. Developer effort for converting serial applications to
data-parallel with MALT.

4007

1-node failure
3001 fault-free

200
1501

1001

Time to process 50 epochs

501

Runtime configurations

Figure 14. This figure shows the time taken to converge for
DNA dataset with 10 ranks in fault-free and a single process
failure case. We find that MALT is able to recover from the
failure and train the model with desired accuracy.

ceives a time-out from a failed node, it removes that node
from send/receive lists. We run MALT-SVM over ten ranks
on eight nodes to train over the PASCAL-DNA [6] dataset.
We inject faults on MALT jobs on one of the machines and
observe recovery and subsequent convergence. We inject the
faults through an external script and also inject programmer
errors such as divide by zero.

We find that in each case, MALT fault monitors detected
the unreachable failed mode, triggered a recovery process
to synchronize with the remaining nodes and continued to
train. We also observe that subsequent group operations only
execute on the surviving nodes. Finally, we verify that the
models converge to an acceptable accuracy in each of the
failed cases. We also find that local fault monitors were able
to trap processor exceptions and terminate the local training
replica. We note that MALT cannot detect corruption of
scalar values or Byzantine failures. Figure 14 shows one
instance of failure recovery, and the time to converge is
proportional to the number of remaining nodes in the cluster.

7. Related work

Our work draws inspiration from past work on data-parallel
processing, ML specific platforms, ML optimizations and
RDMA based key-value stores.

Existing data-parallel frameworks: Batch processing sys-
tems based on map-reduce [24, 51] perform poorly for ma-

chine learning jobs because the iterative nature of these al-
gorithms require frequent communication using disks. Fur-
thermore, the data-flow model provided by map-reduce is
restrictive, and limits the flexibility of expressing commu-
nication across tasks. Spark [54] provides an efficient in-
memory representation to synchronize data across iterations.
Spark provides copy-on-write, in-memory structures that
improve performance for batch workloads. It also provides
fault tolerance using lineage (re-computation) that enforces
determinism. However, this can be less efficient for cer-
tain machine learning algorithms that make fine-grained and
asynchronous updates. Dryad [32] and CIEL [41] provide
a more flexible data-parallel communication API to write
any arbitrary data flow but share data across tasks through
disks. MPI [26] provides a low-level message passing con-
structs, and a system similar to MALT can be built over MPI.
Picollo [45] provides a distributed, master-slave key-value
store, and resolves writes conflicts using user-defined func-
tions. Picollo provides strong fault tolerance, consistency
and determinism guarantees that can be relaxed in MALT
for performance. MALT is completely asynchronous, and
allows senders to transmit data with one-sided write opera-
tions. Furthermore, unlike Piccolo, MALT provides a com-
munication API that allows the programmer to control where
the updates may reside and how they may propagate.

ML frameworks: DistBelief [23] Project Adam [16], and
the parameter server [36], use a master-client style commu-
nication with the parameter server, that complements MALT.
MALT is a general purpose API, designed to train models in
a peer-to-peer fashion. MALT’s peer-to-peer style simplifies
fault-tolerance, and only requires writing code once that exe-
cutes over all machines. Furthermore, most existing parallel
learning frameworks require a re-write of applications and
libraries. Vowpal Wabbit [5] provides data-parallel learning,
where individual model replicas train in parallel and average
the gradients using the LBFGS algorithm. However, it runs
over Hadoop and lacks efficient shared memory semantics
that MALT provides. Presto [49], has a similar goal to ours,
to provide a rich developer environment for parallel learning.
It provides a parallel R, since R is a common data analy-
sis tool. Presto provides a large distributed array abstraction
to shard data and removes scalability bottlenecks in R im-
plementation. The MALT library can be used to parallelize
many existing learning frameworks. There are many GPU
based frameworks [18]. However, GPU speedups are lim-
ited for datasets exceeding its memory sizes (<10 GB). Fur-
thermore, training multiple-GPUs over the network incurs
significant communication costs. However, there has been
recent work on improving GPU-GPU communication using
infiniBand [50].

ML optimizations: We now discuss prior work to optimize
distributed machine learning to reduce synchronization and
improve convergence. Many researchers have explored im-
proving stochastic gradient descent over distributed systems

by providing mini-batching [20]. This reduces the amount
of communication but reduces convergence speed [30].
HogWild [46] provides a single shared parameter vector
and allows parallel workers to update model parameters
without any locking (in a single machine). However, this
method only works when updates are sparse and there is
limited overlap. HogWild can also generate significant net-
work traffic when adopted in a distributed setting. Bounded-
staleness [21] limits stale updates from stragglers by slowing
down the forerunners. Iterative parameter mixing (used by
MALT) has been shown to provide high-accuracy models
over map-reduce [30]. Optimistic Concurrency Control [43]
uses database style coordination free model updates for dis-
tributed machine learning. MALT also provides coordination
free updates by allocating a per-receiver queue at sender and
avoids invoking the remote CPU by using one-sided RDMA.

RDMA systems: MALT uses one-sided RDMA writes to
communicate gradients for every batch and performs no re-
mote reads. Recently, infiniband hardware has been used
to build transactions on objects in shared address space in
FARM [25] and client-server based key-value stores with
Pilaf [39]. Pilaf provides consistency using checksums,
while FARM provides consistency by ordering DMA writes.
MALT provides a finite per-sender queue at the receiver
to avoid write-write conflicts. Older gradients maybe over-
written by a fast sender and the receiver averages (or com-
putes any other user defined function) the incoming model
updates for conflict resolution.

8. Conclusion

Existing map-reduce frameworks are optimized for batch
processing systems and ill-suited for tasks that are iterative,
fine-grained and asynchronous. Recent scalable ML plat-
forms force developers to learn a new programming environ-
ment and rewrite their ML software. The goal of MALT is to
efficiently provide data-parallelism to existing ML software.
Given a list of machines and MALT library, we demonstrate
that one can program ML algorithms, control the data-flow
and synchrony. We provide MALT library interface for pro-
cedural (C++) and scripting (Lua) languages and demon-
strate data-parallel benefits with SVM, matrix factorization
and neural networks. MALT uses one-sided RDMA primi-
tives that reduces network processing costs and transmission
overhead. The new generation of RDMA protocols provide
additional opportunities for optimizations. Primitives such
as fetch_and_add can be used to perform gradient averag-
ing in hardware and further decrease the model training costs
in software.

Acknowledgments

We would like to thank our shepherd Derek Murray and the
anonymous reviewers for the useful feedback. We also thank
Igor Durdanovic for helping us port RAPID to MALT and
Hans-Peter Graf for his support and encouragement.

References

[1] Halton sequence. en.wikipedia.org/wiki/Halton_
sequence.

[2] Machine Learning in Python.
http://scikit-learn.org/.

[3] Tencent 2012 KDD Cup.
https://www.kddcup2012.o0rg.

[4] The R Project for Statistical Computing.
www.r-project.org/.

[5] Vowpal Wabbit. http://hunch.net/ vw/.

[6] PASCAL Large Scale Learning Challenge.

http://largescale.ml.tu-berlin.de, 2009.

[7]1 A. Agarwal, O. Chapelle, M. Dudik, and J. Langford. A
reliable effective terascale linear learning system. JMLR,
2014.

[8] T. Alrutz, J. Backhaus, T. Brandes, V. End, T. Gerhold,
A. Geiger, D. Griinewald, V. Heuveline, J. Jagerskiipper,
A. Kniipfer, et al. Gaspi—a partitioned global address space
programming interface. In Facing the Multicore-Challenge
111, pages 135-136. Springer, 2013.

[9] K. Bache and M. Lichman. UCI machine learning repository,
2013.

[10] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa,
Y. Qi, O. Chapelle, and K. Weinberger. Supervised semantic
indexing. In ACM CIKM, 2009.

[11] C. M. Bishop et al. Pattern Recognition and Machine Learn-
ing. Springer New York, 2006.

[12] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. In Springer COMPSTAT, 2010.

[13] L. Bottou. Stochastic gradient descent tricks. In Neural
Networks: Tricks of the Trade, pages 421-436. Springer, 2012.

[14] J. Canny and H. Zhao. Butterfly mixing: Accelerating
incremental-update algorithms on clusters. In SDM, 2013.

[15] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made
live: an engineering perspective. In IEEE PODC, 2007.

[16] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project Adam: Building an Efficient and Scalable Deep Learn-
ing Training System. In USENIX OSDI, 2014.

[17] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,
K. Keeton, and E. Xing. Solving the straggler problem with
bounded staleness. In USENIX HotOS, 2013.

[18] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
A. Ng. Deep learning with COTS HPC systems. In ACM
ICML, 2013.

[19] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, 2011.

[20] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better
mini-batch algorithms via accelerated gradient methods. In
NIPS, 2011.

[21] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei,
W. Dai, G. R. Ganger, P. B. Gibbons, et al. Exploiting bounded
staleness to speed up big data analytics. In USENIX ATC,
2014.

[22] W. Dai, J. Wei, X. Zheng, J. K. Kim, S. Lee, J. Yin, Q. Ho,
and E. P. Xing. Petuum: A framework for iterative-convergent
distributed ml. arXiv preprint arXiv:1312.7651, 2013.

[23] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker, et al.
Large scale distributed deep networks. In NIPS, 2012.

[24] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM,
51(1):107-113, 2008.

[25] A. Dragojevi¢, D. Narayanan, O. Hodson, and M. Castro.
Farm: fast remote memory. In USENIX NSDI, 2014.

[26] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lums-
daine, et al. Open MPI: Goals, concept, and design of a next
generation MPI implementation. In Recent Advances in Par-

allel Virtual Machine and Message Passing Interface, pages
97-104. Springer, 2004.

[27] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-
scale matrix factorization with distributed stochastic gradient
descent. In ACM KDD, 2011.

[28] GPI2: Programming Next Generation Supercomputers.
Benchmarks.

[29] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effec-
tiveness of data. IEEE Intelligent Systems, 24(2):8—12, 2009.

[30] K. B. Hall, S. Gilpin, and G. Mann. Mapreduce/bigtable for
distributed optimization. In NIPS LCCC Workshop, 2010.

[31] M. Hilbert and P. Lépez. The worlds technological capacity
to store, communicate, and compute information. Science,
332(6025):60-65, 2011.

[32] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In ACM EuroSys, 2007.

[33] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA
efficiently for key-value services. In SIGCOMM. ACM, 2014.

[34] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization tech-
niques for recommender systems. IEEE Computer, 42(8):30—
37, 2009.

[35] B. Li, S. Tata, and Y. Sismanis. Sparkler: Supporting large-
scale matrix factorization. In ACM EDBT, 2013.

[36] M. Li, D. Andersen, A. Smola, J. Park, A. Ahmed, V. Josi-
fovski, J. Long, E. Shekita, and B.-Y. Su. Scaling distributed
machine learning with the parameter server. In USENIX
OSDI, 2014.

[37] M. Li, D. G. Andersen, and A. Smola. Distributed delayed
proximal gradient methods. In NIPS Workshop on Optimiza-
tion for Machine Learning, 2013.

[38] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-
batch training for stochastic optimization. In ACM KDD,
2014.

[39] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads
to build a fast, cpu-efficient key-value store. In USENIX ATC,
2013.

[40] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A timely dataflow system. In ACM
SOSP, 2013.

http://archive.ics.uci.edu/ml
http://leon.bottou.org/papers/bottou-2010
http://leon.bottou.org/papers/bottou-2010

[41] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. CIEL: A Universal Ex-
ecution Engine for Distributed Data-Flow Computing. In
USENIX NSDI, 2011.

[42] NEC Laboratories
chine Learning

MiLDE: Ma-
Environment.

America.
Development

http://www.nec-labs.com/research-departments
/machine-learning/machine-learning-software/

Milde.

[43] X. Pan, J. E. Gonzalez, S. Jegelka, T. Broderick, and M. Jor-
dan. Optimistic concurrency control for distributed unsuper-
vised learning. In NIPS, 2013.

[44] F. Petroni and L. Querzoni. GASGD: stochastic gradient
descent for distributed asynchronous matrix completion via
graph partitioning. In ACM RecSys, 2014.

[45] R. Power and J. Li. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In USENIX OSDI, 2010.

[46] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In NIPS,
2011.

[47] J. R. Santos, Y. Turner, and G. Janakiraman. End-to-end
congestion control for infiniband. In IEEE INFOCOM, 2003.

[48] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103-111, 1990.

[49] S. Venkataraman, E. Bodzsar, 1. Roy, A. AuYoung, and R. S.
Schreiber. Presto: distributed machine learning and graph

processing with sparse matrices. In ACM EuroSys, 2013.

[50] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K.
Panda. MVAPICH2-GPU: optimized GPU to GPU commu-
nication for InfiniBand clusters. Computer Science-Research
and Development, 26(3-4):257-266, 2011.

[51] T. White. Hadoop: The definitive guide. O’Reilly Media, Inc.,
2009.

[52] W. Xu. Towards optimal one pass large scale learning
with averaged stochastic gradient descent. arXiv preprint
arXiv:1107.2490, 2011.

[53] H. Yun, H.-F Yu, C.-J. Hsieh, S. Vishwanathan, and
I. Dhillon. NOMAD: Non-locking, stOchastic Multi-machine
algorithm for Asynchronous and Decentralized matrix com-
pletion. In ACM VLDB, 2014.

[54] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In USENIX NSDI, 2012.

[55] S. Zhang, A. Choromanska, and Y. LeCun. Deep learning
with Elastic Averaging SGD. arXiv preprint arXiv:1412.6651,
2014.

[56] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized
stochastic gradient descent. In NIPS, 2010.

	Introduction
	Distributed Machine Learning
	MALT Architecture
	Abstractions for Shared Memory with dstorm
	Vector Object Library: Programming Dstorm for Machine Learning
	Fault tolerance
	Communication Efficiency in MALT

	Programming Interface
	Applications
	Support Vector Machines
	Matrix Factorization
	Neural Networks

	Implementation
	Evaluation
	Speedup
	Network Optimizations
	Developer Effort
	Fault Tolerance

	Related work
	Conclusion

